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Abstract

Background: This study tested the hypothesis that exhaled ethane is a biomarker of cerebral n-
3 polyunsaturated fatty acid peroxidation in humans. Ethane is released specifically following
peroxidation of n-3 polyunsaturated fatty acids. We reasoned that the cerebral source of ethane
would be the docosahexaenoic acid component of membrane phospholipids. Breakdown of the
latter also releases phosphorylated polar head groups, giving rise to glycerophosphorylcholine and
glycerophosphorylethanolamine, which can be measured from the 3I-phosphorus
neurospectroscopy phosphodiester peak. Schizophrenia patients were chosen because of evidence
of increased free radical-mediated damage and cerebral lipid peroxidation in this disorder.

Methods: Samples of alveolar air were obtained from eight patients and ethane was analyzed and
quantified by gas chromatography and mass spectrometry (m/z = 30). Cerebral 3|-phosphorus
spectra were obtained from the same patients at a magnetic field strength of 1.5 T using an image-
selected in vivo spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 x 70 x 70
mm3 voxel). The quantification of the 3 | -phosphorus signals using prior knowledge was carried out
in the temporal domain after truncating the first 1.92 ms of the signal to remove the broad
component present in the 3|-phosphorus spectra.

Results: The ethane and phosphodiester levels, expressed as a percentage of the total 31-
phosphorus signal, were positively and significantly correlated (r,= 0.714, p < 0.05).

Conclusion: Our results support the hypothesis that the measurement of exhaled ethane levels
indexes cerebral n-3 lipid peroxidation. From a practical viewpoint, if human cerebral n-3
polyunsaturated fatty acid catabolism can be measured by ethane in expired breath, this would be
more convenient than determining the area of the 3I-phosphorus neurospectroscopy
phosphodiester peak.

Page 1 of 5

(page number not for citation purposes)


http://www.biomedcentral.com/1471-244X/8/S1/S2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Psychiatry 2008, 8(Suppl 1):S2

Background

Dioxygen (diatomic molecular oxygen), O,, is a toxic
mutagenic gas, notwithstanding our dependence on O,-
dependent electron-transport chains; we survive because
of the presence of protective antioxidant defences [1].
Indeed, cellular reactive oxygen species such as superoxide
radicals, O, -, hydrogen peroxide, H,O,, and hydroxyl
radicals, HO", which are highly unstable oxygen species
possessing reactive unpaired electrons, are generated dur-
ing endogenous aerobic metabolism and in response to
exogenous toxic challenges [2,3]. Since the living human
brain normally has a high oxygen consumption and has a
high lipid content, including oxyradical-sensitive polyun-
saturated fatty acids (PUFAs), brain cell membranes are
particularly vulnerable to free radical-mediated damage;
under physiological conditions the potential for such
damage is kept in check by the antioxidant defence sys-
tem, which contains the critical antioxidant enzymes
superoxide dismutase (SOD; E.C. 1.15.1.6), catalase
(CAT; E.C. 1.11.1.6) and glutathione peroxidase (GSH-Px;
E.C. 1.11.1.9) [4,5]. Peroxidative degradation is particu-
larly marked in cerebral inner mitochondrial membrane
lipids, owing to the fact that most cellular oxygen in the
brain is used for terminal electron acceptance in oxidative
phosphorylation [6,7]. SOD catalyzes the dismutation of
O, - to H,0,, which is then converted into water and
molecular oxygen by reduction by GSH-Px, in conjunc-
tion with the conversion of glutathione into glutathione
disulfide, and separately by CAT.

