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Structural brain changes in first episode
Schizophrenia compared with Fronto-Temporal
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Abstract

Background: The authors sought to compare gray matter changes in First Episode Schizophrenia (FES) compared
with Fronto-Temporal Lobar Degeneration (FTLD) using meta-analytic methods applied to neuro-imaging studies.

Methods: A systematic search was conducted for published, structural voxel-based morphometric MRI studies in
patients with FES or FTLD. Data were combined using anatomical likelihood estimation (ALE) to determine the
extent of gray matter decreases and analysed to ascertain the degree of overlap in the spatial distribution of brain
changes in both diseases.

Results: Data were extracted from 18 FES studies (including a total of 555 patients and 621 comparison subjects)
and 20 studies of FTLD or related disorders (including a total of 311 patients and 431 comparison subjects). The
similarity in spatial overlap of brain changes in the two disorders was significant (p = 0.001). Gray matter deficits
common to both disorders included bilateral caudate, left insula and bilateral uncus regions.

Conclusions: There is a significant overlap in the distribution of structural brain changes in First Episode
Schizophrenia and Fronto-Temporal Lobar Degeneration. This may reflect overlapping aetiologies, or a common
vulnerability of these regions to the distinct aetio-pathological processes in the two disorders.

Keywords: Schizophrenia/pathology, FTLD/pathology, Meta-analysis, Magnetic resonance imaging/methods,
Humans, Brain/pathology, Brain mapping, Imaging processing, Computer-Assisted/methods
Background
Schizophrenia is a disorder characterised by positive
symptoms (hallucinations and delusions), thought dis-
order and negative symptoms (such as apathy). Brain
imaging studies have identified structural changes both
early in the presentation of the illness and more exten-
sive changes later in the course of the illness [1]. The
distribution of changes has been replicated between
studies [2], and may be considered a ‘structural signa-
ture’ of schizophrenia within the brain. However, an ad-
equate explanation for this spatial distribution remains
elusive. Models have been proposed involving genetic
factors coding neuro-protein variants resulting in abnor-
mal development of limbic and frontal-temporal-
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subcortical networks [3]. However, it remains uncertain
which neuro-chemical pathways are responsible and
how they cause the spatial changes.
FTLD is characterised by declines in social function,

interpersonal conduct, emotional blunting, speech and
language abnormalities and loss of insight [4]. It is asso-
ciated with degeneration of the prefrontal and anterior
temporal cortices [5]. However, the topographical distri-
bution of structural brain changes is heterogeneous
amongst different patient groups, reflecting behavioral
and pathological variants. Although the most common
histological feature is tauopathy [6], over half of all
patients, including those with a family history of the
condition, have no abnormality in the tau gene or pro-
tein [7], consistent with pathological and aetiological
heterogeneity.
In this study, we investigate whether there is overlap

in the distribution of brain changes in First Episode
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Schizophrenia (FES) and Fronto-Temporal Lobar Degen-
eration (FTLD). There is evidence for similarities in clin-
ical, neuropsychological and neuroimaging findings in
patients with FTLD and schizophrenia [8]. In some
cases, patients with FTLD have been diagnosed with a
schizophrenia-like psychotic illness years before the de-
mentia diagnosis is made [9]. Echopraxia, echolalia,
aprosody of speech, utilisation behavior, ‘negative’ symp-
toms, self-neglect, and bizarre, compulsive, and stereo-
typed behaviors are well recognised in both disorders.
Executive dysfunction with relative preservation of visual
perception and spatial skills [7,10] and deficits in social
cognition, theory of mind, empathy and affect recogni-
tion have been identified in both disorders [11].
Frontal, temporal and hippocampal atrophy [12,13]

