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Abstract
Background: Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis,
we have been performing systematic association studies of schizophrenia with the genes involved
in glutametergic transmission. We report here association studies of schizophrenia with SLC1A4,
SLC1A5 encoding neutral amino acid transporters ASCT1, ASCT2, and SLC6A5, SLC6A9 encoding
glycine transporters GLYT2, GLYT1, respectively.

Methods: We initially tested the association of 21 single nucleotide polymorphisms (SNPs)
distributed in the four gene regions with schizophrenia using 100 Japanese cases-control pairs and
examined allele, genotype and haplotype association with schizophrenia. The observed nominal
significance were examined in the full-size samples (400 cases and 420 controls).

Results: We observed nominally significant single-marker associations with schizophrenia in SNP2
(P = 0.021) and SNP3 (P = 0.029) of SLC1A4, SNP1 (P = 0.009) and SNP2 (P = 0.022) of SLC6A5.
We also observed nominally significant haplotype associations with schizophrenia in the
combinations of SNP2-SNP7 (P = 0.037) of SLC1A4 and SNP1-SNP4 (P = 0.043) of SLC6A5. We
examined all of the nominal significance in the Full-size Sample Set, except one haplotype with
insufficient LD. The significant association of SNP1 of SLC6A5 with schizophrenia was confirmed in
the Full-size Sample Set (P = 0.018).

Conclusion: We concluded that at least one susceptibility locus for schizophrenia may be located
within or nearby SLC6A5, whereas SLC1A4, SLC1A5 and SLC6A9 are unlikely to be major
susceptibility genes for schizophrenia in the Japanese population.
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Background
Schizophrenia is a devastating mental disorder that affects
about 1% of worldwide populations [1], and genetic fac-
tors are known to play a crucial role in its pathogenesis
[2]. The successful treatment with dopamine antagonists
on the positive symptomatology of the disease suggests a
crucial role of dopamine in the pathophysiology of schiz-
ophrenia. However, due to the poor effects of dopamine
antagonists against the negative and cognitive symptoms
of schizophrenia, other neurotransmitter systems than
dopamine, such as glutamate are suggested to be involved
in the pathogenesis of schizophrenia. Based on the fact
that phencyclidine (PCP), the antagonist of N-methyl-D-
aspartate (NMDA) glutamate receptor, induces schizo-
phreniform psychosis, a glutamatergic dysfunction
hypothesis has been proposed for the pathogenesis of
schizophrenia [3-5]. This hypothesis has been supported
by recent multiple reports of significant association of
schizophrenia with glutamate receptor genes and with the
genes related to glutamatergic transmission [Review,
[6,7]]. The dopamine and glutamate hypothesis of schiz-
ophrenia are not independent, and in fact, glutamate-
dopamine interaction has been supported by many pre-
clinical and clinical findings [Review, [8]].

Other synaptic elements related to glutamate, such as
transporters, also potentially affect glutamatergic neuro-
transmission. Excitatory amino acid transporters (EAATs)
maintain extracellular glutamate concentrations within
physiological levels by reuptaking synaptically released
glutamate. Abnormalities of mRNA expression of EAATs
were reported in the thalamus, prefrontal cortex, parahip-
pocampal gyrus and striatum in schizophrenia [9-12].
Recently, we have reported the positive association of
SLC1A2 and SLC1A6, the genes encoding EAAT2 and
EAAT4, respectively with schizophrenia [13,14], provid-
ing support for the potential important roles of EAATs in
schizophrenia.

Neutral amino acid transporters (ASCTs), which transport
neutral amino acid (alanine, serine, cysteine and thre-
onin) were identified based on nucleotide sequence
homology to the EAATs [15,16]. The amino acid identity
between EAATs and ASCTs is 40–44%. The functions of
ASCTs in glutamate transmission have also been reported.
ASCT1 not only mediates the efflux of glutamate from the
neuron into the synaptic junction via Calcium-independ-
ent release, but also mediates the efflux of L-serine from
glial cells and its uptake by neurons [17-19]. L-serine is
used for syntheses of various biomolecules, including the
co-agonists at NMDA glutamate receptor, D-serine and
glycine. ASCT2 appears to play an important role in the
glutamine-glutamate cycle between neurons and glia by
facilitation the efflux of glutamine from glial cells [20].
Recently, Weis et al. reported significant decrease in

ASCT1 immunoreactivity in the cingulate cortex, white
matter, and striking loss of ASCT1 immunoreactivity in
the hippocampus in schizophrenia. [21].

