
RESEARCH ARTICLE Open Access

Simulation studies of age-specific lifetime major
depression prevalence
Scott B Patten1*, Lee Gordon-Brown2, Graham Meadows3

Abstract

Background: The lifetime prevalence (LTP) of Major Depressive Disorder (MDD) is the proportion of a population
having met criteria for MDD during their life up to the time of assessment. Expectation holds that LTP should
increase with age, but this has not usually been observed. Instead, LTP typically increases in the teenage years and
twenties, stabilizes in adulthood and then begins to decline in middle age. Proposed explanations for this pattern
include: a cohort effect (increasing incidence in more recent birth cohorts), recall failure and/or differential
mortality. Declining age-specific incidence may also play a role.

Methods: We used a simulation model to explore patterns of incidence, recall and mortality in relation to the
observed pattern of LTP. Lifetime prevalence estimates from the 2002 Canadian Community Health Survey, Mental
Health and Wellbeing (CCHS 1.2) were used for model validation and calibration.

Results: Incidence rates predicting realistic values for LTP in the 15-24 year age group (where mortality is unlikely
to substantially influence prevalence) lead to excessive LTP later in life, given reasonable assumptions about
mortality and recall failure. This suggests that (in the absence of cohort effects) incidence rates decline with age.
Differential mortality may make a contribution to the prevalence pattern, but only in older age categories. Cohort
effects can explain the observed pattern, but only if recent birth cohorts have a much higher (approximately 10-
fold greater) risk and if incidence has increased with successive birth cohorts over the past 60-70 years.

Conclusions: The pattern of lifetime prevalence observed in cross-sectional epidemiologic studies seems most
plausibly explained by incidence that declines with age and where some respondents fail to recall past episodes.
A cohort effect is not a necessary interpretation of the observed pattern of age-specific lifetime prevalence.

Background
Psychiatric epidemiology is a relatively young discipline.
A broad consensus on diagnostic definitions and asso-
ciated approaches to measurement did not emerge until
the 1980s with the publication of DSM-III [1]. In turn,
DSM-III stimulated the development of fully structured
diagnostic instruments, starting with the Diagnostic
Interview Schedule (DIS) [2,3] and later the Composite
International Diagnostic Interview (CIDI) [4,5]. The CIDI
has continued to undergo modification and refinement
[6], including adaptation for DSM-IV [7] diagnoses. A
feature of both the DIS and the current version of the
CIDI is a focus on lifetime prevalence (LTP): the propor-
tion of a population that has met diagnostic criteria for a

mental disorder during their life up to the time of
assessment.
Despite the emphasis on LTP during the past three dec-

ades, some basic questions about this parameter remain
unanswered. One of the most problematic issues concerns
the age-specific pattern of LTP for Major Depressive
Disorder (MDD). MDD is irreversible by definition and
expectation holds that LTP should increase with age.
However, this pattern has not usually been observed.
Instead, LTP has tended in most studies to increase during
young adulthood, remain stable to early middle age, and to
decline subsequently. Figure 1 presents the pattern of age-
specific lifetime prevalence in men and women according
to the Canadian Community Health Survey, Mental
Health and Wellbeing (CCHS 1.2), which was conducted
in 2002 [8].
There are several possible explanations for the

observed pattern. A widely discussed possibility is that of
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a cohort effect: incidence may be increasing in more
recent birth cohorts, leading to greater LTP in younger
age groups. If this interpretation is correct, the decline in
lifetime prevalence seen in older age groups is real, and
future decades will be characterized by increasing preva-
lence in these groups as high-risk birth cohorts become
older. The predicted secular trend is relevant to health
service planning. Alternative explanations derive from
the possibility of bias. Instruments that assess lifetime
prevalence must rely on retrospective accounts of specific
symptoms, their duration and severity. Existing instru-
ments may not be able to accurately assess these aspects
of respondents’ personal histories. For example, Andrews
et al. reported that the CIDI failed to detect prior epi-
sodes in up to 50% of cases 25 years after hospitalization
for depression [9]. Failure to recall past symptoms may
lead to LTP estimates that are biased downwards, a type
of recall bias. An elevated rate of mortality in people with
MDD could also theoretically lead to declining LTP in
older age groups. The effect of MDD on mortality
appears to be a modest one, however, with a relative risk
of approximately 1.4 [10].

A series of “cradle to grave” cohort studies conducted
in a succession of birth cohorts could unambiguously
determine the origin of the observed LTP pattern. Such
studies could theoretically avoid recall bias by avoiding
the need for retrospective assessment. Such studies
could also directly assess the impact of mortality on the
age-specific estimates. However, such a series of cohort
studies may not be practically feasible to conduct. Pro-
blems with the feasibility of “real world” studies provides
a justification for the use of simulation techniques to
examine these issues. The problem was first addressed
using simulation in the 1990s by Giuffra and Risch [11]
in a simulation study exploring the possible impact of
recall bias on LTP. The modelling results reported by
these authors confirmed that modest rates of “forget-
ting” (1% to 5% per year) could account for the emer-
gence of cohort-like effects in Kaplan-Meier life tables.
However, the Giuffra and Risch study was based on
assumptions about incidence drawn from pre-DSM-III
cohort studies. Some of these assumptions are inconsis-
tent with more recent evidence. For example, 0.005 was
used as an estimated annual risk in 16 to 20 year-olds,
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Figure 1 Lifetime prevalence of major depression in the Canadian Community Health Survey 1.2, Mental Health and Wellbeing (error
bars represent 95% confidence intervals).
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an estimate much lower than subsequent ones [12].
Also, these authors did not explore the possible impact
of mortality in their simulations. A more recent simula-
tion study based on 12-month prevalence data from
Australia and the Netherlands found evidence of recall
bias because projected LTP based on past month and
past year data were much higher than reported LTP
estimates [13]. This simulation study incorporated plau-
sible values for mortality in its representation of the
epidemiology.
The epidemiologic dynamics of MDD involve new

