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Abstract

differentiate individuals with and without MDD.

Background: Studies of individuals who do not meet criteria for major depressive disorder (MDD) but with
subclinical levels of depressive symptoms may aid in the identification of neurofunctional abnormalities that
possibly precede and predict the development of MDD. The purpose of this study was to evaluate relations
between subclinical levels of depressive symptoms and neural activation patterns during tasks previously shown to

Methods: Functional magnetic resonance imaging (fMRI) was used to assess neural activations during active
emotion regulation, a resting state scan, and reward processing. Participants were twelve females with a range of
depressive symptoms who did not meet criteria for MDD.

Results: Increased depressive symptom severity predicted (1) decreased left midfrontal gyrus activation during
reappraisal of sad stimuli; (2) increased right midfrontal gyrus activation during distraction from sad stimuli; (3)
increased functional connectivity between a precuneus seed region and left orbitofrontal cortex during a resting
state scan; and (4) increased paracingulate activation during non-win outcomes during a reward-processing task.

Conclusions: These pilot data shed light on relations between subclinical levels of depressive symptoms in the
absence of a formal MDD diagnosis and neural activation patterns. Future studies will be needed to test the utility
of these activation patterns for predicting MDD onset in at-risk samples.
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Background

Despite a large body of research addressing impaired
neural functioning in major depressive disorder (MDD),
relatively little is known about the neurofunctional char-
acteristics of individuals without MDD but with subcli-
nical levels of depressive symptoms. Studies of
individuals who do not meet criteria for MDD but with
subclinical levels of depressive symptoms may yield a
number of insights: first, they may suggest potential neu-
robiologic markers of those at risk for MDD [1,2];
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second, they may shed light on hereditary and environ-
mental influences on depressive temperament [3]; and
third, they may suggest avenues of inquiry regarding the
neurobiology of MDD risk and resilience, and thereby
inform treatment and preventative intervention
approaches [4,5]. The goal of the present pilot study was
to investigate linkages between regional brain activation
patterns and subclinical depressive symptoms while par-
ticipants were engaged in emotion regulation, resting
state, and reward processing paradigms that have pre-
viously been shown to differentiate MDD and nonde-
pressed samples. Below we outline the rationale for
selecting each of these three paradigms.

Deficits in emotion regulation (ER) are thought to be
central to the core features of MDD [6]. Human and
preclinical studies suggest that the prefrontal cortex
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influences activity in the limbic system in a top-down
manner [7,8], and numerous investigations have demon-
strated abnormal recruitment of prefrontal cortical
regions while individuals with MDD actively regulate
responses to emotional stimuli [9,10]. For example,
Johnstone and colleagues [6] reported that when
instructed to reappraise negatively valenced images, indi-
viduals with MDD demonstrated impaired prefrontal
cortical inhibition of limbic regions as well as a diver-
gent pattern of covariation between ventromedial pre-
frontal cortex and amygdala activity. Similarly,
Beauregard and colleagues [11] reported right anterior
cingulate and insular cortex hyperactivation while indivi-
duals with MDD down-regulated their emotional
responses to sad images. Finally, Kanske and colleagues
[12] reported anterior cingulate and lateral orbitofrontal
cortex hyperactivation during emotion regulation in
individuals with remitted MDD , supporting the frame-
work that altered neural mechanisms of emotion regula-
tion may indeed represent not only a state marker of
MDD illness, but potentially a trait marker of MDD risk
as well.

Second, we investigated resting state functional brain
connectivity. A mostly midline network of correlated
intrinsic brain activity is active during rest and deactive
during goal-directed tasks [13,14]. This network has
been called both the “baseline state” and the “default
mode network (DMN)” [15,16]. The DMN regulates
self-referential activities, including evaluating the sal-
ience of internal and external cues, remembering the
past, and planning the future [13,17]. Individuals with
MDD are characterized by altered patterns of DMN
activity during emotion processing tasks as well as at
rest. Sheline and colleagues [18] reported increased
activity in MDD within DMN regions (i.e., ventromedial
prefrontal cortex, anterior cingulate, and lateral parietal
and temporal cortices), suggesting that MDD is charac-
terized by a failure to down-regulate DMN activity dur-
ing emotion processing. Another study by the same
research group [19] reported increased intrinsic connec-
tivity in MDD between a precuneus seed region and dor-
solateral prefrontal cortex (the so-called “dorsal nexus”
for overconnected brain regions in MDD) (see also [16]
and [20]). Given the centrality of the DMN for self-
referential activities, abnormal DMN activity in MDD
has been suggested to reflect excessive self-focus accom-
panied by a decreased ability to attend to cognitive tasks
[19].