Glycine acts as an obligatory co-agonist at NMDA gluta-
mate receptor to promote NMDA receptor function. In the
central system, the actions of glycine are terminated by its
rapid uptake into the nerve terminal and adjacent glial
cells via high-affinity glycine transporters (GLYTs) [22].
Therefore, increasing synaptic level of glycine by inhibi-
ton of its uptake could lead to enhance the activation of
NMDA receptor. Both preclinical and clinical evidence
have provided support for the utility of this modulatory
approach, as well as the potential therapeutic value of
GLYT1 inhibitors in the treatment of schizophrenia
[Review, [23]]. Therefore the ASCTs and GLYTs genes are
strong candidates for schizophrenia, as well as glutamate
receptor and glutamate transporter genes.

In this study we report association studies of schizophre-
nia with total 21 SNPs distributed in genes SLC1A4,
SLC1A5, SLC6A5 and SLC6A9 that encoding the neutral
amino acid transporters ASCT1, ASCT2 and the glycine
transporters GLYT2, GLYT1, respectively. SNPs were
selected to cover the entire gene regions by linkage dise-
quilibria (LD). To enhance the detection power of the
study, we also examined the haplotype associations with
the disease.

Methods
Human subjects
Blood samples were obtained from unrelated Japanese
individuals who had provided written informed consent.
We used 400 cases (mean age 47.2; 44.8% female)
recruited from hospitals in Kyushu and Aichi areas and
420 unrelated controls (mean age 43.6; 44.0% female)
recruited from the Kyushu and Aichi areas. We initially
tested the association of the genes with schizophrenia
using the Screening Sample Set: 100 out of 400 cases
(mean age 49.5; 44.0% female) and 100 out of 420 con-
trols (mean age 51.2; 44.0% female) recruited from the
Kyushu area. All patients were diagnosed by the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM)-IV
criteria [24]. The patients are all consecutive inpatients.
The schizophrenia diagnoses were confirmed by several
psychiatrists. We used another 16 healthy Japanese sam-
ples to test the frequencies of the candidate SNPs selected
from the database. This study was approved by the Ethics
Committee of Kyushu University, Faculty of Medicine.
DNA samples were extracted from leukocytes by standard
methods [25].

SNP selection
We retrieved the primary SNP information from the
dbSNP database [26]. Assuming the same size of the half
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length of LD (60 kb) as reported in Caucasians [27], we
initially intended to select common SNPs every 30 kb in
the three genes including all of the exonic SNPs. We tested
the frequencies of the candidate SNPs, in the 16 healthy
Japanese samples by the direct sequencing method. Out
of them, common SNPs with minor allele frequencies
over 10% were selected for further analyses. The SNPs in
which significant deviation from Hardy-Weinberg equi-
librium (HWE) observed in the 100 control samples were
replaced by another SNP nearby. Since LD gaps (D ' < 0.3)
were observed in the initial SNP set after the LD analyses
described below, we selected additional SNPs to fill the
LD gaps.

We finally selected the following 21 common SNPs dis-
tributed across the gene regions for further analyses: 7 of
SLC1A4, SNP1, rs10211524; SNP2, rs7559202; SNP3,
rs7592468; SNP4, rs3732062; SNP5, novel SNP in intron

3 (located on 33bp 5' to SNP rs7583682); SNP6,
rs759458; SNP7, rs2540969, 5 of SLC1A5, SNP1,
rs918486; SNP2, rs3027956; SNP3, rs313853; SNP4,
rs2070246; SNP5, rs11673198, 6 of SLC6A5, SNP1,
rs894747; SNP2, rs3781742; SNP3, rs3758807; SNP4,
rs3819252; SNP5, rs2000959, SNP6, rs1792970 and 3 of
SLC6A9, SNP1, rs783307; SNP2, rs2248829; SNP3,
rs7555. The locations of the 21 SNPs are shown in Figure
1.

