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Abstract

the corpus callosum genu (p = 0.003).

traversing these regions.
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Background: Gray and white matter brain changes have been found in schizophrenia but the anatomical
organizing process underlying these changes remains unknown. We aimed to identify gray and white matter
volumetric changes in a group of patients with schizophrenia and to quantify the distribution of white matter tract
changes using a novel approach which applied three complementary analyses to diffusion imaging data.

Methods: 21 patients with schizophrenia and 21 matched control subjects underwent brain magnetic resonance
imaging. Gray and white matter volume differences were investigated using Voxel-based Morphometry (VBM).
White matter diffusion changes were located using Tract Based Spatial Statistics (TBSS) and quantified within a
standard atlas. Tracts where significant regional differences were located were examined using fiber tractography.

Results: No significant differences in gray or white matter volumetry were found between the two groups. Using
TBSS the schizophrenia group showed significantly lower fractional anisotropy (FA) compared to the controls in
regions (false discovery rate <0.05) including the genu, body and splenium of the corpus callosum and the left
anterior limb of the internal capsule (ALIC). Using fiber tractography, FA was significantly lower in schizophrenia in

Conclusions: In schizophrenia, white matter diffusion deficits are prominent in medial frontal regions. These
changes are consistent with the results of previous studies which have detected white matter changes in these
areas. The pathology of schizophrenia may preferentially affect the prefrontal-thalamic white matter circuits
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Background

Schizophrenia is a multi-symptom disorder characterised
by abnormalities in various domains of mental function-
ing including hearing (auditory hallucinations), belief
(delusions), logical thinking (thought disorder), motiv-
ation and emotion [1]. However, despite the variety of
symptoms and evidence of brain structural changes
[2-6], identification of the neuropathology of schizophre-
nia has proved elusive [7].
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There is increasing interest in elucidating brain connect-
ivity (connectomics), including white matter architecture,
and the application of this knowledge to psychiatric disor-
ders [8,9]. The investigation of white matter tract changes
in schizophrenia may be fruitful for several reasons. Firstly
the tracts comprise axonal bundles inter-connecting gray
matter regions. Various theories of schizophrenia propose
that schizophrenia is a disorder of connectivity [10,11],
specifically of anatomical connectivity [12-14]. Therefore
the white matter tracts may constitute the location of
pathology. Identification of the most severely affected
tracts would provide targets for further neuropathological
study. Secondly, there is controversy regarding whether
white matter changes are global and microscopic [15-18]
or regional and macroscopic [19]. If the distribution of
tract changes is uniform then this would provide support
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the former theory. Thirdly, gray matter changes are now
well-characterised in schizophrenia [5,6] and if there are
microstructural aberrations in white matter tracts then
it is important to discover whether they correspond ana-
tomically with the regions of gray matter change [20].
Fourthly, maximum white matter tract changes may, by
analogy with other neuropsychiatric disorders [21,22], be
associated with the anatomical (gray matter) regions of
primary pathology. Finally, identification of a characteris-
tic spatial pattern of white matter tract differences could
provide a key to assist classification and diagnosis using
neuro-imaging [23].

The quantification of white matter microstructural or-
ganisation can now be achieved more directly using Diffu-
sion Tensor Imaging (DTI) [24-26]. This can quantify a
structural measure called fractional anisotropy (FA), which
is increased in areas where axons are spatially aligned
(and water molecules can more easily diffuse along the
axis of the white matter fibers) compared with areas where
axons are not aligned or regions with a higher density of
cell bodies (e.g. gray matter).

Diffusion Tensor Imaging studies have identified re-
duced fractional anisotropy in a number of regions and
tracts in schizophrenia [2,5,8,27]. These include the cor-
pus callosum [2,5,28-38], Anterior Limb of the Internal
Capsule regions [5,28,33,35,38-41], corona radiata [28,35],
cingulum bundle [2,5,33,35,38,42,43], inferior fronto-
occipital fasciculus (IFOF) [5,28,33,44], superior fronto-
occipital fasciculus (SFOF) [28,33], uncinate fasciculus
[2,33,38,42,43], fornix [5,28,33,43], superior longitudinal
fasciculus (SLF) [2,28,34,35,38], inferior longitudinal fas-
ciculus (ILF) [5,28,31,34,44], optic radiations [28], hippo-
campus and cerebellum [2].

Our methodological approach was novel in applying
triple analyses to diffusion tensor images (DTI) from
patients with schizophrenia and control subjects. Our ob-
jective was to combine a brain-wide voxel-based approach
(TBSS) (which is highly automated) to guide subsequent
tract-based analysis (which is more labour-intensive
but has the potential for greater sensitivity in detecting
changes because of greater anatomical specificity) as well
as an atlas-based analysis (permitting quantification of the
magnitude of regional changes and providing data for fu-
ture meta-analyses).