and regionally specific reductions in the anterior corpus
callosum [14,15] and anterior hippocampus [16,17] have
been described in MRI studies of both FTLD and schizo-
phrenia. Frontal hypoperfusion on single photon emis-
sion tomography or positron emission tomography
constitutes one of the imaging criteria for the diagnosis
of frontotemporal dementia [18], and is also one of the
most robust functional imaging findings in the schizo-
phrenia literature in patients with chronic and first-
episode illness [19]. There is also recent evidence that
schizophrenia and FTLD co-occur in some families, sug-
gesting the possibility of a common vulnerability to
these disorders [20]. While the pathology of schizophre-
nia remains uncertain, there have been considerable
advances in elucidating the complex and heterogeneous
pathology of FTLD [21,22]. We have chosen to examine
FES rather than chronic schizophrenia because the
structural changes in FES may more accurately reflect
the pathological changes of the disorder, and may
minimize the confounding effects of long-term medica-
tion and other aspects of chronic illness. Different anti-
psychotics have individual volumetric effects on brain
structure [23,24] and therefore, patients with FES were
used in order to reduce heterogeneity.
The aim of this review is to determine the distribution

of brain changes in FTLD and FES, by employing an
established meta-analytic technique (anatomical likeli-
hood estimation, ALE) [25] that is widely used for
coordinate-based meta-analyses of neuroimaging data by
converting the co-ordinates of peak gray matter changes
from multiple published studies into spatial probability
maps. However, the accuracy and extent of these maps is
dependent on the total number of peak co-ordinates
available from published studies. Therefore, this study
employs a new statistical approach to investigate the de-
gree of spatial correspondence between the two disor-
ders, taking into account the greater availability of data
co-ordinates for FTLD than FES. The comparison of
brain changes between an individual MRI scan and maps
for different disorders may become increasingly import-
ant for early diagnosis, as currently, diagnoses of psychi-
atric disorders are made on the basis of clinical
manifestations and associated psychosocial disturbances.
There are current initiatives to encourage the classifica-
tion of mental disorders for research purposes, such as
the RDoC (Research Domain Criteria) approach [26].
Several MRI-based studies have attempted to distinguish
between patients and healthy subjects with high accur-
acy (ranging from 75 to 92%) [27]. Therefore, the statis-
tical technique described in this paper for assessing
spatial overlap may have wider clinical utility in the
future.

Methods
The PRISMA (preferred reporting items for systematic
reviews and meta-analyses) guidelines were followed to
conduct this review [28].

Literature search
A comprehensive keyword search of EMBASE (from
1980), PsycINFO (from 1801) and Medline (from 1950),
was conducted using the following search strategy. The
following Boolean phrase was used: {([Magnetic Reson-
ance Imaging] OR [MRI]) AND ([Schizophrenia] OR
[schizo*] OR [FTLD] OR [Fronto-Temporal Lobar De-
generation) AND ([Voxel] OR [VBM])}. Both free-text
and expanded medical subject headings were be used.
The search strategy was supplemented using a cited
reference search, and by inspecting the reference lists of
included articles. The search was conducted in January
2011. No time span was specified for date of publication.

Criteria for inclusion/exclusion
Studies were considered for the review using the follow-
ing inclusion criteria: 1) they were published in English
as a peer-reviewed article (rather than a letter, abstract,
or case report); 2) they compared a sample of formally
diagnosed subjects with a group of unrelated healthy
control subjects; 3) they utilized voxel-based analysis of
gray matter in structural MRI scans to investigate differ-
ences in whole-brain; and 4) they reported the three-
dimensional co-ordinates of changes in stereotactic
space.
FTLD studies were considered if they consisted of sub-

jects with Fronto-Temporal Lobar Degeneration or
related diagnoses, such as Semantic Dementia. FES stud-
ies were considered if they included a group of subjects
with schizophrenia or related diagnoses, specifically first
episode schizoaffective disorder or psychosis. Only first-
episode schizophrenia patients were included, therefore,
papers must have documented that patients were experi-
encing symptoms related to psychosis without a prior
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diagnosis without administration of prior antipsychotic
medication in order to be included in our meta-analysis.
Studies were excluded if: 1) there were insufficient