Finally, we measured frontostriatal responses during a
reward processing task because multiple studies have
reported altered neural mechanisms of reward proces-
sing in MDD (for a review, see [21]). For example,
Smoski and colleagues [22] reported that individuals
with MDD  demonstrated orbital frontal cortex
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hyperactivity during reward selection that predicted
depressive symptom severity and caudate nucleus
hypoactivation during reward anticipation. Pizzagalli and
colleagues [23] found that individuals with MDD showed
decreased putamen responses during reward anticipation
and decreased nucleus accumbens and caudate nucleus
responses to monetary gains. Finally, Knutson and col-
leagues [24] reported increased anterior cingulate activa-
tion during reward anticipation in MDD. Taken
together, these studies highlight not only that MDD is
characterized by altered neural activation patterns dur-
ing reward processing, but that patterns of brain activa-
tion differences in MDD are contingent on the temporal
phase of the reward response. For this reason, we used a
task that allowed for the dissociation of responses during
reward selection, reward anticipation, and reward out-
come phases of reward responding.

In summary, the purpose of the present study was to
extend the literature addressing altered neural mechan-
isms of emotion regulation, DMN connectivity, and
reward processing in MDD by examining the covariation
between levels of depressive symptoms and patterns of
brain activation in individuals with subclinical levels of
depressive symptoms but without MDD diagnoses. Pre-
dictions were informed by the extant MDD literature
reviewed above [6,19,22]: we hypothesized relations
between subclinical depressive symptom severity and (1)
lateral prefrontal cortex activity during ER; (2)
precuneus-dorsolateral prefrontal cortex connectivity
during the resting state scan; (3) lateral prefrontal cortex
activity during reward selection; (4) striatal activity dur-
ing reward anticipation; and (5) medial prefrontal cortex
activity during reward outcomes. Given the higher rates
of MDD in women [25] and because gender moderates
responses to emotional images [26,27], this pilot study
examined only females, a strategy that is consistent with
other neuroimaging studies examining MDD [28],
depression risk [29] and depressive traits [30].

Methods

Participants

Participants consented to protocols approved by the
local Human Investigations Committees at both the Uni-
versity of North Carolina Chapel Hill and Duke Univer-
sity Medical Center and were recruited from a database
maintained at the Duke-UNC Brain Imaging and Analy-
sis Center and by flyers posted in campus and medical
center locations. To identify individuals with moderate
but not severe depression symptoms, interested respon-
dents first completed a modified the Beck Depression
Inventory-II [BDI, 31] via a secure web survey. Next,
potential participants completed an in-person screening
session that included the full BDI and administration of
the Structured Clinical Interview for DSM-IV, Patient
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Version, with Psychotic Screen (SCID) [32]. The final
sample was recruited based on a stratification strategy to
recruit equal numbers of individuals with low (i.e., 0-9),
medium (i.e, 10-18), and high (i.e., 19+) BDI scores.
Exclusion criteria included: 1) current anxiety, substance
abuse, or mood disorder beyond dysthymia (as assessed
by the SCID), 2) history of mania, 3) currently taking
psychoactive medication, 4) magnetic resonance imaging
contraindicated (e.g., metal in body), 5) history of neuro-
logical injury or disease, and 6) pregnancy. The final
sample was twelve females (mean age: 23.3+4.3; 3
African American; 3 Asian, and six Caucasian) who
participated in the scan session.

Pre-scan emotion regulation training session

Participants completed a training session prior to the
scan day at which they were taught strategies to distract
themselves and reappraise their interpretations while
viewing sad stimuli. For the distract condition, partici-
pants were trained to think of something positive that
was unrelated to what was depicted in the images, such
as a fond memory, family member, or an anticipated
event. For the reappraise condition, participants were
trained to either give the story suggested in the picture a
happy ending or alternate meaning, or to tell themselves
that no one close to them was affected by the depicted
situation. As a control strategy, participants were
instructed to experience the image as they normally
would without trying to increase or decrease their emo-
tional response (the “view” condition).

Scan day procedure

On the day of the scan, participants reviewed task
instructions and completed the BDI again. During scan-
ning, participants completed the three paradigms
described below in a single scan session. Due to techni-
cal problems, three participants returned to complete
the emotion regulation task at a separate imaging ses-
sion, at which time the BDI was readministered. Ana-
lyses included only BDI scores obtained on the day that
each task was completed. The mean BDI scores in final
analyses were 11.33 (SD =10.21, Range =0 to 26, Skew-
ness =0.10) on the day of the resting state and reward
processing scans, and 9.92 (SD =9.02, Range=0 to 24,
Skewness = 0.29) on the day of the ER scan.