We postulated that gray matter reduction would be
present in schizophrenia in regions identified by meta-
analysis of previous studies [3]. These studies have im-
plicated a frontal-thalamic circuit in the pathology
of schizophrenia [13,40,45,46]. We postulated that pa-
tients with schizophrenia would show FA reductions
in the Anterior Limb of the Internal Capsule (ALIC)
(part of the frontal-striatal-thalamic circuit) as well as
reductions in the white matter tracts passing through
the ALIC.
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Methods

Participants

Patients were recruited from Cambridgeshire and Peter-
borough and South Essex Partnership University NHS
Foundation Trusts and control participants from the
GlaxoSmithKline healthy volunteer panel. We aimed to
match the groups for age, gender, premorbid IQ and
handedness (see Demographics in Results section).

Power analysis, based on fractional anisotropy values
detected in a previous large study [28], indicated that a
sample of 23 subjects in each group would provide stat-
istical power over 80% (testing for reduced FA in the
corpus callosum in schizophrenia; one-tailed test, alpha
level 5%). From the original sample, 21 patients and 21
controls completed the imaging protocol (reducing
power to 70%).

The 21 patients met DSM-IV diagnoses of chronic
schizophrenia (n=19) or schizoaffective disorder (n=2)
using the Mini International Neuropsychiatric Interview
and had no other Axis 1 disorders. They were clinically
stable for three months, and prescribed unaltered atypical
antipsychotics for two months. Participants were excluded
if they were prescribed antidepressants, anxiolytics, anti-
epileptics, anticonvulsants, hypnotics, sedatives or non-
prescription medications including vitamins, herbal and
dietary supplements. Patients were free of drugs of abuse
(except nicotine).

There were 17 males and 4 females, mean age was
34.2 (SD 10.9), with mean pre-morbid IQ (National
Adult Reading Test) of 110 (SD 7.0). Patients were
moderately/severely symptomatic with a mean total
PANSS score of 50 +13. Their mean Chlorpromazine
equivalent dose was 247 mg.

The 21 control participants had no history of any
physical or psychiatric disorders as assessed using a
semi-structured physical examination and MINI assess-
ment. They were free of medication or drugs of abuse.
There were 14 males and 7 females, mean age was 31.5
(SD 9.1), and mean IQ 112 (SD 5.0).

The study protocol was approved by the Cambridge-
shire 3 Research Ethics Committee. Subjects were
assessed by their clinicians as having capacity to give
written informed consent which was obtained from all
participants.

MRI protocol
Whole-brain structural MRI data were acquired using a
GE Signa Twinspeed HDxt system (3 Tesla, 3D sagittal
BRAVO fast sequence, flip angle 9°, TE 3.0 ms, TR 7.9 ms,
TI 900 ms, ASSET x 2 FOV 256 x 256 mm, matrix 256 x
256 x 252, NEX = 0.5, voxel dimensions 1x1x1 mm, ac-
quisition time = 5:05 min).

Diffusion data was acquired using a 2D axial diffusion
Spin Echo EPI sequence (with ASSET). 30 diffusion
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gradient directions were used with b =1,000 s/mm2 and
one b=0 s/mm2 reference image (TE 77.2 ms, TR
15,000 ms, FOV 320 x 320 mm?2, matrix 128 x 128, in-
plane voxel dimensions 2.5x 2.5 mm2, slice thickness
2.5 mm, acquisition time 8.15mins) [47].

Image processing

T1-weighted structural MR images were corrected for
non-uniform bias using N3 [48], brain extraction was
performed using the FSL BET [49], and registered to the
FA diffusion images using the FSL FLIRT [50]. Inspec-
tion of T1 data revealed 7 subjects (5 patients and 2
controls) had motion artefacts. These were excluded
from the VBM analyses.

Diffusion-weighted MR data quality was determined
[51]. Images were processed using ExploreDTI Version
4.8.1 (http://www.ExploreDTI.com) and corrected for
subject motion/eddy current induced distortions [52].
The RESTORE approach [53] was used to estimate the
diffusion tensor.

Voxel-based morphometry (VBM) of Gray and White matter
The VBM5.1 toolbox (http://dbm.neuro.uni-jena.de), a
SPM5 extension, was used to segment T1 images into
gray matter (GM), white matter (WM) and cerebrospinal
fluid (CSF) tissue maps and to normalise these maps to
standard Montreal Neurological Institute (MNI) space.