data to extract the number of subjects in each group; 2)
there were fewer than five subjects in either the patient
group or the comparison group; 3) the comparison
groups consisted of patients with minor non-psychiatric
illnesses; 4) the patient group in the schizophrenia stud-
ies consisted of subjects with child-onset schizophrenia
or chronic schizophrenia beyond the stage of first-
episode psychosis; 5) the studies used region-of-interest
volumetric analyses, or the deformation- or tensor-based
volumetric methods for measuring regional brain
volumes; and 6) the data contributed to another publica-
tion, in which case the publication with the largest group
size under study was selected.
Data abstraction
Data were extracted from two independent investigators
(BO and IEW) and were double-checked. Information
gathered from the studies included the authors, year of
publication, demographic variables (number of subjects,
age at baseline and gender), illness variables (diagnosis
and duration of illness), and the reported stereotactic
coordinates related to the comparisons between struc-
tural MRI scans of patients and controls from every
selected study. Co-ordinates that were reported in the
stereotactic space of the Montreal Neurological Institute
(MNI) were converted to Talairach coordinates using
the Lancaster transform (icbm2tal) in the GingerALE 2.0
program [29]. Talairach co-ordinates that had been gen-
erated by the Brett transform applied to statistical para-
metric mapping MNI co-ordinates were transformed
back to MNI space in GingerALE and then to Talairach
space using the Lancaster transform.
Statistical analysis
Meta-analyses were performed using the Talairach
stereotactic coordinates derived from the included stud-
ies. Meta-analyses were carried out using GingerALE 2.0
[29]. This uses the technique of Activation Likelihood
Estimation (ALE) [25] and permits weighting of studies
in the meta-analysis, e.g. based on sample size. This
modification of ALE treats the spatial conjunction of co-
ordinates from separate studies as more significant than
conjunction of co-ordinates from a single study. The
probability values can then be interpreted on an image-
wide basis after correction for multiple testing using the
False Discovery Rate, a method which controls the pro-
portion of type 1 errors (false positives) among signifi-
cant results [30].
Descriptive meta-analyses were then performed to

identify the distribution of brain changes in FES and
FTLD, when compared to control subjects. The overlap
of these two distributions was measured.

Spatial overlap testing
We tested the overlap of the FTLD co-ordinates with
the FES spatial map generated by ALE using a random-
isation method based on our previous work hybridising
ALE spatial techniques with GSMA (Genome Scan
Meta-Analysis) statistical methods [31].
For each FTLD study, the reported loci of maximal

anatomical difference were modeled as the peaks of
three-dimensional Gaussian probability density functions
with full-width half-maximum of 7 mm, within a brain
mask of size N of linear dimension 2 mm. The voxels in
this probability image were then ranked from N (highest
probability) to 1 (lowest probability), giving voxels of
equal probability a mean rank. This created a rank image
for each study which was smoothed with a 7 mm Gauss-
ian filter. This image was masked with the First Episode
Schizophrenia spatial map generated by ALE and the
total value of ranks within the mask was calculated. The
total for all studies of ranks within the mask was calcu-
lated (‘FES Mask Total’).
A null distribution for the FES Mask Total result was

derived by 1000 permutations of the same process, but
using an equal number of co-ordinates for each study
derived from a random uniform distribution of coordi-
nates within the brain mask. The probability of a FES
Mask Total under the null hypothesis was calculated as
the proportion of permutations giving a value equal or
greater than the actual value.
The data set being tested was included in the ranking

of all known outcomes. The significance threshold was
set at p < 0.05.

Results
The electronic literature search of the three databases
yielded 396 articles, of which 181 were retrieved in full-
text format. 56 studies were identified as being poten-
tially appropriate to be included in the meta-analysis,
and the inclusion and exclusion criteria was used
throughout the selection process to yield 38 articles ap-
propriate for use in the meta-analysis. Figure 1 displays
a flow diagram that shows the reasons for exclusion at
each stage of the selection process.
A total of eighteen FES studies and twenty FTLD stud-

ies were identified for inclusion in the meta-analysis
(Table 1), having published MRI co-ordinates of gray
matter changes in FES or FTLD patients and healthy
controls [32-69]. The FES studies included a total of 555
patients and 621 comparison subjects, and the FTLD
studies included a total of 311 patients and 431 compari-
son subjects. Among the FES patient group, the smallest
size sample was 13 schizophrenia patients [44], and the



Figure 1 Study flow and reasons for exclusion.
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largest size sample was 68 schizophrenia patients [40].
Among the FTLD patient group, the smallest size sam-
ple was 6 patients [50,62], and the largest size sample
was 51 patients [60]. All included studies were published
from 2000 to 2010.