Emotion Regulation (ER) task

The ER task consisted of four 4-minute 24-second runs
with nine sad trials and three neutral trials each (see the
top of Figure 1). The stimuli used in the task are
described elsewhere [33,34]. During each 22-second trial,
participants first fixated for 6 seconds and then saw a
sad or neutral image for 11 seconds with an auditory
instruction presented 3-6 seconds after image onset.
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Sad images were presented on 75% of trials and were
accompanied by an instruction to “reappraise,” “distract,”
or “view” the image. Neutral images, on the other 25%
of trials, were accompanied by an instruction to “view”
the image. Following image offset, participants reported
their ER success on a 4-point scale anchored by “not
successful” and “very successful,” or they indicated they
felt “no emotion” (trials with “no emotion” were not
included in analyses).

Resting state scan

Participants were instructed to close their eyes and relax
but not fall asleep for the duration of the 6-minute rest-
ing state scan.

Wheelof Fortune (WOF) reward processing task

The WOF is described in greater detail elsewhere [35].
Briefly, three 12-minute runs with 46 trials each were
composed of selection, anticipation, and outcome phases
(see the bottom of Figure 1). During the selection phase
(3 seconds), participants viewed a segmented wheel of
fortune and indicated their selection. During the antici-
pation phase (3.5-7.5 seconds), participants rated how
sure they were of winning on a scale of 1 to 6 (anchored
by “unsure” and “sure”). During the outcome phase
(4 seconds), participants viewed the amount won (“$0”
for not winning), the total cumulative amount won in
the run, and rated how they felt on a pictorial Likert
scale. Responses were contrasted with a control condi-
tion that lacked monetary stimuli but required active
responding.

Imaging methods

Scanning was performed on a GE 3 Tesla Signa Excite
HD scanner with 50-mT/m gradients (General Electric,
Waukesha, Wisconsin, USA). Head movement was
restricted by foam cushions. An eight-channel head coil
was used for parallel imaging. A high resolution T1-
weighted anatomical image was acquired using a 3D fast
SPGR pulse sequence (68 slicess, TR=500 ms;
TE=20 ms; FOV =24 cm; image matrix =256% voxel
size=0.9375 x 0.9375 x 1.9 mm) aligned in the near
axial plane defined by the anterior and posterior com-
missures. Whole brain functional images consisting of
30 slices parallel to the AC-PC plane were collected
using a BOLD-sensitive gradient-echo sequence with
spiral-in k-space sampling and SENSE encoding to take
advantage of the 8-channel coil (TE: 30 ms; FOV:
25.6 cmy; isotropic voxel size: 4 mm?®; SENSE factor = 2).
Functional imaging sessions began with four discarded
RF excitations to allow for steady state equilibrium. TR’s
were 1500 ms for the ER run and 2000 ms for the WoF
and resting state runs. Images were presented using
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Figure 1 Top: Depiction of the emotion regulation task, showing durations of each phase; Bottom: Depiction of the Wheel of Fortune
task; the area of the slices matched the likelihood of winning explicit amounts of money demoted below the wheel in squares of

How successful were you in
changing your emotion?

S

Feedback Phase, 4 s

ePrime (Psychology Software Tools Inc., Pittsburgh, PA)
for the WOF task, and with CIGAL [36] for the ER task.

Imaging data analysis

Functional data were preprocessed using FEAT 5.92
within FSL 4.0.4 (Oxford Centre for Functional Mag-
netic Resonance Imaging of the Brain (FMRIB), Oxford
University, U.K.). Preprocessing was applied in the fol-
lowing steps: (i) brain extraction for non-brain removal
on the T1-weighted image [37], (ii) motion correction
using MCFLIRT [38], (iii) spatial smoothing using a
Gaussian kernel of FWHM 5 mm, (iv) mean-based
intensity normalization of all volumes by the same fac-
tor, and (v) high-pass filtering (60 s) [39]. Functional
images were co-registered to the brain-extracted T1-
weighted image in native space, and the anatomical
image was normalized to Montreal Neurological Insti-
tute (MNI) standard stereotaxic space. The same trans-
formation matrices used for anatomical-to-standard
transformations were then wused for functional-to-
standard space transformations of co-registered func-
tional images. All registrations were carried out using an
intermodal registration tool [37,39]. Voxel-wise temporal
autocorrelation was estimated and corrected using
FMRIB's Improved Linear Model [40].

For ER and WOF data, onset times of events were
used to model a signal response containing a regressor
for each response type, which was convolved with a
double-gamma function to model the predicted

hemodynamic response. A general linear model (GLM)
approach generated whole brain images of parameter
estimates and variances, representing average signal
change from baseline. The same high-pass filtering
applied to the functional data was applied to the GLM.
Group-wise activation images were calculated by a
mixed effects analysis using Bayesian estimation techni-
ques, FMRIB Local Analysis of Mixed Effects [FILM,
41]. Group-level models, with mean-centered BDI scores
as regressors, were created by combining contrast maps
from individual subjects. Finally, scatterplots of correla-
tions between brain activation and BDI score are pre-
sented for illustrative purposes [42].