Genotyping
The 21 SNPs were amplified as individual fragments by
PCR as previously described [14]. The nucleotide
sequences of each primer, PCR conditions and genotyping
methods for each SNP are shown in Additional File 1.
Because of the GC rich sequences of SLC1A5 region, we
used Fail Safe PCR system (Epicentre Technologies) to
optimize the PCR conditions when amplified SNP1, SNP2

Genomic organizations of each gene and locations of the SNPsFigure 1
Genomic organizations of each gene and locations of the SNPs. (a) SLC1A4 spans over 34 kb and is composed of 8 
exons. (b) SLC1A5 spans over 14 kb and is composed of 8 exons. (c) SLC6A5 spans over 55.6 kb and is composed of 16 exons. 
(d) SLC6A9 spans over 19.8 kb and is composed of 14 exons. Exons are shown as vertical bars with exon numbers. SNPs we 
analyzed are indicated by circles. Exonic SNPs are indicated by filled circles.
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and SNP5 of SLC1A5. We genotyped samples for SNP5 of
SLC6A5 by polymerase chain reaction/restriction frag-
ment length polymorphism (PCR-RFLP) and the other 20
SNPs by direct sequencing, as previously described [28].
The raw data of direct sequencing were compiled on Poly-
Phred [29] and/or Mutation Surveyor (SoftGenetics LLC).

Statistical analyses
To control genotyping errors, Hardy-Weinberg equilib-
rium (HWE) for the genotype frequencies was checked in
the control samples by the χ2-test (d.f. = 1). We evaluated
the statistical differences in genotype and allele frequen-
cies between cases and controls by Fisher's exact probabil-
ity test. The magnitude of linkage disequilibrium (LD)
was evaluated by caculating D ' using the haplotype fre-
quencies estimated by the EH program, version 1.14 [30],
and D' is represented graphically using the software
Graphical Overview of Linkage Disequilibrium (GOLD)
[31]. Statistical analysis of the haplotype association was
carried out as previously described [32]. The significance
level for all statistical tests was 0.05. We adjusted the P val-
ues of association studies for multiplicity using a false dis-
covery rate (FDR) controlling procedure [33].

Results
Genotyping and SNP association analyses
We selected total 21 SNPs at an average interval of 7.8 kb
for SLC1A4, 4.5 kb for SLC1A5, 14.2 kb for SLC6A5 and
18.9 kb for SLC6A9 to cover each entire gene region with
LD. Since the average allele frequencies of the SNPs are
0.35, 0.30, 0.37 and 0.30 respectively, the expected detec-
tion powers for SLC1A4, SLC1A5, SLC6A5 and SLC6A9
are 0.84, 0.82, 0.84 and 0.82, respectively, under the mul-
tiplicative model with genotype relative risk = 1.8 [34].
Considering the high expected detection powers, we ini-
tially tested the single-marker association of the 21 SNPs
with schizophrenia using the Screening Sample Set (100
cases and 100 controls) by the method described above,
and investigated the association in the Full-size Sample
Set (400 cases and 420 controls) only for the SNPs that
showed significant single-marker or haplotype associa-
tion with schizophrenia in the Screening Sample Set.

Table 1 shows the results of genotype and allele frequen-
cies of SNPs in 100 case and 100 control samples. No sig-
nificant deviation from HWE in control samples was
observed in these SNPs (data not shown). We observed
significant associations with schizophrenia in allele fre-
quencies of SNP2 and SNP3 of SLC1A4 (P = 0.021, P =
0.029, respectively), and in genotype frequencies of SNP1
and SNP2 of SLC6A5 (P = 0.009, P = 0.022, respectively),
although none of them survived after controlling the FDR
at level 0.05 (n = 7 for SLC1A4 and n = 6 for SLC6A5).

Pairwise linkage disequilibrium and haplotype association 
analyses
We compared the magnitude of LD for all possible pairs
of the SNPs in each gene region in controls and cases by
calculating D' (Figure 2). No essential difference was
shown in the LD pattern of any genes between cases and
controls. Strong or modest LD (D' > 0.3) were observed in
all combinations of adjacent SNPs in SLC1A5 and SLC6A9
regions. Whereas in each small subregion of the other two
gene regions, LD drops abruptly: SNP4-SNP5 of SLC1A4
and SNP2-SNP3 of SLC6A5 (D' = 0.061 and D' = 0.125,
respectively).