ALE meta-analyses
Eighteen FES studies included 185 co-ordinates of gray
matter decreases. Meta-analysis of this data identified
gray matter decreases in regions including bilateral head
of caudate nucleus, bilateral insula, bilateral amygdala/
uncus region and bilateral superior temporal region
(Figure 2).
Twenty FTLD studies provided 260 co-ordinates of

gray matter decreases. Meta-analysis of this data identi-
fied gray matter decreases in regions including bilateral
head of caudate nucleus, bilateral insula, bilateral amyg-
dala/uncus region and bilateral superior temporal region
(Table 2, Figure 2).

Common changes in FES and FTLD
Gray matter decreases were present in both disorders in
regions including bilateral caudate head, left insula and
bilateral uncus region (Figure 3).
The spatial congruence between the disorders was

estimated by percentage overlap. The FTLD map of gray
matter decreases comprised 2450 voxels in a brain mask
of 201069 voxels. The FES map of gray matter decreases
comprised 888 voxels in a brain mask of 201069 voxels.
The overlap between the FTLD and FES maps was 124
voxels. Therefore the overlap of FTLD within FES was
14% (compared to an expected overlap of 1.2% if the
FTLD map was randomly distributed in the brain mask).
The overlap of FES within FTLD was 5% (compared to
an expected overlap of 0.4% if the FES mask was ran-
domly distributed in the brain mask). Applying the
spatial overlap testing method, the overlap of the FTLD
co-ordinates with the FES spatial map generated by ALE
was significant (p = 0.001).

Discussion
In this study, we identified overlap in the distribution of
brain changes in First Episode Schizophrenia (FES) and
Fronto-Temporal Lobar Degeneration (FTLD). We
found that the two disorders involved gray matter defi-
cits in common regions (p = 0.001). These included the
basal ganglia (bilateral caudate head), paralimbic (left in-
sula) and limbic (bilateral uncus) regions, as shown in
Figure 4. To our knowledge, this is the first meta-
analysis that compares neuro-structural profiles between
FES and FTLD. Our study presents a novel method
using ALE analyses to derive a statistical test for the
chance overlap of the spatial distribution of the two
disorders.
One approach to investigating the spatial distribu-

tion of brain changes in schizophrenia involves con-
ceptualising the disorder as affecting several neural
sub-systems which are individually affected in other



Table 1 Studies included in the Meta-analyses

First author, Year of publication Disorder type Number of
patients

Number of
controls

Mean age of
patients (yrs)

Mean age of
controls (yrs)

FIRST EPISODE SCHIZOPHRENIA

Berge, 2010 [32] PNOS (FE) 21 20 24.8 25.3

Chua, 2007 [33] SZ, SZF, BPSY (FE) 26 38 32.0 33.0

Douaud, 2007 [34] SZ (FE) 25 25 16.5 16.2

Ebdrup, 2010 [35] SZ (FE) 38 43 26.2 26.9

Jayakumar, 2005 [36] SZ (FE) 18 18 24.9 25.7

Job, 2002 [37] SZ (FE) 34 36 21.4 21.2

Kasparak, 2007 [38] SZ (FE) 22 18 23.7 24.1

Kubicki, 2002 [39] SZ (FE) 16 18 26.0 24.0

Lui, 2009 [40] SZ (FE) 68 68 24.2 24.7

Meda, 2008 [41] WPIC 22 21 25.1 26.2

Molina, 2010 [42] SZ (FE) 30 41 25.8 29.4

Price, 2010 [43] SCZ, SZA (FE) 48 47 26.2 24.8

Salgado-Pineda, 2003 [44] SZ (FE) 13 13 23.8 23.4

Schaufelberger, 2007 [45] SZ, SZF (FE) 62 94 27.6 30.2

Venkatasubramanian, 2010 [46] SZ (FE) 30 27 30.1 27.4

Whitford, 2005 [47] SZ (FES) 41 47 19.8 19.3

Witthaus, 2009 [48] SZ (FES) 23 29 26.4 25.7

Yoshihara, 2008 [49] SZ (FES) 18 18 15.8 15.8

Total (mean) 555 (30.8) 621 (34.5) (24.4) (24.5)