Analysis of resting state data used the following seed-
based connectivity approach: (1) raw functional scans
were temporally band-pass filtered (0.1 <f<.08); (2) as in
[15], the mean signal intensity timecourses from voxels
inside a spherical ROI (radius = 10 mm) in the precuneus
(MNI coordinates 0, -56, 30) were extracted for all parti-
cipants in native space; (3) average signal intensity time-
courses derived from the previous step were then used
as unconvolved regressors in a GLM that included
motion parameters, resulting in clusters significantly
correlated with the timecourse of the seed region; (4) a
group-level model was created by combining contrast
maps from individual participants.

Given the importance of protecting against Type II
errors in this exploratory pilot study, activation maps
were thresholded at Z>2.3 with a spatial extent of
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at least ten voxels, consistent with published recom-
mendations [43,44] and our prior MDD studies
[25,45-47].

Results

In-scanner emotion regulation success

There were no differences in self-reported ER success
across the four ER conditions (Neutral-View, Sad-View,
Sad-Distract, and Sad-Reappraise), p’s >0.80. There was
a significant inverse relation between BDI scores and
success ratings only in the Sad-Reappraise condition,
r=-0.71, p<.01, reflecting poorer self-reported ER in
those with higher BDI scores.

Emotion regulation imaging data

Sad-reappraise > Sad-view

The top of Figure 2 depicts results during Sad-
Reappraise > Sad-View (see Table 1). Areas that showed
activation included the paracingulate gyrus (Z Max=
4.36), right middle frontal gyrus (Z Max=3.07), and
bilateral temporal gyrus (Z Max =4.14 for left and 3.81
for right). BDI scores were inversely related to activation
magnitudes in the left middle frontal gyrus (Z Max=
2.98) and right orbitofrontal cortex (Z Max =2.82) (see
Table 2).
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Table 1 Clusters showing significant activation during the
Emotion Regulation task [Sad Reappraise > Sad View]

Region Size 4 MNI Coordinates
(mm?3) Max ﬁ
Frontal Gyrus (Right, Middle) 688 307 48 12 48
Frontal Gyrus (Left, Superior) 280 2.83 -18 8 68
Frontal Pole (Left) 472 298 -28 -44 -24
Hippocampus (Right) 184 254 32 -20 -12
Intracalcarine Cortex (Left) 176 2.56 -18 -68 4
Occipital Cortex 896 292 -42 -70 -20
(Left, Lateral, Inferior)
Paracingulate Gyrus (Left) 164248 436 0 50 12
Putamen (Right) 240 292 22 -2 8
Temporal Gyrus
(Middle, Posterior)
Right 8792 381 -48 -30 -4
Left 26600 4.14 50 -28 -6

Clusters are > 10 voxels with Z>2.3.

Sad-Distract > Sad-View

The bottom of Figure 2 depicts group-average results
during Sad-Distract > Sad-View (see also Table 3). Areas
that showed activation included the cingulate gyrus (Z
Max =4.54), right supramarginal gyrus (Z Max =3.63),
and right lateral occipital cortex (Z Max=3.39). BDI
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Figure 2 Emotion regulation results (Top: Sad-Reappraise > Sad View contrast; Bottom: Sad Distract>Sad View contrast). Green: Clusters
significantly activated by the task. Red: Clusters significantly directly (top) and inversely (bottom) related to depression symptom severity. The
scatterplots are provided for illustrative purposes and depict correlations between BDI scores with signal intensities of the red left (top) and right
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Table 2 Cluster activations inversely associated with
BDI scores during the Emotion Regulation task
[Sad Reappraise >Sad View]
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Table 4 Cluster activations directly associated with
BDI scores during the Emotion Regulation task
[Sad Distract>Sad View]

Region Size z MNI Coordinates Region Size z MNI Coordinates
(mm3  Max X Y 7 (mm3  Max " Y 7
Frontal Gyrus (Left, Middle) 744 298 -50 24 26 Frontal Gyrus (Right, Middle) 288 269 44 18 38
Frontal Orbital Cortex (Right) 296 2.82 42 32 -10 Precentral Gyrus (Right) 400  3.09 6 -30 76
Frontal Pole Temporal Gyrus (Left, Superior) 192 287 -64 -22 0
Right 456 323 20 72 10 Clusters are > 10 voxels with Z>2.3.
Left 952 35 -10 60 30
Parahippocampal Gyrus 168 263 48 32 -16  after win trials was 4.94 (0.86) (1 depicted a neutral face

(Left, Posterior)

Clusters are > 10 voxels with Z>2.3.

scores were directly related to activation magnitudes in
the right middle frontal gyrus (Z Max = 2.69), right pre-
central gyrus (Z Max =3.09), and left superior temporal
gyrus (Z Max = 2.87) (see Table 4).