Images were co-registered to MNI space using a 12-
parameter affine transformation and segmented into gray
matter, white matter and CSF without the use of prior tis-
sue information; a hidden markov random field (HMRF =
0.3) was incorporated to improve segmentation. Further
default VBM5.1 parameters were used (bias regularisa-
tion = 0.0001, bias FWHM cut off=70 mm, sampling
distance = 3). Non-linear spatial transformation default pa-
rameters were used to normalise each subject to GM and
WM MNI tissue templates (warping regularisation = 1 and
warp frequency cut-off = 25). Voxel intensity values were
modulated by the Jacobian determinant. Modulation was
calculated on the non-linear transformation to remove the
effects of global brain size differences on local brain struc-
tures. Modulated GM/WM images were smoothed with
an isotropic 8-mm FWHM Gaussian kernel. Independent
2-sample t-tests were used to test for voxelwise group dif-
ferences. A False Discovery Rate (FDR) of p < 0.05 was ap-
plied to correct for multiple comparisons [54].

Voxel-based analysis of fractional anisotropy (FA)
Corrected FA images were analysed using Tract Based
Spatial Statistics (TBSS) [55] in FSL. FA images under-
went non-linear registration to target FMRIB58 FA
standard space image. A study-specific skeleton was gen-
erated. For the binary skeleton mask, an optimal FA
threshold of 0.3 was chosen following visual inspection.
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A general linear model was used to test FA differences
between the schizophrenia and control groups, with age as
a covariate. Threshold-free cluster enhancement (TFCE)
was applied to a permutation analysis with 10,000 random
permutations to correct for multiple comparisons [55].

Regional distribution of fractional anisotropy (FA)
differences

Regional FA differences were localized using the John
Hopkins University white matter atlas (ICBM-DTI-81)
which parcellates white matter into 50 core regions [56].
The FA values within the study-specific skeleton mask
within each region were averaged and percentage differ-
ences between the groups were calculated.

Tractography-based analysis of fractional anisotropy (FA)
differences

Deterministic tensor-based tractography was used to de-
tect tracts of interest. Tracts were identified using
ExploreDTI 4.8.1 with a seed point resolution of 3x3x3
mm, a step size of 1 mm, fibre length range equal to 50-
500 mm, and an angle threshold of 45°. FA thresholds
were optimized by visual determination of the optimal
balance between sensitivity and selectivity for the anatomy
of each tract of interest (genu, splenium and body of the
corpus callosum 0.38, ALIC and cingulum bundle 0.32).
Thresholds were chosen well below the averages for the
tracts in question so do not affect the reconstruction of
the tract of interest but eliminate spurious tracts.

Tract definition and segmentation

From the regions with the highest T-statistics, tracts were
selected for further investigation: the genu of the corpus
callosum, right and left ALIC, right and left cingulum
bundle, right and left Superior Longitudinal Fasciculus
(SLF), body and splenium of the corpus callosum.
Tracts were defined using the FA-independent and ana-
tomically detailed structural T1-weighted MR images.
Tract volume was controlled for by covarying tract me-
dian FA for tract volume and normalized for median
segment length to account for variance in the segment
length across subjects [57].

The tracts were defined anatomically as detailed below
using ‘inclusion gates’. For each tract in each individual
subject, two anatomical structures were defined in the
brain (‘gates’) based on defined anatomical landmarks. A
tract consisted of all reconstructed paths passing through
both anatomically defined gates.

Corpus callosum

Segments of the CC were defined mid-sagittally. Borders
were located one-voxel external to the CC white matter
inferior/anterior, inferior/posterior and superior/inferior
for the genu, splenium and body of corpus callosum
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(BCC) respectively. The genu’s posterior border was de-
fined as one slice posterior to the posterior flexure of the
genu, this was also the BCC’s anterior border. Its posterior
border was located 25 mm posterior to this. Genu tracts
were cut 2 slices anterior to the anterior of the genu in the
mid sagittal plane. Splenium fibers were cut at their most
lateral extent. The BCC lateral projections were cut sagit-
tally 10 mm from the mid-sagittal line.

Anterior Limb of the Internal Capsule (ALIC)

This was defined by a modified previous protocol [58].
The anterior limit was the anterior-most slice of the lat-
eral ventricle and posteriorly the anterior commissure.
The anterior gate was bordered by gray matter and
medially by the lateral ventricle. The posterior gate was
bordered superomedially by the lateral ventricle and
inferolaterally by the pallidum and putamen.

Superior Longitudinal Fasciculus (SLF)

This was defined by a modified previous protocol [58].
The anterior coronal limit was the first slice anterior to
the superior portion of the fornix and posterior limit as
the inferior-most slice of the CC splenium.

Cingulum bundle

The anterior limit was the posterior flexure of the CC
genu and posterior limit the anterior CC splenium. The
anterior gate was a frontal lobe wedge, using the mid-
sagittal plane medially and axial plane bisecting the genu
inferiorly from the mid-sagittal plane to the lateral ven-
tricle. The posterior gate was a wedge of parietal lobe,
using the mid-sagittal plane as a medial border and the
axial plane bisecting the splenium as an inferior border
from the mid-sagittal plane to the lateral ventricle.