The study of evolution of the volatile hydrocarbon ethane
was suggested as a means to detect and monitor levels of
lipid peroxidation following the finding that homoge-
nates of mouse brain gave off ethane gas during the proc-
ess of cerebral lipid peroxidation (measured by the
formation of malonaldehyde in the 2-thiobarbituric acid
reaction) [8]. The time courses of lipid peroxidation and
ethane evolution both proceeded essentially linearly from
zero in the brain homogenates, with no time lag between
the two. The addition of a-tocopherol, a free radical-trap-
ping agent which blocks lipid peroxidation [9-11], at
baseline completely prevented ethane formation, but if
added instead after two hours, by which time lipid perox-
idation had occurred, did not have a major effect on the
subsequent formation of ethane. Further in vitro studies
have shown that ethane is released specifically following
peroxidation of n-3 (and not n-6) PUFAs, a class which
includes the long-chain PUFAs eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) [12,13]. Cell cul-
ture investigations support the hypothesis that ethane is
an accurate indicator of n-3 fatty acid oxidation [14,15],
while in a rodent study of the effects of dietary fatty acid
intervention, it was reported that after being fed n-3 long-
chain PUFA-rich cod liver oil, there was a linear increase
in exhaled ethane over a period of three hours, compared

http://www.biomedcentral.com/1471-244X/8/S1/S2

with no increase in the exhalation of ethane in rats fed a
low n-3 long-chain PUFA diet [16]. Therefore, measure-
ment of exhaled ethane has been put forward as a putative
measure of n-3 PUFA peroxidation in humans, particu-
larly in the brain, for example in children suffering from
attention-deficit hyperactivity disorder [17]. However, to
date there have been no in vivo humans studies demon-
strating that exhaled ethane is indeed a biomarker of cer-
ebral n-3 PUFA peroxidation.

In attempting to provide such evidence, two aspects need
to be addressed. First, a cohort of human subjects is
required in whom there is increased cerebral n-3 PUFA
peroxidation. Second, a known non-invasive method
must be found which indexes the breakdown of cerebral
n-3 PUFAs, so that its results can be directly compared
with exhaled ethane levels. We examine each issue in turn.

It is clearly unethical to promote free radical damage, and
therefore increased cerebral lipid peroxidation, in a cohort
of human subjects. However, there are several converging
lines of evidence pointing to free radical-mediated dam-
age and perturbation of the body's defences against such
damage in patients with the brain disorder schizophrenia.
Erythrocyte antioxidant enzyme activity has been reported
to be altered in chronic schizophrenia [18], with, in gen-
eral, raised SOD activity [19-22], low or normal GSH-Px
activity [21-23], and low CAT activity [22,24], which indi-
cate decreased protection against oxidative injury, which
could lead to membrane lipid peroxidation [18]. Finally,
raised levels of membrane lipid peroxidation products
have also been reported in schizophrenia, in both plasma
[18,25,26] and cerebrospinal fluid [27,28]. Therefore it is
appropriate to study a cohort of chronic medicated schiz-
ophrenia patients.

The remaining issue in investigating cerebral n-3 PUFA
peroxidation in humans is to choose an appropriate non-
invasive technique with which to compare the results of
exhaled ethane levels in this patient group. If the source of
ethane from the brain is n-3 PUFA peroxidation, then this
must primarily be of DHA attached to the sn-2 position of
neuronal and glial cell membrane phospholipids, and of
intracellular organelle membrane phospholipids. Break-
down of such membrane phospholipids would release the
phosphorylated polar head groups from the sn-3 phos-
pholipid position, including phosphorylcholine and
phosphorylethanolamine. Glycerophosphorylcholine
and glycerophosphorylethanolamine, which are on their
catabolic pathways [29], have been assigned to the phos-
phodiester (PDE) peak obtained from the non-invasive
technique of 31-phosphorus nuclear magnetic resonance
[30]. In a canine 31-phosphorus nuclear magnetic reso-
nance study of the brain, the PDE peak was found to
account for approximately 38 per cent of the overall sig-
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nal; the figure for humans is the same [31]. A further anal-
ysis of the 31-phosphorus spectrum of a deproteinized
methanol:HCI canine brain extract carried out at 144
MHz showed three resonances in the PDE region, at -0.9,
-0.8, and 0.14 ppm: the resonance at -0.8 ppm had a pK,
of 9.5, which is characteristic of the ethanolamine moiety,
and coresonated and comigrated with glycerophospho-
rylethanolamine; the resonance at 0.14 ppm was not
titratable and coresonated with glycerophosphorylcho-
line; the resonance at -0.9 ppm disappeared when the pH
was lowered to 8.5 [31].