We constructed pairwise haplotypes for all of the possible
SNP pairs (Table 2). We observed significant associations
with schizophrenia in combinations of SNP2-SNP7 of
SLC1A4 (P = 0.037) and SNP1-SNP4 of SLC6A5 (P =
0.043). However, neither of them survived after control-
ling the FDR at level 0.05.

Association analyses using the Full-size Sample Set
Since nominally significant single-marker and haplotype
associations with schizophrenia were observed in the
Screening Sample Set, we genotyped the Full-size Sample
Set for the SNPs involved in the significance, SNP2, SNP3
of SLC1A4 and SNP1, SNP2, SNP4 of SLC6A5 to examine
these significant associations in the Full-size Sample Set.
We excluded SNP7 of SLC1A4 from further analyses in the
Full-size Sample Set because of the insufficient D'
observed in the combination of SNP2-SNP7 in both cases
and controls (D' = 0.064 and D' = 0.171, respectively).
The genotype and allele frequencies of each SNP in the
Full-size Sample Set are shown in the Additional File 2.
The significant association of SNP1 of SLC6A5 with schiz-
ophrenia was confirmed in both genotype and allele fre-
quencies in the Full-size Sample Set (P = 0.032, P = 0.018,
respectively). We failed to detect other single-marker asso-
ciations (P value range 0.065 – 0.355) and the haplotype
association (P = 0.088) observed in the initial screening.

Discussion
SLC1A4, SLC1A5, SLC6A5 and SLC6A9 were located on
chromosome 2p13-15, 19q13.3, 11p15.2-p15.1, and
1p33, respectively. Suggestive evidence for linkage of
chromosome 2p14-p13, where SLC1A4 is located, with
schizophrenia has been reported in schizophrenia fami-
lies from Palau and Ireland [35,36]. However, the subse-
quent mutation screening failed to find any sequence
polymorphism segregated with the illness in the SLC1A4
region of the Palauan families [37]. In addition, negative
association of SLC1A4 with schizophrenia was reported in
the German population [38]. There has been no linkage
with schizophrenia reported to the chromosome regions
where SLC1A5, SLC6A5 or SLC6A9 are located [36]. More-
over, exclusion of linkage between schizophrenia and
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Table 1: Genotype and allele frequencies of SNPs in each gene in the Screening Sample Set (100 cases and 100 controls)

Genes Polymorphism Genotype count P* Allele frequency (%) P**

SLC1A4 SNP1 A/A A/G G/G A G
Schizophrenics 71 25 4 0.296 83.5 16.5 0.251
Controls 61 35 4 78.5 21.5

SNP2 C/C C/G G/G C G
Schizophrenics 12 35 53 0.090 29.5 70.5 0.021
Controls 6 27 67 19.5 80.5

SNP3 A/A A/G G/G A G
Schizophrenics 53 35 12 0.117 70.5 29.5 0.029
Controls 67 26 7 80 20

SNP4 A/A A/G G/G A G
Schizophrenics 25 45 30 0.315 47.5 52.5 0.547
Controls 17 54 29 44 56

SNP5 C/C C/T T/T C T
Schizophrenics 64 33 3 0.778 80.5 19.5 0.605
Controls 68 30 2 83 17

SNP6 A/A A/G G/G A G
Schizophrenics 1 22 77 0.096 12 88 0.123
Controls 7 22 71 18 82

SNP7 C/C C/T T/T C T
Schizophrenics 23 42 35 0.194 44 56 0.316
Controls 23 53 24 49.5 50.5

SLC1A5 SNP1 A/A A/G G/G A G
Schizophrenics 63 26 11 0.172 76.0 24.0 0.813
Controls 60 35 5 77.5 22.5

SNP2 C/C C/G G/G C G
Schizophrenics 36 45 19 0.964 58.5 41.5 0.839
Controls 37 46 17 60.0 40.0

SNP3 C/C C/T T/T C T
Schizophrenics 11 34 55 0.816 28.0 72.0 > 0.999
Controls 9 37 54 27.5 72.5