FRONTO-TEMPORAL LOBAR DEGENERATION

Adlam, 2006 [50] FTLD: SD, fPPA 6 12 62.8 65.0

Boccardi, 2005 [51] FTLD 9 26 62.0 69.0

Boxer, 2003 [52] FTLD: SD 11 15 66.2 69.6

Chang, 2005 [53] FTLD: FTLD&ALS vs. ALS 10 10 64.5 49.9

Desgranges, 2007 [54] FTLD: SD 10 17 65.7 65.8

Gee, 2003 [55] FTLD 29 12 65.1 68.5

Gorno-Tempini, 2004 [56] FTLD: SD 10 10 63.0 69.1

Grossman, 2004 [57] FTLD 29 12 65.1 68.5

Kanda, 2008 [58] FTLD: bvFTD 13 20 64.9 65.2

Kim, 2007 [59] FTLD 14 61 63.3 68.0

Libon 2009 [60] FTLD: bvFTD 51 43 61.3 n/av: age-matched

Massimo 2009 [61] FTLD: disinhibition-predominant 4 10 63.6 64.1

Mummery 2000 [62] FTLD: SD 6 14 60.5 62.0

Nestor 2003 [63] FTLD: PNFA 7 10 71.5 65.9

Pardini 2009 [64] FTLD: bvFTD 22 12 60.3 n/av: age-matched

Pereira 2009 [65] FTLD: ubiquitin positive 9 25 64.0 63.8

Rabinovici 2007 [66] FTLD 18 40 62.5 63.5

Rosen 2002 [67] FTLD: bvFTD 20 20 61.8 62.3

Seeley 2008 [68] FTLD: bvFTD CDR2-3 15 45 62.3 68.3
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Table 1 Studies included in the Meta-analyses (Continued)

Williams 2005 [69] FTLD 18 17 60.8 61.7

Total (mean) 311 (15.6) 431 (21.6) (63.6) (65.0)

All studies using voxel-based morphometry of gray matter compared a patient group with a comparison group. Abbreviations: BPSY, Brief Psychotic Disorder; FE,
First episode; PNOS, Psychosis not otherwise specified; SZ, Schizophrenia; SZA, Schizo-affective disorder; SZF, Schizophreniform disorder; WPIC, Patients from the
Western Psychiatric Institute and Clinic at the University of Pittsburgh; FTLD, Fronto-temporal Lobar Degeneration; SD, Semantic Dementia; fPPA, Fluent form of
Primary Progressive Aphasia; ALS, Amyotrophic Lateral Sclerosis; bvFTD, behavioural / dysexecutive subtype of FTLD; PFNA, Progressive non-fluent Aphasia; CDR,
Clinical Dementia Rating (range: 0.5 – 3); n/av, data not available.

Olabi et al. BMC Psychiatry 2012, 12:104 Page 6 of 13
http://www.biomedcentral.com/1471-244X/12/104
neuro-psychiatric disorders with genetic or syndromal
links to schizophrenia. For example, there is evidence
that bipolar disorder and schizophrenia share suscepti-
bility genes, and gray matter deficits of bipolar disorder
overlap with those of schizophrenia but are more lim-
ited to paralimbic regions involved in emotion regula-
tion [70-72]. Temporal lobe epilepsy is also associated
with psychotic episodes with similarities to schizophre-
nia and is associated with gray matter deficits in limbic
regions, overlapping with those of schizophrenia [73-
75]. Autistic spectrum disorders and schizophrenia
share gray matter deficits in the limbo-striato-thalamic
circuitry [76], possibly reflecting shared genetic [77,78]
and environmental [79-82] risk factors.