Therefore the technique we chose was 31-phosphorus
neurospectroscopy, with the aim of testing the hypothesis
that the ethane levels in alveolar air from chronic medi-
cated schizophrenia patients correlate positively with the
PDE signal from the same subjects.

Methods

Subjects

Eight male patients with a diagnosis of schizophrenia
according to DSM-IV-TR [32] and aged between 28 and 61
years (mean age 41.1 years, standard deviation 10.8 years)
were studied. All the patients suffered from chronic schiz-
ophrenia and were being treated with antipsychotic med-
ication. The study was carried out according to the
Declaration of Helsinki. The patients gave written
informed consent. The study was approved by the local
research ethics committee.

Exhalant analysis

Each subject was asked to exhale through a disposable
sterile mouthpiece into a syringe (Markes International
Ltd., UK) in one long breath, until they were no longer
able to exhale any further. This enabled alveolar (end
expired) air to be collected from the lungs. The apparatus
was designed in such a way that the same volume of end-
expired air was collected from each patient. The air sample
was then injected into an automated thermal desorption
tube packed with carbotrap 300 (Perkin-Elmer, UK) via a
sodium sulfate drying cartridge (International Sorbent
Technology, UK). The air samples were analyzed using a
Perkin-Elmer autosystem XL equipped with a turbo mass
spectrometer. The automated thermal desorption tubes
were desorbed onto the cold trap at 320°C, with the cold
trap temperature being held at 5°C. The trap was then rap-
idly heated to 350°C and the liberated volatiles injected
onto a 30 m x 0.32 mm PLOT GQ column (Perkin-Elmer,
UK) with helium gas at 2 ml min'!. The oven was set at
45°C for 10 min and ramped at 14°C min-! to 200°C at
which temperature it was held for 120 s. Ethane (C,H)
was eluted at 2.6 min and identified and quantified by
mass spectrometry at an m/z value of 30 by comparison
with a standard curve (0-60 pmol) constructed from a
C1-C6 alkane standard mix (Supelco, UK).
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For the ethane assay, variability and stability data were
obtained using a group of 10 controls tested five days in a
row with five tubes per test day. Inter-assay variability (as
(standard deviation)/mean x 100%) was 17% and intra-
assay variability was 10%. The method used was thermal
desorption which is a very good way of collecting and
immobilizing gases. The gas levels can reduce on the tube
owing to chemical instability and simple desorption and
diffusion. For the former ethane is a chemically stable
molecule but desorption can occur. This was tested by
introducing standards in air onto the tubes and testing at
various times thereafter. It was found that after one week
tubes retained 97% ethane, while retention was 95% after
two weeks, and 90% after one month. Therefore the level
diminishes over time, but slowly. Our samples were ana-
lyzed within one week of collection.

In vivo spectroscopy

Cerebral 31-phosphorus magnetic resonance spectros-
copy data were obtained using a 1.5 T Marconi Eclipse sys-
tem (Marconi Medical Systems, Cleveland, Ohio) with a
birdcage quadrature head coil dual-tuned to proton (!H,
64 MHz) and 3!P (26 MHz). T,-weighted magnetic reso-
nance images were acquired for spectral localization.
Spectra were obtained using an image-selected in vivo
spectroscopy sequence (ISIS) with a repetition time of 10
s with 64 signal averages localized on a 70 x 70 x 70 mm3
voxel. Owing to the low abundance of 31P compared with
IH, the maximum size voxel was used to collect signal
from the brain and thus maximize the signal-to-noise
ratio.