SNP4 C/C C/T T/T C T
Schizophrenics 51 40 9 0.819 71.0 29.0 > 0.999
Controls 52 37 11 70.5 29.5

SNP5 C/C C/T T/T C T
Schizophrenics 51 41 8 0.775 71.5 28.5 1.000
Controls 53 37 10 71.5 28.5

SLC6A5 SNP1 A/A A/G G/G A G
Schizophrenics 17 65 18 0.009 49.5 50.5 0.109
Controls 35 46 19 58.0 42.0

SNP2 C/C C/T T/T C T
Schizophrenics 20 64 16 0.022 52.0 48.0 0.107
Controls 37 47 16 60.5 39.5

SNP3 C/C C/T T/T C T
Schizophrenics 50 40 10 0.757 70.0 30.0 0.666
Page 5 of 9
(page number not for citation purposes)



BMC Psychiatry 2008, 8:58 http://www.biomedcentral.com/1471-244X/8/58
SLC1A5 in 23 English and Icelandic schizophrenia fami-
lies was reported [39]. Recently, negative associations of
schizophrenia with polymorphisms in SLC6A9 and
SLC6A5 were reported in the Chinese and the German
population, respectively [40,41]. We investigated the
association of SLC1A4, SLC1A5, SLC6A5 and SLC6A9
genes with schizophrenia in the Japanese population by
analysing total 21 common SNPs.

Since the frequencies of genotyped SNPs are over 0.3, the
expected detection powers of the four genes are over 0.80,
assuming the genotype relative risk of 1.8. However,
assuming lower genotype relative risk of 1.5 or 1.3, the
expected detection powers for the four genes dropped to
0.50 – 0.53 or 0.24 – 0.25, respectively. Consequently, the
negative finding for genes and SNPs excluded from the
analyses using the Full-size Sample Set in this study may
be due to type II error at lower relative risks, and they need
to be investigated further in an enlarged sample size.

Out of the 21 SNPs analyzed, two within SLC1A4, (SNP4
and SNP6, 330 cases and 319 controls) and one within
SLC6A5, (SNP5, 328 cases and 307 controls) have
recently been reported to show no association with schiz-
ophrenia in the German population [38,41]. We also
observed no association of these SNPs with the disease in
our Screening Sample Set. The SNP1 in SLC6A5 of which

we observed a significant association with the disease, was
not included in the report mentioned above.

In LD analysis of the initial screening of the 21 SNPs dis-
tributed in the four genes, modest LD (D' > 0.3) was
observed in all combinations of adjacent SNPs in controls
except for the combinations of SNP4-SNP5 of SLC1A4
and SNP2-SNP3 of SLC6A5, suggesting recombination
hot spots in the two regions (6.6 kb and 7.6 kb, respec-
tively) (Figure 2). We compared the LD structure to the
publically open database, HapMap [42]. The LD gap we
observed in the SLC6A5 region was not observed in the
HapMap LD structure from either Japanese or Chinese
population data (D' = 0.817 and D' = 1, respectively). The
other LD gap, which was observed in the SLC1A4 region,
failed to be compared due to the absence of the novel SNP
we found.

We observed significant single-marker associations in
SNP2 and SNP3 of SLC1A4 in the Screening Sample Set.
However, we failed to confirm these findings in the Full-
size Sample Set. We attribute to type I error due to the
small sample size used in the Screening Sample Set. On
the other hand, the single-marker association of SNP1
(rs894747) in SLC6A5 region, although it does not show
the significant association with the disease in the inde-
pendent 300 case and 320 control samples (0.092), it
does show the significant association in the Full-size Sam-

Controls 45 45 10 67.5 32.5

SNP4 A/A A/G G/G A G
Schizophrenics 6 40 54 0.332 26.0 74.0 0.375
Controls 12 37 51 30.5 69.5

SNP5 C/C C/G G/G C G
Schizophrenics 39 48 13 0.882 63.0 37.0 > 0.999
Controls 40 45 15 62.5 37.5

SNP6 C/C C/G G/G C G
Schizophrenics 10 43 47 0.783 31.5 68.5 0.595
Controls 13 43 44 34.5 65.5