Resting state data

Brain regions that covaried with the precuneus seed are
depicted in (Figure 3 and Table 5). Intrinsic functional
connectivity was observed between the precuneus seed
and left postcentral gyrus (Z Max=5.19), right orbital
frontal cortex (Z Max =3.61), and bilateral temporal pole
(Z Max=4.38 for right and 3.43 for left). BDI scores
directly predicted the strength of functional connectivity
between the precuneus seed and left orbitofrontal cortex
(Z Max =4.42), left thalamus (Z Max = 3.58), right occi-
pital cortex (Z Max=3.96), bilateral parietal lobule (Z
Max =5.81 for right and 3.91 for left), bilateral postcen-
tral gyrus (Z Max=4.71 for right and 3.89 for left), and
bilateral precentral gyrus (Z Max=4.55 for right and
4.59 for left) (see Table 6).

In-scanner wheel of fortune affective ratings

Average (SD) valence ratings on a scale of 1-6 after
non-win trials was 2.87 (1.19) (1 depicted a very sad face
and 6 depicted a neutral face). Average (SD) valence

Table 3 Clusters showing significant activation during the
Emotion Regulation task [Sad Distract > Sad View]

Region Size 4 MNI
(mm3) Max Coordinates
X Y 2z
Cingulate Gyrus (Right, Posterior) 205512 454 0 -48 12
Occipital Cortex (Right, Lateral, Superior) 424 339 56 -62 20
Precentral Gyrus (Left) 672 278 -56 2 10

Supramarginal Gyrus (Right, Posterior) 3336 363 62 42 24
Temporal Fusiform Cortex (Left, Posterior) 248 297 -32 -26 -28

Temporal Gyrus (Right, Superior) 2036 321 48 -26 4

Clusters are > 10 voxels with Z>2.3.

and 6 depicted a very happy face). BDI scores were not
significantly correlated with valence ratings after win
trials, r=-0.44, p = 0.15 or after non-win trials, r=-0.03,
p =0.93.

Wheel of fortune imaging data

Consistent with published approaches [22,35], analysis
for each phase of the WOF task contrasted monetary
and control trials.

Reward selection phase

The top of Figure 4 depicts results during reward selec-
tion (see also Table 7). Areas that showed activation
included dorsal paracingulate gyrus (Z Max = 3.45), ante-
rior cingulate gyrus (Z Max=2.97), and right frontal
orbital cortex (Z Max = 3.15). BDI scores did not predict
activation magnitudes in any region during this phase of
the task.

Reward anticipation phase

The bottom of Figure 4 depicts results during reward
anticipation (see also Table 8). Areas that showed activa-
tion included bilateral nucleus accumbens (Z Max = 3.44
for right and 2.79 for left,), right putamen (Z Max=
2.67), and right thalamus (Z Max = 2.8). BDI scores did
not predict activation magnitudes in any regions during
this phase of the task.

Reward outcome phase

The top of Figure 5 depicts results during win outcomes
(see also Table 9). Areas that showed activation included
the left putamen (Z Max=3.1), right thalamus (Z Max
=2.89), and right amygdala (Z max=3.02). BDI scores
did not predict activation magnitudes in any canonical
reward regions during win outcomes. The bottom of
Figure 5 depicts average results during non-win out-
comes (see also Table 10). Areas that showed activation
included the left paracingulate gyrus (Z max=3.61), left
putamen (Z Max=2.80), and left thalamus (Z Max=
2.96). BDI scores were directly related to activation dur-
ing non-win outcomes in the left paracingulate gyrus (Z
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Figure 3 Resting state results. Green: Clusters with timecourses that significantly correlated with the timecourse of the precuneus seed
region. Red: Clusters significantly directly related to depression symptom severity (there were no clusters with significant inverse associations
with depression symptom severity). The scatterplot is provided for illustrative purposes and depicts the correlation of BDI scores with connectivity
strength between the precuneus seed and the red orbital frontal cortex (OFC) cluster indicated by the crosshair.

Max =2.62) and the right caudate nucleus (Z Max=
2.96) (See Table 11).