Previous results of meta-analyses and structural neuro-
imaging studies of FES and FTLD
These results confirm those of previous meta-analyses of
the two disorders, using smaller samples of primary
studies. Several previous meta-analyses using ‘region-of-
interest’ analyses have examined gray matter deficits in
schizophrenia [83,84], with consistent findings of medial
temporal lobe atrophy [85-88]. Patients with FES also
have smaller whole-brain volume, with greater lateral
ventricular volume [89]. Frontal [90,91] and temporal
Figure 2 Regions of gray matter change in FES and FTLD subjects. Re
(red), regions of gray matter decreases in FTLD subjects compared with co
controls (orange), displayed on a brain template. The left side of the image
is given above each horizontal slice.
[37] volumes have been reported to be smaller at first
episode, and basal ganglia are also affected early in the
illness [33,92]. The ALE method has also been used to
investigate brain structural abnormalities in schizophre-
nia derived from studies using voxel-based morpometry
analyses [1,93]. In a recent meta-analysis by Chan et al.,
patients with FES had lower gray matter volumes in
frontal, temporal, striatal, and cerebellar regions com-
pared with both control subjects and people who are at
genetically high-risk of developing schizophrenia [94].
They mapped progressive changes from the high-risk
stage to the first-episode stage, clarifying potential mar-
kers for disease risk (anterior cingulate and right insula
volume reduction) and for disease onset (caudate vol-
ume reduction) [94].
In FTLD, a meta-analysis of voxel-based morphometry

studies found predominant frontal and temporal lobe in-
volvement, with specific patterns of atrophy in the three
clinical subtypes of FTLD, namely, FTD (frontotemporal
dementia), SD (semantic dementia) and PNFA (progres-
sive non-fluent aphasia) [95]. Correspondingly, diagnos-
tic criteria for FTLD create a ‘triple dissociation’ of these
subtypes with a high diagnostic accuracy clinically [96].
The clinical characteristics of each subtype of FTLD cor-
respond well with the neuroanatomical deficits found.
gions of gray matter decreases in FES subjects compared with controls
ntrols (yellow), and overlapping regions of gray matter decreases
represents the left side of the brain. The Talairach level (z co-ordinate)



Table 2 Regions of gray matter decreases in FES and FTLD subjects compared with controls

Cluster Region Talairach coordinates Value Volume (mm3)