Reliability

A single rater (NF) defined all tracts. Her reliability and
consistency in defining these anatomically was examined
by blinding the rater to the images and re-defining the
same tracts twice - this achieved an acceptable level of
reliability of greater than 86% in defining tracts (ICC =
0.86-0.99).

One subject was excluded in the case of the left ALIC,
right and left cingulum bundle, for failing to show ad-
equate tracts. Six further subjects were removed from
the left cingulum bundle analysis for failing to show ad-
equate tracts.

Statistical analyses
Fractional anisotropy is non-parametrically distributed
across tracts so the median FA was employed for each
tract in each person rather than mean.

The Shapiro-Wilks test and Levene’s test were used to
determine normality of distribution and homogeneity,

Page 4 of 13

respectively, for median FA of the tracts and age of sub-
jects. An analysis of co-variance (ANCOVA) was used to
compare diagnostic groups, covarying for age and tract
volume. Independent samples t-test was used to test
for differences in tract FA between diagnostic groups.
Mann Whitney U was employed to compare age between
groups. A chi-square test was used to assess the gender
proportions between diagnostic groups.

Our primary analyses were of: (i) the voxel-based ana-
lysis of gray matter between the two groups, (ii) the
voxel-based analysis of fractional anisotropy and (iii) the
tract FA in the right and left ALIC. Our secondary ana-
lyses were of the FA values in the corpus callosum, sple-
nium, SLF and cingulum bundle. Our tertiary analyses
were of the regional distribution of FA along the TBSS
skeleton in each region of the White Matter Atlas. As
the study employed multiple analysis methods and many
brain volume measurements are correlated, we did not
correct for multiple testing (other than the False Discov-
ery Rate used in the voxel-based analyses) and the prob-
ability statistics need to be interpreted in this context.

Statistical analyses were carried out using PASW
statistics.

Results

Demographics

The groups did not differ significantly in gender propor-
tion (p =0.30), IQ (p =0.25), or mean age (p = 0.39) (age
was non-normally distributed, W =0.94, p=0.02). All
subjects were right-handed (Edinburgh Handedness
Inventory).

Voxel Based Morphometry (VBM) of gray and white
matter

No significant group differences were found between the
schizophrenia and control groups.

Voxel-based analysis of Fractional Anisotropy (FA)
The schizophrenia group showed significantly lower
FA compared to the healthy controls in several regions
(Table 1). FA was reduced in schizophrenia (p < 0.05,
FDR) in: (i) the genu, body and splenium of the corpus
callosum, (ii) the left ALIC, (iii) the left superior fronto-
occipital fasciculus/ALIC and (iv) the corona radiata
(left anterior and superior, right superior and posterior)
(Figure 1).

The schizophrenia group did not show any regions of
significantly greater FA than controls.

Regional distribution of Fractional Anisotropy (FA)

The percentage differences between schizophrenia and
control in FA along the TBSS skeleton were calculated in
each region of the White Matter Atlas (Additional file 1:
Table S1).
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Table 1 Regions in which the schizophrenia group
showed significantly lower fractional anisotropy (FA)
compared controls

Region as defined by the white matter T-statistic  Talairach

atlas maximum coordinate
X y z
Genu of corpus callosum 44 -13 28 14
Anterior limb of internal capsule (ALIC) left 38 211 17
Anterior corona radiata left 36 -25 24 15
Body of corpus callosum 35 15 -21 31
Superior corona radiata left 28 -22 -1 19
Superior fronto-occipital fasciculus/ 28 212 19
Anterior limb of internal capsule (ALIC) left
Superior corona radiata right 2.7 20 -16 39
Posterior corona radiata right 25 18 -32 34
Genu of corpus callosum 24 13 28 -4
Splenium of corpus callosum 23 17 -33 32
Anterior limb of internal capsule (ALIC) left 20 21 -5 16

Regions analysed using Tract-based spatial statistics (TBSS) with false discovery
rate p < 0.05. The Talairach co-ordinate is shown for the maximum T statistic
within each region.

The greatest FA reductions (>2%) were in: (i) left and
right superior fronto-occipital fasciculus (SFOF)/ALIC
(left -5%, p < 0.05 uncorrected; right -2.5%), (ii) left ALIC
(-2.4%; p < 0.05 uncorrected), (iii) genu of corpus callo-
sum (-3.1%; p < 0.05 uncorrected), (iv) left anterior cor-
ona radiata (-3.3%), (v) right posterior thalamic radiation
(-3.2%; p <0.05 uncorrected) and right tapetum (-2.2%),
(vi) body of corpus callosum (-2.1%). No difference was
significant after applying correction for multiple com-
parisons (FDR < 0.05).