Discussion

The goal of the present study was to use fMRI to investi-
gate linkages between patterns of brain activation
and connectivity and subclinical levels of depressive
symptoms. Emotion regulation, resting state, and reward
processing paradigms were used that have been shown
to differentiate MDD and control samples and to be
related to core features of MDD. During the ER task,

Table 5 Clusters showing significant connectivity with the
precuneus seed region during the resting state scan

Region Size 4 MNI
(mm3) Max Coordinates
X Y Z
Frontal Gyrus, pars opercularis (Left, Inferior) 24 379 -58 14 28
Frontal Orbital Cortex (Right) 21 361 44 16 -10
Frontal Pole
Right 157 375 20 66 -4
Left 83 373 -32 36 -10
Insular Cortex (Left) 32 364 -32 14 6
Occipital Cortex (Right, Lateral, Superior) 117 464 42 -74 18
Occipital Fusiform Gyrus (Right) 215 449 20 -80 -18
Occipital Pole (Left) 29 469 -42 -92 4
Planum Temporale (Right) 28 357 56 -26 8
Postcentral Gyrus (Left) 59 519 -48 -20 54
Temporal Fusiform Cortex (Left, Posterior) 20 411 -68 -26 -20
Temporal Gyrus (Right, Middle, Posterior) 158 39 60 -20 -12
Temporal Gyrus, temporooccipital part 61 379 46 -56 -12

(Right, Inferior)

Temporal Pole
Right 34
Left 42

438 48 6 -26
343 44 10 -18

participants with higher BDI scores reported signifi-
cantly poorer self-reported ER success. This pattern is
consistent with the findings of Beauregard and collea-
gues [11], who found that individuals with MDD

Table 6 Clusters directly associated with BDI scores
during the resting state scan

Region Size Y4 MNI
(mm3 Max Coordinates
X Y z
Cingulate Gyrus (Left, Posterior) 37 356 -4 20 42
Frontal Gyrus (Right, Superior) 40 396 14 2 66
Frontal Orbital Cortex (Left) 79 442 -30 34 -22
Frontal Pole
Left 73 413 -8 40 -26
Right 98 427 38 38 8
Lingual Gyrus (Right) 28 353 30 46 4
Occipital Cortex (Left, Lateral, Inferior) 27 355 -38 74 -2
Occipital Cortex (Lateral, Superior) 25 353 42 -74 16
Left 23 325 -24 -78 24
Right 51 356 42 -58 36

Occipital Cortex (Right, Lateral, Superior) 208 39 20 -76 38

Occipital Pole (Right) 29 376 12 90 20
Parietal Lobule (Superior)
Left 28 391 -32 54 70
Right 781 581 26 -46 60
Planum Temporale (Left) 77 456 -60 -14 2

Postcentral Gyrus
Left 46 389 -48 -18 34
Right 529 471 48 -20 52

Precentral Gyrus

Left 174 459 -58 2 18
Right 285 455 30 -10 46
Thalamus (Left) 23 358 -12 -32 4

Clusters are > 10 voxels with z>2.9.

Clusters are > 10 voxels with z>2.9.
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Figure 4 Wheel of Fortune results (Top: reward selection;
Bottom: reward anticipation). Green: Clusters significantly
activated by the task. No regions were significantly related to
depression symptom severity. ParaCG: Paracingulate gyrus; NAC:
nucleus accumbens.

reported relatively greater difficulty down-regulating
feelings of sadness. Consistent with reports from noncli-
nical samples [6], group-level activation during reapprai-
sal of sad stimuli was evident in the right middle frontal
gyrus and bilateral temporal gyrus. Depressive symptom
severity was related to activation magnitudes in right
middle frontal gyrus during emotion regulation, though
the laterality and direction of this finding was contingent
on the type of ER strategy: left middle frontal gyrus acti-
vation was inversely related to activation during reap-
praisal, whereas right middle frontal gyrus activation was

Table 7 Clusters showing significant activation during the
selection phase of the Wheel of Fortune task

Region Size 4 MNI
(mm3® Max Coordinates
X Y z
Cingulate Gyrus (Left, Anterior) 192 297 -6 34 18
Frontal Orbital Cortex (Right) 1264 315 16 10 -14
Frontal Pole (Right) 272 257 40 50 0
Occipital Cortex (Left, Lateral, Inferior) 160 299 -42 -72 -18

Occipital Cortex (Right, Lateral, Superior) 25000 381 -18 -60 68
24440 375 -22 -88 -14

5288 345 0 16 44

Occipital Fusiform Gyrus (Right)
Paracingulate Gyrus (Right)

Parietal Lobule (Left, Superior) 272 278 -20 -54 54
Subcallosal Cortex (Left) 488 278 -4 14 -10
Supramarginal Gyrus (Left Anterior) 616 3 -52 -28 48
Temporal Gyrus, temporooccipital 208 267 48 -58 -2

(Right, Middle)

Clusters are > 10 voxels with Z>2.3.
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Table 8 Clusters showing significant activation during the
anticipation phase of the Wheel of Fortune task

Region Size Z MNI Coordinates
(mm) Max Sy

Accumbens
Right 3560 3.44 6 18 -4

Left 496 279 -12 8 -12
268 12 90 -4
1160 298 -34 -80 2

Lingual Gyrus (Right) 344
Occipital Cortex (Left, Lateral, Inferior)