SLC6A9 SNP1 C/C C/T T/T C T
Schizophrenics 32 48 20 0.987 56.0 44.0 > 0.999
Controls 31 49 20 55.5 44.5

SNP2 A/A A/G G/G A G
Schizophrenics 7 32 61 0.988 23.0 77.0 > 0.999
Controls 7 31 62 22.5 77.5

SNP3 A/A A/G G/G A G
Schizophrenics 6 31 63 0.830 21.5 78.5 0.720
Controls 6 35 59 23.5 76.5

*Fisher's exact probability tests, case vs. control (2 × 3).
**Fisher's exact probability tests, case vs. control (2 × 2).

Table 1: Genotype and allele frequencies of SNPs in each gene in the Screening Sample Set (100 cases and 100 controls) (Continued)
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ple Set (P = 0.018). We consider that the nonsignificant
result observed in the enlarged samples may be due to the
small sample size. SNP1 is located in the intergenic
region, 2,355-bp upstream from the transcription start
site. In the negative association report of SLC6A5 in Ger-
man population described above, four SNPs and one
short-tandem-repeat distributed in intron 1~intron 11,
but no SNP located in the upstream region were analysed
[39]. In our Full-size Sample Set, the G allele was more fre-
quently observed in schizophrenics (44.4%) than in con-
trols (38.6%). Therefore, the G allele may be in LD with a
risk allele for schizophrenia (odds ratio, 1.27; 95% confi-

dence interval, 1.04~1.55). We conclude that at least one
susceptibility locus for schizophrenia is located within or
nearby SLC6A5, whereas SLC1A4 SLC1A5 and SLC6A9 are
unlikely to be major susceptibility genes for schizophre-
nia in the Japanese population. No potential regulatory
elements were previously identified in the region where
SNP1 is located [43]. It is necessary to search for func-
tional SNPs in the haplotype block where SNP1 is located.
A copy number variation (CNV) has been reported in the
European population on the chromosome 11p15.1, con-
taining exon 15 of SLC6A5 [44]. None of the 6 SNPs we
genotyped is located within the CNV. Although the fre-

Pairwise LD analyses using GOLD for control (upper diagonal) and case (lower diagonal) haplotypes of each geneFigure 2
Pairwise LD analyses using GOLD for control (upper diagonal) and case (lower diagonal) haplotypes of each 
gene. The relative location of markers used to construct the haplotypes is represented on the horizontal and vertical axes, 
which is more clearly depicted in Figure. 1. LD measure, D', is graphically represented adjacent to each GOLD plot (red and 
dark blue are opposite ends of the scale).
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quency of the CNV in the Japanese population is
unknown, SNP1 may be associated with the variant
devoid of exon 15, which is a strong candidate of the sus-
ceptible allele. Therefore, it is necessary to test the associ-
ation of the CNV with schizophenia in Japanese sample
sets. The positive association observed in SLC6A5 also
needs to be validated in different ethnic populations.

Conclusion
We conclude that at least one susceptibility locus for
schizophrenia is located within or nearby SLC6A5,
whereas SLC1A4 SLC1A5 and SLC6A9 are unlikely to be
major susceptibility genes for schizophrenia in the Japa-
nese population.
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Table 2: Association analyses of pairwise haplotypes of SNPs in 
the genes

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6

SLC1A4 SNP2 0.118
SNP3 0.147 0.082
SNP4 0.178 0.096 0.132
SNP5 0.581 0.114 0.147 0.615
SNP6 0.079 0.050 0.062 0.239 0.401
SNP7 0.118 0.037 0.057 0.646 0.144 0.377

SLC1A5 SNP2 0.291
SNP3 0.978 0.845
SNP4 0.720 0.936 0.999
SNP5 0.984 0.944 1.000 0.483

SLC6A5 SNP2 0.209
SNP3 0.241 0.178
SNP4 0.043 0.080 0.424
SNP5 0.243 0.160 0.936 0.083
SNP6 0.348 0.275 0.932 0.724 0.806

SLC6A9 SNP2 0.854
SNP3 0.940 0.362

P values by the two-tailed χ2-test (d.f. = 3).
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