All spectral analyses were carried out by a single observer
(GH). The seven sets of peaks characteristically identifia-
ble in the spectrum from a normal human brain were
identified: in order of decreasing chemical shift, these
peaks were assigned to phosphomonoesters, inorganic
phosphate, phosphodiesters, phosphocreatine and
gamma-, alpha- and beta-nucleotide triphosphate. The
quantification of the 3!P signals using prior knowledge
was carried out in the time domain using the AMARES
algorithm [33] included in the MRUI software program
[34]. The first 1.92 ms of the signal was truncated to
remove the broad component present in the 31P spectra
and allow initial analysis of the narrow components listed
above using a priori knowledge in the AMARES algorithm
[35,36]. For each patient, the ratio of PDE to the total area
under all seven sets of peaks was calculated and then mul-
tiplied by 100 to give the percentage PDE.

Statistical analyses
Statistical analyses were carried out using the SPSS version
12 statistics program (SPSS Inc., Chicago).
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Results

Since the percentage PDE values showed a marked devia-
tion from gaussian expected values on a normal Q-Q plot,
and gave a Kolmogorov-Smirnov statistic of 0.37, corre-
sponding to a significant deviation from normality (df =
8, p < 0.05), a non-parametric measure of correlation was
calculated between ethane levels and the corresponding
percentage PDE values. These two variables showed a sig-
nificant positive correlation (r, = 0.714, p < 0.05). The
data, together with the straight line of best fit and its 95
per cent confidence interval, are shown in Figure 1.

Discussion

In this first study of this type, we have found evidence of
a positive correlation between levels of ethane in expired
alveolar breath in human subjects and cerebral levels of
phosphodiesters, which lends support to our hypothesis.
The correlation coefficient between the two variables is
high, at over 0.7. We would not expect a perfect correla-
tion, since the long-chain PUFA at the sn-2 position of
membrane phospholipids is not always DHA, but often
arachidonic acid; ethane is not a catabolic metabolite of
arachidonic acid. Furthermore, while either choline or
ethanolamine, both of which are indexed by the PDE
spectroscopy peak, often constitutes the polar head group
at the sn-3 position of membrane phospholipids, this
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Levels of ethane (in ppb) in the expired breath of patients
with schizophrenia plotted against their cerebral percentage
PDE values, together with the straight line of best fit. The 95
per cent confidence interval for this regression line is also
shown.

http://www.biomedcentral.com/1471-244X/8/S1/S2

head group may also be inositol or serine, neither of
which is known to be indexed by PDE. This might also
explain why there is a negative intercept value on the ordi-
nate in Fig. 1 at a percentage PDE value of zero; another
contribution to this is likely to be experimental statistical
error. Interestingly, if our hypothesis were true, then we
might expect the regression line of best fit to pass through
the origin. A reanalysis with this value leads to an even
more significant and positive correlation (r, = 0.8, p <
0.01), with a majority of the experimentally determined
data points continuing to lie within the 95 per cent confi-
dence interval of the mean.

From a practical viewpoint, when studying human cere-
bral n-3 PUFA catabolism, it would clearly be more con-
venient, if possible, to measure ethane in expired breath
than to determine the level of PDE. Taking a breath sam-
ple is quicker, easier and cheaper than carrying out 31-
phosphorus neurospectroscopy. Moreover, magnetic res-
onance scanning is contraindicated in certain subjects, for
example because of claustrophobia or safety reasons relat-
ing to the presence of certain types of implants. Further-
more, there are some patients who find it difficult to stay
still for long enough to acquire meaningful data in a mag-
netic resonance scanner. An example is children with
attention-deficit hyperactivity disorder. The prediction by
the fatty acid model of attention-deficit hyperactivity dis-
order [37] that there might be an increase in cerebral
phospholipid breakdown in this disorder was difficult to
test directly using magnetic resonance spectroscopy, but a
breath test investigation did indeed demonstrate raised
levels of ethane in such children [17].

Conclusion

The evidence from our study would appear to be consist-
ent with the hypothesis that exhaled ethane levels index
cerebral n-3 polyunsaturated fatty acid peroxidation,
although further studies are required.
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