The locations and tracts corresponding to the genu of
corpus callosum (atlas region 3), left anterior corona
radiata (atlas region 23), left ALIC (atlas region 17) and
left SFOF/ALIC (atlas region 43) are illustrated in Figures 1
and 2. The results for all regions are shown in Figure 3.

Tractography-based analysis of Fractional Anisotropy (FA)
Median FA for each tract examined was normally dis-
tributed (W =0.97-0.98, p = 0.26-0.61).

FA was significantly lower in the schizophrenia (mean
0.68, SD 0.035) relative to the control group (mean 0.71,
SD 0.027) in the genu of the corpus callosum (ANCOVA
F(1) =10.025, p = 0.003). FA was slightly reduced in the
schizophrenia relative to the control group in the left
ALIC (schizophrenia mean 0.55, SD 0.038, control mean
0.56, SD 0.035, ANCOVA F(1)=0.048, p=0.83) and
right ALIC (schizophrenia mean 0.53, SD 0.045, control
mean 0.55, SD 0.036, ANCOVA F(1) =0.40, p =0.53).
These reductions were not significant. There were no
differences between groups in the splenium (schizophre-
nia mean 0.73, SD 0.045, control mean 0.73, SD 0.035,
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ANCOVA F(1) =0.003, p = 0.96) or the cingulum bundle
(left: schizophrenia mean 0.58, SD 0.044, control mean
0.57, SD 0.036, ANCOVA F(1) =0.323, p=0.57; right:
schizophrenia mean 0.62, SD 0.045, control mean 0.61,
SD 0.031, ANCOVA F(1) =0.329, p =0.57). The number
of reconstructed tracts in the superior longitudinal fas-
ciculus and body of the corpus callosum were too few
for analysis using tensor-based tractography.

Discussion

This study identified altered white matter tract organization
in schizophrenia, with a predominance of changes in med-
ial frontal regions, compared to controls. Consistent with
our primary hypothesis, abnormal diffusion properties were
present in the Anterior Limb of the Internal Capsule
(ALIC). The reductions extended beyond this and were also
present in the genu, body and splenium of the corpus callo-
sum, the left superior fronto-occipital fasciculus, and the
corona radiata.

The magnitudes of the white matter diffusion changes
were quantified using an atlas- parcellation method. The
greatest FA reductions were in the left and right superior
fronto-occipital fasciculus/ALIC, left ALIC, genu and
body of the corpus callosum, left anterior corona radiata,
the right posterior thalamic radiation and right tapetum
parcels. The individual tracts where there were local
changes identified by TBSS were examined using tensor-
based tractography. FA was significantly lower in schizo-
phrenia in tracts traversing the genu of the corpus callosum
(Figure 1). The region of diffusion abnormality in the left
ALIC and genu of the corpus callosum identified in this
study overlapped with an area of maximal FA reduction in
the deep frontal lobe white matter identified by a meta-
analysis of 15 previous studies [19].

Interpretation

The white matter changes identified in this study are con-
sistent with a model of schizophrenia involving pathological
deficits in medial frontal circuits, including a prefrontal-
thalamic loop (via the ALIC) and a prefrontal-prefrontal
loop (via the genu of the corpus callosum).

In support of this, several studies have found reduced
FA in the anterior limb of the internal capsule (ALIC)
[41,46,59-63], a region which contains several tracts, includ-
ing cortico-striatal and thalamo-prefrontal fibres (anterior
thalamic radiation: ATR). Reduced connectivity of the thal-
amus to the prefrontal cortex in schizophrenia has been
found using both DTI [13] and functional imaging [64].

Other studies have identified FA reductions in the cor-
pus callosum genu [34,65-71] and forceps minor [15,72].
These fibres provide interconnections between prefrontal
regions [73]. A multi-modal study examined gray matter,
white matter (using DTI) and function (using fMRI during
performance of a memory task). This found white matter
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Figure 1 Regions where the schizophrenia group showed significantly lower fractional anisotropy (FA) compared to healthy controls.
Upper two rows: The regions of reduction detected by Tract-based spatial statistics (TBSS) are shown in red (false discovery rate p < 0.05) superimposed
on illustrative axial slices (Talairach level shown above each slice; left brain on left side of image). Reductions are particularly concentrated in medial frontal
sectors. Lower two rows: For comparison with the white matter atlas parcellation findings, the white matter regions corresponding to the following are
shown in colour (superimposed on the TBSS reductions in red): genu of corpus callosum (atlas region 3; pink), left anterior corona radiata (atlas region 23,
yellow), left anterior limb of the internal capsule (atlas region 17, blue) and left superior fronto-occipital fasciculus/anterior limb of the internal capsule
(atlas region 43, green).