x y z

FIRST EPISODE SCHIZOPHRENIA

1 R/L Caudate 2 14 0 0.0046 1624

R Caudate 10 10 12 0.0017

2 L Uncus −18 −2 −22 0.0031 1272

L Amygdala −12 0 −14 0.0028

3 R Superior temporal gyrus 48 −24 10 0.0019 400

R Superior temporal gyrus 48 −26 16 0.0018

4 L Insula −36 20 6 0.0025 376

5 L Transverse temporal gyrus −46 −18 10 0.0021 288

6 R Middle temporal gyrus 54 −26 −2 0.0022 272

7 L Superior temporal gyrus −58 −26 12 0.0021 272

8 L Superior temporal gyrus −56 2 −4 0.0021 216

9 R Insula 36 8 10 0.0021 216

10 R Parietal lobe: Postcentral gyrus 54 −20 44 0.0022 216

11 L Frontal lobe: Middle frontal gyrus −30 50 4 0.002 200

12 L Frontal lobe: Inferior frontal gyrus −22 28 −6 0.0018 184

13 L Parietal lobe: Postcentral gyrus −60 −18 20 0.002 184

14 R Amygdala / Uncus 20 −4 −22 0.002 168

15 L Superior temporal gyrus −32 14 −22 0.0019 152

16 L Inferior temporal gyrus −46 −14 −18 0.002 152

17 L Cingulate gyrus −8 −4 38 0.002 152

18 R Insula / Claustrum 34 −14 12 0.0018 136

19 R Medial frontal gyrus (BA 8) 14 34 36 0.0017 136

20 L Cingulate gyrus 0 −42 38 0.0016 112

21 R Medial frontal gyrus (BA 6) 6 6 48 0.0017 112

FRONTO-TEMPORAL LOBE DEGENERATION

1 R Amygdala / Uncus 22 −4 −20 0.0029 3744

R Globus Pallidus region 20 2 −4 0.0024

R Hippocampus / Parahippocampus 28 −20 −10 0.0015

2 L Amygdala / Parahippocampus −22 −6 −16 0.0027 2336

L Globus Pallidus region −18 0 −6 0.0025

L Uncus −26 −4 −28 0.002

3 L Anterior cingulate −2 10 −4 0.0024 2144

L Caudate −8 10 10 0.0022

L Caudate −6 2 14 0.0015

4 L Frontal lobe: Medial frontal gyrus (BA 9) −4 48 24 0.003 1256

5 L Frontal lobe: Inferior frontal gyrus −36 24 4 0.0022 936

L Insula −38 14 0 0.0016

6 L Superior temporal gyrus −42 12 −14 0.0021 896

L Superior temporal gyrus −44 2 −12 0.0018

7 R Frontal lobe: Inferior frontal gyrus 42 16 −12 0.003 880

8 L Frontal lobe: Middle frontal gyrus −44 8 38 0.0032 784

9 R Frontal lobe: Inferior frontal gyrus 42 16 12 0.0025 768
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Table 2 Regions of gray matter decreases in FES and FTLD subjects compared with controls (Continued)

10 L Frontal lobe: Superior frontal gyrus −22 60 2 0.0023 704

L Frontal lobe: Superior frontal gyrus −24 56 12 0.0017

11 R Cingulate gyrus 16 26 36 0.0025 576

12 R Insula 42 −6 −4 0.0021 568

13 L Temporal lobe: fusiform gyrus −42 −30 −18 0.0027 520

14 L Frontal lobe: Middle frontal gyrus −22 18 50 0.0027 496

15 L Anterior cingulate −2 32 16 0.002 400

16 R Caudate 8 12 12 0.0024 376

17 R Middle temporal gyrus 48 2 −28 0.0024 312

18 L Frontal lobe: Inferior frontal gyrus −40 52 2 0.0024 232

19 L Frontal lobe: Middle frontal gyrus −28 34 −14 0.002 224

20 L Insula −42 2 0 0.0017 216

21 L Parietal lobe (BA 7) −20 −46 58 0.0023 216

22 L Frontal lobe: Medial frontal gyrus (BA 10) 0 54 −4 0.0018 192

23 R Superior temporal gyrus 28 14 −30 0.0016 176

24 L Uncus −34 −16 −34 0.0017 136

25 R Cerebellum: Anterior lobe 48 −36 −28 0.0023 136

26 R Frontal lobe: Middle frontal gyrus 36 44 8 0.0017 120

27 R Uncus 28 −10 −32 0.0016 112
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Functional significance of implicated regions and
symptoms of FES and FTLD
The involvement of the basal ganglia (bilateral gray
matter decreases in the caudate head in both disor-
ders) agrees with Middleton and Strick’s prediction
that abnormalities within cortico-striatal circuits may
Figure 3 Gray matter deficits in FES subjects (red) and FTLD subjects
orange. Brain changes are shown in three-dimensional views with brain se
coronal plane (E). The Talairach co-ordinate for each plane is given above e
underlie neuropsychiatric symptoms [97,98]. Anatom-
ical studies have revealed discrete connections between
the basal ganglia and the cerebral cortex, reciprocally
interconnecting a large and diverse set of cortical areas
[99]. Dysregulation and abnormal dopaminergic trans-
mission in these loops may contribute to hyperkinetic
(yellow). Congruent changes in both disorders are shown in
ctions removed (A, B), a sagittal plane (C), an axial plane (D) and a
ach image (C, D, E) (P = posterior, A = anterior, S = superior, L = left).



Figure 4 Venn diagram to summarise the distinct and overlapping regions of gray matter deficits found in FES and FTLD.
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movements as well as cognitive impairments [100-102].
Robbins [103] proposed that the heterogeneous range
of core symptoms associated with psychosis, appearing
to be associated with a range of structural and func-
tional abnormalities, might be explained by a frontal-
striatal hypothesis, where an altered balance in the flow
of information between through the basal ganglia could
explain the seemingly disparate symptoms and char-
acteristics of schizophrenia and psychotic episodes in
FTLD. Our results indicate that the basal ganglia loop
in particular incorporating the head of the caudate nu-
cleus, are affected by FES and FTLD, which may at least
partly explain their shared symptoms.
Our findings reveal that both disorders are charac-