Occipital Cortex (Lateral, Superior)

Right 2632 354 36 -84 12
Left 536 3 24 60 34
Occipital Pole (Left) 416 275 2 92 -8

Paracingulate Gyrus (Right) 1288 2.99 2 26 38

Parietal Lobule (Superior)

Right 1296 2.83 18  -58 62
Left 392 278 -22 48 48
Putamen (Right) 104 267 16 14 -12
Thalamus (Right) 360 28 12 -20 18

Clusters are > 10 voxels with Z>2.3.

directly related to activation during distraction. These
findings are consistent with neuroimaging data indicat-
ing that MDD is characterized by increased right middle
frontal activation during reappraisal [6]. More broadly,
these results suggest that brain activation during ER is
related to the magnitude of subclinical levels of depres-
sive symptoms.

During the resting state scan, intrinsic connectivity
was observed between the precuneus seed region and
the temporal cortex and anterior cingulate, similar to
findings previously reported in nonclinical samples [15].
There was a significant positive correlation between
depression symptom severity and the strength of func-
tional connectivity between the precuneus seed region
and the thalamus and left orbital frontal cortex. Given
that MDD is characterized by increased DMN connec-
tivity both during emotional processing paradigms and
at rest [18,19], the present findings suggest that
increased DMN connectivity may characterize indivi-
duals with increasing levels of subclinical depressive
symptoms, possibly reflecting heightened self-referential
activities and ruminative cognitions.

During all phases of the reward processing task, parti-
cipants demonstrated frontostriatal brain activation pat-
terns similar to published reports from nonclinical
samples, including dorsal paracingulate cortex activation
during reward selection, striatal activation during reward
anticipation, and medial prefrontal activation during
reward outcomes [25,35]. Depressive symptom severity
was not related to activation magnitudes in canonical
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Figure 5 Wheel of Fortune results (Top: win outcomes; Bottom: non-win outcomes). Green: Clusters significantly activated by the task. Red:
Clusters significantly inversely related to depression symptom severity. The scatterplot is provided for illustrative purposes and depicts correlations
between signal intensity of the red paracingulate gyrus (ParaCG) cluster indicated by the crosshair with BDI scores.

reward regions during reward selection, reward anticipa-
tion, or win outcomes. However, depressive symptom
severity was directly related to paracingulate gyrus acti-
vation during non-win outcomes. This pattern of find-
ings is noteworthy when considered alongside the
results of Pizzagalli and colleagues [23], who found
greater differences between MDD and control samples
during reward outcomes than during reward anticipa-
tion. There is also evidence that pediatric MDD is char-
acterized by altered neural mechanisms of reward
anticipation following reward outcomes [48], suggesting
that neural responses to reward outcomes may impact
future experiences with rewards. More generally, this
pattern of results suggests that altered neural correlates
of non-win reward outcome may be a more sensitive
marker of subclinical depressive symptoms than neural
responses during reward selection, reward anticipation
or win outcomes.

The present study has a number of methodological
limitations that should be considered when interpreting
results. The relatively small sample and inclusion of only
females suggests the need for replication in larger and
more heterogeneous samples. Monthly variability in
mood symptoms tied to menstrual phase and use of hor-
mone contraceptives were not assessed, nor was partici-
pant handedness . Finally, brain imaging analyses were
conducted at uncorrected thresholds to protect against
Type II errors in this pilot study, and future studies with
larger samples will allow for replication with corrected
statistical thresholds.

Table 9 Clusters showing significant activation during the
outcome phase on win trials of the Wheel of Fortune task

Region Size z MNI
(mm3 Max Coordinates
X Y z
Amygdala (Right) 280 3.02 10 -4 -16
Central Opercular Cortex (Right) 104 268 46 -16 16

10160 361 6 40 10
7144 419 2 30 24

Cingulate Gyrus (Left, Anterior)
Cingulate Gyrus (Right, Posterior)

Frontal Gyrus (Left, Middle) 408 294 -50 18 36
Frontal Gyrus (Right, Superior) 88 276 24 2 62
Frontal Gyrus, pars triangularis 1400 306 -42 34 16
(Left, Inferior)
Frontal Orbital Cortex
Right 664 283 18 14 -16
Left 64 247 -24 14 -16
Frontal Pole
Right 144 288 34 44 6
Left 480 299 42 40 28
Insular Cortex (Left) 976 333 -38 14 -14

Occipital Cortex (Left, Lateral, Superior) 352 267 -36 -80 26
277 46  -76 12
449 -20 -88 -8

367 30 54 52

Occipital Cortex (Right, Lateral, Inferior) 304
82544
11824

2472 31 -22 2 8
289 20 -16 14

Occipital Fusiform Gyrus (Left)
Parietal Lobule (Right, Superior)
Putamen (Left)