Figure 2 Tracts passing through atlas regions with greatest percentage reductions of fractional anisotropy schizophrenia patients.
Tracts passing through atlas regions: genu of corpus callosum (atlas region 3; purple), left anterior corona radiata (atlas region 23, yellow) and
anterior limb of the internal capsule (atlas region 17, blue), left superior fronto-occipital fasciculus/anterior limb of the internal capsule (atlas
region 43, green). Tract segments displayed using DTIQuery software [25].




Ellison-Wright et al. BMC Psychiatry 2014, 14:99 Page 7 of 13
http://www.biomedcentral.com/1471-244X/14/99

Superior fronto-occipital fasciculus L
Anterior corona radiata L

Posterior thalamic radiation R

Genu of corpus callosum

Superior fronto-occipital fasciculus R
Anterior limb of internal capsule L
Tapetum R

Body of corpus callosum

Posterior thalamic radiation L
Anterior corona radiata R

Superior corona radiata R

Superior corona radiata L

Inferior cerebellar peduncle R
Cerebral peduncle L

Fornix (column and body of fornix)
Fornix (cres) / Stria terminalis L
Cingulum (cingulate gyrus) R
Retrolenticular part of internal capsule L
Inferior cerebellar peduncle L
Anterior limb of internal capsule R
Superior longitudinal fasciculus L
External capsule L

Splenium of corpus callosum
Posterior corona radiata R
Cingulum (cingulate gyrus) L
Superior cerebellar peduncle L
Sagittal stratum L

Cerebral peduncle R

Cingulum (hippocampus) L
Posterior limb of internal capsule R
Posterior limb of internal capsule L
Superior longitudinal fasciculus R
Sagittal stratum R

Retrolenticular part of internal capsule R
Middle cerebellar peduncle

External capsule R

Fornix (cres) / Stria terminalis R
Medial lemniscus L

Posterior corona radiata L
Cingulum (hippocampus) R

Inferior fronto-occipital fasciculus R
Superior cerebellar peduncle R
Tapetum L

Inferior fronto-occipital fasciculus L
Medial lemniscus R |

Uncinate fasciculus L

Uncinate fasciculus R

] 1 )
15 -10 -5 0 5 10 15
FA Percentage Difference

Figure 3 Mean percentage differences in fractional anisotropy between schizophrenia patients and controls in standard atlas regions.
Coloured bars show mean percentage difference in fractional anisotropy between patients and controls in each standard atlas region intersecting
with the Tract-based spatial statistics skeleton (regions with differences greater than 2% coloured red, others blue). Error bars depict the 95%
confidence values across each atlas region. The percent is negative when the fractional anisotropy is lower in patients than controls and positive
when it is larger in patients than controls.
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deficits in the genu of the corpus callosum, with projec-
tions to medial frontal regions, in association with gray
matter deficits and hypoactivation during fMRI [20].

Compared with previous studies of FA changes in
schizophrenia, this study found changes in medial frontal
regions but did not identify FA reductions in other regions
which have been previously implicated. As the sample size
was small, this may indicate that the medial frontal regions
are the areas of maximal FA change in schizophrenia.

Another notable aspect of the results was that we did
not find gray matter reductions in patients compared
with controls, unlike many previous studies of gray mat-
ter changes in schizophrenia. As discussed below, this
may be attributable to the high proportion of patients
treated with atypical antipsychotics. It suggests that in
these patients, subtle diffusion changes may be easier to
detect than volumetric changes.

Comparison of diffusion analyses

The study applied three different analyses to the diffu-
sion methods which provided complementary perspec-
tives in investigating white matter changes. The methods
were consistent in identifying the corpus callosum genu
as a region of greater diffusion changes.

VBA and atlas-parcellation analyses identified similar
regions of maximum change although the parcellation
method identified some bilateral changes (left and right
ALIC) when the VBA findings were lateralized (left
ALIC). These differences may reflect VBA determining
significance according to peak FA changes whereas the
atlas-parcellation method averages FA values within the
study-specific skeleton in each region. Lateralised ALIC
changes in VBA (left but not right) may occur if changes
are actually bilateral but right-sided changes do not reach
the significance level or if the magnitude of changes are
greater in the left than the right-brain [74].

White matter volumetry

The study identified white matter changes using diffu-
sion (in fractional anisotropy) but not volumetry (using
voxel-based morphometry). White matter FA and volu-
metric changes in schizophrenia may not necessarily be
correlated [75]. Abnormal FA may reflect changes in in-
tegrity of the myelin sheath and axonal membrane but,
in general, there are many factors that can modulate
the FA [26]. In neurodegenerative disorders, while FA
changes often correlate with atrophy they may also be
found without volumetric changes depending on the
methodology, region studied and underlying pathology
[76]. For example, in Alzheimer’s disease, some regions
of white matter FA decrease may reflect microstructural
changes rather than macroscopic changes [77] and this
may be a marker for future atrophy [78]. A meta-analysis
comparing white matter volumetry and DTI changes in
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schizophrenia suggested that DTI studies appeared more
sensitive to white matter abnormalities in schizophrenia [5].