terised by reduced volumes of various paralimbic and
limbic structures. Neuroanatomists and cytoarchitectolo-
gists have grouped the regions shown to be affected in
FES and FTLD, namely the superior temporal gyrus
(temporal pole), rostral and caudal anterior cingulate,
posterior cingulate, orbital frontal cortex, insula, and
parahippocampal regions, into the paralimbic cortex
[104,105]. There is documented evidence to support
paralimbic dysfunction in various psychiatric disorders,
namely psychopathy [106], bipolar disorder [72], psych-
otic symptoms in depressive disorder [107] and attention
deficit hyperactivity disorder [108]. Our results also indi-
cate that both disorders are characterised by reduced
caudate size, lesions of which cause impairments in
learning, memory [109] and behaviour through the se-
lection of appropriate sub-goals based on an evaluation
of action-outcomes [110]. This may reflect the common
symptomatology between the two disorders.
Explanation for congruence
Various explanations need to be considered for the over-
lap in gray matter deficits between the two disorders.
Firstly, the result could be due to coincidence. However,
we have applied a statistical test to the spatial congru-
ence which suggests that this is highly unlikely (the p
value for the null hypothesis of a random distribution of
FTLD co-ordinates within the FES spatial map was
p = 0.001). Secondly, the symptoms of neuropsychiatric
disorders are related to the anatomy of the brain path-
ology. Therefore, the selection of schizophrenia and
FTLD, which share certain symptoms (as described
above) may constrain the anatomical findings towards
certain brain regions, in the absence of any other more
meaningful connection between the neuropathology of
the two disorders. The evidence that schizophrenia and
FTLD co-occur in some families [6] suggests the possi-
bility of a more fundamental connection between the
two disorders. Thirdly, the neuropathology of the two
disorders may be (at the neurochemical pathway level)
distinct but the common network identified in this study
may be ‘a final common pathway’ in the pathological
process of both disorders, or a common reaction to such
processes.

Limitations
There are limitations of this meta-analysis. Firstly, by
meta-analysing co-ordinates of maximum change from
primary studies there is a loss of spatial information.
This reduces the spatial resolution of the results. Sec-
ondly, as more primary studies are published the distri-
bution of changes in each disorder may become more
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extensive as there is improved power to detect changes.
Thirdly, there are alternative approaches for investigat-
ing spatial overlap of two disorders. For example, Yu
et al., used a post-hoc meta-analytic estimation of the
extent to which gray matter compares with controls in
bipolar disorder and schizophrenia by using a modifica-
tion of the ALE method [71]. Lastly, the mean age of
patients with FES was 24.4 years, whereas in FTLD, the
mean age was 63.6 years (Table 1). There are no vali-
dated methods to account for these differences in an
ALE meta-analysis, and it is possible that some of the
results may have been affected by “normal” structural
brain aging processes [111]. Anatomical likelihood esti-
mation analyses are a relatively novel and changing
technique, and as time progresses, standardisation of
meta-analysis techniques will help researchers evaluate
results from different studies more objectively.

Future directions
In the future, localized gray matter deficits detected via
the above analyses may be combined with those identi-
fied in activation studies of cognitive deficits in schizo-
phrenia and FTLD, in order to understand the
correlation between functional and structural connectiv-
ity in both disorders. For example, the structural MRI
gray matter deficits could be used as nodes for a net-
work analysis [112], as can now be done on individual
scans [113], which may be utilized to investigate and
compare functional connectivity changes in FES and
FTLD.

Conclusions
In summary, we reviewed data from 18 FES studies and
20 studies of FTLD that used voxel-based morphometry
to identify common structural brain abnormalities. The
brain regions found to be significantly affected included
gray matter deficits in the bilateral caudate, left insula
and bilateral uncus regions. The overlap in distribution
of the disorders does not necessarily indicate a funda-
mental sharing of neurochemical pathology between FES
and FTLD. However, we propose that the emerging gen-
etic, pathological and clinical typology of FTLD may
provide a model for the deconstruction of subtypes of
schizophrenia.
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