Thalamus (Right) 704

Clusters are >10 voxels with Z>2.3.
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Table 10 Clusters showing significant activation during
the outcome phase on non-win trials of the Wheel of
Fortune task

Region Size z MNI
(mm3 Max Coordinates
X Y Z
Cingulate Gyrus (Posterior) 3128 38 0 -30 24
Cuneal Cortex 64 246 0 -84 20
Frontal Gyrus (Left, Middle) 1120 312 =50 14 38
Frontal Gyrus (Left, Superior) 344 29 -8 16 60
Frontal Medial Cortex (Right) 176 2.57 4 54 -8
Frontal Operculum Cortex (Left) 72 26 -46 10 O
Frontal Orbital Cortex
Right 304 282 38 18 -16
Left 120 292 =24 24 —4
Frontal Pole (Left) 168 269 —16 52 40
Hippocampus (Right) 408 285 22 -28 -6

1800 3.14 -36 14 -14
27536 4.2 0 -8 2

Insular Cortex (Left)

Intracalcarine Cortex

Lingual Gyrus (Right) 216 261 8 -56 -6
Occipital Cortex (Right, Lateral, Superior) 136 293 26 —60 34
Occipital Fusiform Gyrus (Right) 104 255 30 -68 -18

8912 361 -6 24 34
7128 325 -32 —-46 40

Paracingulate Gyrus (Left)
Parietal Lobule (Left, Superior)

Parietal Lobule (Right) 872 286 26 —-52 42
Postcentral Gyrus (Left) 216 266 —54 —24 42
Putamen (Left) 616 28 —22 8 4
Supramarginal Gyrus (Left, Anterior) 1136 314 —-48 -36 44
Temporal Gyrus (Left, Middle, Posterior) 352 288 —-58 -34 —4
Temporal Occipital Fusiform Cortex 104 254 36 -56 -8
(Right)

Temporal Pole (Left) 80 262 -54 14 -6

Thalamus (Left) 1944 296 —-10 —-22 4

Clusters are > 10 voxels with Z>2.3.

Conclusions

Despite these limitations, this study suggests that subcli-
nical depressive symptom severity is selectively related
to regional brain activation patterns in key emotion reg-
ulation and reward processing regions and to DMN con-
nectivity implicated in MDD. Although the three
domains addressed here (i.e., emotion regulation, resting
state connectivity, and reward processing) were assessed
via separate tasks, there is clear conceptual overlap
between these three domains. For example, prefrontal
cortical recruitment is anomalous in MDD during regu-
lation of rewarding stimuli [10] and DMN activity in
MDD is abnormal during emotion regulation [18]. In
this regard, the present findings may represent a conser-
vative estimate of the effects of subclinical depressive
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Table 11 Clusters inversely associated with BDI scores
during the outcome phase of the Wheel of Fortune task

Region Size V4 MNI
(mm3 Max Coordinates

X Y Z
Angular Gyrus (Left) 520 273 -38 -56 18
Caudate (Right) 80 257 6 10 -2
Cingulate Gyrus (Right, Posterior) 432 282 6 —34 44
Frontal Gyrus (Middle)
Right 248 304 28 18 46
Left 152 258 —-30 26 48
Frontal Gyrus (Superior)
Right 184 265 20 28 44
Left 144 256 -6 56 24
Frontal Gyrus, pars opercularis 72 253 52 16 28

(Right, Inferior)
Frontal Pole (Left) 1008 293 —-18 56 22

Occipital Cortex (Right, Lateral, Superior) 232 26 38 —-66 36

Paracingulate Gyrus (Left) 200 262 -4 44 22
Postcentral Gyrus (Left) 80 265 —48 —-16 32
Precentral Gyrus (Left) 736 29 -16 —-16 68
Precuneous Cortex 64 262 0 -58 38
Temporal Gyrus (Left, Middle, Posterior) 288 296 -58 -24 -12
Temporal Gyrus, temporooccipital part 600 29 64 —40 -10

(Right, Middle)

Clusters are > 10 voxels with Z>2.3.

symptoms on neural responses during tasks that simul-
taneously address these constructs.

Given that individuals with subclinical levels of depres-
sive symptoms are at heightened risk for developing
MDD [1,2], these results suggest candidate neural mar-
kers that may reflect trait vulnerability to MDD. Because
MDD represents a highly prevalent, chronic, and costly
disorder, identification of at risk individuals may provide
critical windows for preventative interventions that
represents a public health priority [49]. Future research
using longitudinal and high-risk designs will be needed
to more fully evaluate etiologic questions about MDD,
MDD risk, and MDD resilience.

Endnotes
*We thank an anonymous reviewer for raising these
points.
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