Gray matter volumetry

Although we predicted that there would be gray matter
reduction in schizophrenia in regions identified by previ-
ous studies, no significant differences between the two
groups were found. Previous studies which did not de-
tect gray matter changes were generally those investigat-
ing first-episode patients [79,80] whereas this study
included patients with chronic illness.

The negative gray and white matter volumetry results
may have resulted from a type 2 error as seven of 42
subjects were eliminated due to T1 data revealing mo-
tion artefacts. This could also account for the apparent
greater sensitivity in detecting diffusion rather than volu-
metry changes.

The negative results (in contrast to most previous
schizophrenia studies) might also reflect atypicality in
the patient sample - for example, all patients were re-
ceiving atypical antipsychotics. Antipsychotic treatment
has been associated with complex regional gray matter
changes (both increases and decreases) [81]; however,
gray matter loss may be less intense and widespread in
patients treated with atypical antipsychotics (olanzapine)
compared to typical antipsychotics (haloperidol) [82]. 8
of 21 patients in our sample were prescribed clozapine
and clozapine treatment has been associated both with
gray matter increases [83] or with less gray matter loss
over time [84]. A study of first-episode psychosis sub-
jects treated with atypical antipsychotics also found FA
decreases but no gray matter changes [80] whereas stud-
ies of medication-naive patients with schizophrenia have
found evidence of gray matter deficits [44,85]. It is also
of note that the mean premorbid IQ of the patients was
high; higher performance IQ has been positively corre-
lated with FA in schizophrenia [86].

Further research
In the future, several approaches may help construct
more detailed models of the white matter tract changes
in schizophrenia.

The discrimination of white matter tracts may be im-
proved using higher field strengths for MRI. In addition,
higher angular resolution diffusion MRI (HARDI) can be
used to separate and map the anterior thalamic radiation
and prefronto-caudo-thalamic pathways [87] and more
advanced tractography methods can be applied [88]. In
addition, the classification of white matter tracts is chan-
ging, for example, the identification in humans of new
tracts associated with language (the middle longitudinal
fasciculus, MdLF, and Extreme Capsule, EC) [89,90].

New analyses are being used to map tract changes in
areas of abnormal white matter. Theoretically, as well as
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a general reduction in fibers within a tract, fibers may
terminate in an abnormal location, for example stopping
short of their usual destination, showing altered disper-
sion within the destination zone [68,91] or re-routing to
an abnormal destination. For example, a DTI study of
Williams syndrome (WS), a rare genetic disorder arising
from a hemideletion on chromosome 7q11.23, identified
fiber tracts following abnormal routes [92]. A study of
children with histories of early deprivation found that
fronto-striatal fibers showed a more diffuse cortical dis-
tribution pattern [91].

The power to detect and define white matter changes
will be improved by the analysis of larger data sets. The
release of anonymised image data by a number of re-
search groups allows testing of different image analysis
methods. The results of published studies can be com-
bined either by meta-analysis of co-ordinates (e.g. using
techniques such as ALE, [93], SDM, [94], or GSMA,
[95]) or changes quantified within parcellated brain re-
gions. The latter will require publication of results, as in
this study, according to standard white matter atlases.
The identification of a characteristic spatial pattern of
white matter tract differences may assist in earlier diag-
nosis using automated classification algorithms applied
to neuro-images [23].

Finally, white matter tract changes in schizophrenia
may be relevant to pattern of structural brain changes as
the disease progresses over time. Meta-analyses of longi-
tudinal neuro-imaging studies have found evidence for
spatial progression of structural brain changes in schizo-
phrenia [96]. Recent studies of neurodegenerative disor-
ders have suggested that the spatial pattern of disease
progression is constrained by the connectivity of large-
scale neural networks [97]. The ‘spread’ of diseases such
as Alzheimer’s disease and fronto-temporal dementia
may be determined by pathological processes interact-
ing with the white matter network in a disease-specific
manner [98]. In this model, white matter tracts deter-
mine the anatomy of disease progression, for example
by direct transneural effects, rather than spatially dis-
persed gray matter regions undergoing progressive change
due to intrinsic vulnerability (e.g. shared neuro-chemical
processes). There are similarities between the spatial
pattern of gray matter changes in schizophrenia and
fronto-temporal dementia [99]. Although their neuropath-
ology may be different, the pathological effects may inter-
act with a common white matter network in the two
disorders, leading to similarities in the spatial pattern of
brain changes.

Limitations

According to the model we have proposed, medial
frontal circuits are specifically affected by the pathology
of schizophrenia and implicate the prefrontal cortex and
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connected subcortical structures (thalamus and stri-
atum) as potential sites for the primary pathology. How-
ever, other interpretations are possible.

Firstly some researchers have argued that white matter
changes in schizophrenia are global (and potentially
microscopic rather than macroscopic) [16]. Some studies
have found multiple white matter changes (FA reduc-
tions) within the brain in schizophrenia [23,28,100]. A
meta-analysis of 23 voxel-based FA studies found that
the region reported as abnormal in highest number of
studies (splenium of corpus callosum) was identified in
only 8 of the 23 reports [16]. However, it is possible that
regional differences are superimposed on global changes.
Furthermore, some white matter tracts pass through
multiple regions [101,102] and deficits in these tracts
may lead to the appearance of widely distributed white
matter changes.

Secondly, this study may be underpowered to detect
all the white matter changes present. In the meta-
analysis of voxel-based FA studies of schizophrenia, two
regions of white matter reduction were found in schizo-
phrenia [19]. One was in deep frontal white matter and
the second was in the left temporal lobe. The second
overlapped with the white matter atlas regions of the left
fornix and left retrolenticular part of internal capsule
(Additional file 1: Table S1). In the current study, these
regions were reduced in schizophrenia (by 1.3% and
0.9%, respectively) although these changes were not sig-
nificant. Therefore there may be other white matter cir-
cuits affected in schizophrenia, including those linking
limbic regions such as the hippocampus (and abnormal-
ities in limbic regions can also be associated with frontal
white matter changes, as in Temporal Lobe Epilepsy,
[22]). In addition, tractography was limited by the qual-
ity of diffusion data and it was not possible to include
full analyses of a number of tracts which previous stud-
ies have found to be abnormal in schizophrenia.

Thirdly, if white matter changes are present, they may
not represent the specific pathology of schizophrenia but
instead a consequential phenomenon. There is increas-
ing evidence for the plasticity of brain structure in re-
sponse to psychological processes and medication. For
example, studies have identified gray matter changes in
subjects with depression [103]. Therefore some struc-
tural changes in schizophrenia could result from the
symptoms of the illness rather than represent primary
pathology. For example, if increased psychotic symptoms
cause FA decreases, then there may be a correlation be-
tween symptomatology and brain structural measures.
We conducted an exploratory test on our data by testing
for a correlation between corpus callosum genu median
FA and PANSS score (a measure of psychotic symp-
toms). We found a weak negative correlation which
was not significant (Pearson’s bivariate correlation -0.26,
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p=0.08). These effects may be further elucidated by
examining potential confounders or rescanning subjects
during periods of exacerbation and remission of symptoms.

There were a number of other potential methodo-
logical limitations. The use of antipsychotic treatment in
the patients may be a confounding factor so diffusion
changes could potentially be due to the effect of medica-
tion rather than diagnosis. FA decreases have been found
in the anterior cingulate and right corona radiata in pre-
viously drug-naive patients with schizophrenia after six
weeks of treatment [104]. Other potential confounders
are age [105-107], IQ [108], gender [109], and handed-
ness [110]. In our data, examining the corpus callosum
genu median FA as a measure of structural change, age
was negatively correlated, (Pearson’s bivariate correlation
-0.38, p =0.01, whole group) and IQ was positively cor-
related (Pearson’s bivariate correlation 0.31, p=0.05,
whole group) as expected. The patient and control
groups in our study were well matched for age and 1Q
so this should not have affected our results. In this
study, corpus callosum genu median FA did not differ
significantly by gender (t-test t(41)-0.86, p =0.39) — the
average FA was 2% greater in males than females (whole
group). The slightly greater proportion of males in the
schizophrenia group would be expected to result in
higher FA values [109], rather than reduced FA values
(which we detected) so this slight gender imbalance may
have reduced our power to detect changes.

Conclusions

The study located white matter tract deficits in medial
frontal regions (left anterior limb of the internal capsule,
genu of the corpus callosum, frontal lobe portions of the
left superior fronto-occipital fasciculus and left anterior
corona radiata) and the body and splenium of the corpus
callosum. Tractography found deficits in the genu of the
corpus callosum.

The results were consistent with a model of pathological
deficits in schizophrenia in medial frontal circuits, includ-
ing a prefrontal-thalamic loop (via the anterior limb of the
internal capsule) and a prefrontal-prefrontal loop (via the
genu of the corpus callosum).

However, further studies will be required to replicate
these results and to explore the significance of white
matter changes elsewhere in the brain.

Additional file

Additional file 1: Table S1. Fractional anisotropy in the schizophrenia
group and controls within standard white matter atlas regions.
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