onset cases (incidence) and removal of cases from the
prevalence pool through mortality. Simulation involves
developing a representation of this underlying “system.”
The use of simulation in this context is an appealing
option because the underlying system is inherently sim-
ple. A widely used approach to simulation modeling,
discrete event simulation, can represent a system of this
sort by representing people as model entities. In discrete
event simulation, entities can possess attributes (vari-
ables attached to those entities), allowing the depiction
of different health states including age and prevalence.
In the current project, our goal was to (1) represent

the epidemiology of MDD using a simulation model and
(2) to explore the impact of changes to various input
parameters on simulated patterns of age-specific LTP.
While it is recognized that simulation cannot definitively
disentangle the various potential explanations, the
approach is useful because it can describe how various
explanations may or may not fit together to produce
observed patterns of LTP. As such, our goal was to
identify whether the observed pattern of LTP can more
or less plausibly result from various sets of assumptions
concerning incidence, age effects and cohort effects.

Methods
Design of the Simulation Model
The model was an incidence-prevalence-mortality model
in which age-specific LTP was represented as an out-
come of age-specific incidence, age-specific mortality
and a relative risk for mortality. A model of this type
can support an assessment of age and cohort effects as
incidence can be depicted as changing with age (age
effect) or with time at birth (a cohort effect). A repre-
sentation of excessive mortality risk was included in the
model using a mortality ratio (MR): the ratio of death
rates in those with MDD to those of the general popula-
tion. The latter rates derived from vital statistics data.
Discrete event simulation was used for the modeling,
which was implemented in the software Arena, version
10 [14]. The simulation included a set of entities, repre-
senting people, each of whom were characterized by
attributes reflecting their age, disease status and mortal-

ity status. We also incorporated a representation of
recall bias into the model by allowing the lifetime preva-
lent cases to make a transition to a false negative state.
False negative measurement status was also represented
using an attribute. A more detailed description of the
model is presented below.

a. Birth rate and age. Entities entered the simulation
from a “create” module [14]. The time between
entries was represented using an exponential distribu-
tion deriving from an arbitrary birth rate. This birth
rate determines the size of the simulated population
in its steady state condition but did not influence the
simulated prevalence estimates. A simulated date of
birth was recorded as an attribute for each entity
using time on the simulation clock when the entity
was created. Another attribute, the entity’s age, was
calculated as time on the simulation clock minus the
entity’s birth date.
b. Age-specific mortality. Age and sex-specific mor-
tality statistics are available in Canada from the
national statistical agency, Statistics Canada (http://
www.statcan.gc.ca). An age of death was simulated
for each entity by subjecting them to a mortality
rate from the latest available national estimates for
each year of their life [15]. Because mortality rates
were available for five year age groups, entities were
subjected to the relevant age and sex-specific mortal-
ity rates (using a series of “decide” modules). If they
survived for five years, the entities moved to another
age category where they were subjected to the next
set of rates for the next five years and so on. Because
a birth date was recorded as an attribute for each
entity, the date of death could also be calculated and
assigned (as an attribute) by adding the simulated
duration of life to the birth date.
c. Age-specific incidence. After assignment of a date
and age of death, the onset of disease was simulated
in a similar manner. During each simulated year of
life after age 15, each entity was exposed to a risk of
new onset MDD. As MDD incidence in Canada may
decline with age [16,17] the model was provided
with flexibility to reflect this. The probability of inci-
dent MDD was depicted using two parameters, an
initial risk (C) that would apply at the time of entry
into the population at risk (which was assumed to
be age 15 and the incidence was set at zero prior to
this age) and another parameter (r) representing the
extent to which the incidence declined as a function
of age in years over the age of 15 (y), according to
the following equation:

Incidence y Ce ry( ) = −
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In order to represent distinct incidence in women
and men, separate C and r parameters were used.
With r set to zero, the incidence remains unchanged
with age. An attribute was attached to each entity
for the purpose of representing LTP. At birth the
value of this attribute was set to zero. When an inci-
dence of major depression occurred, this attribute
value changed to one. If the simulated age of death
occurred before the simulated age of onset of a dis-
order, the entity was considered to have remained
free of MDD. It should be noted that the representa-
tion of incidence is monotonic, which is consistent
with Canadian epidemiologic data. A more complex
function would be required to represent complexities
such as a potentially increased incidence in elderly
age categories.
d. Age-specific lifetime prevalence. Entities in the
model occupied a set of queues representing five
year age groups (an exception being the first five
years following birth, which was depicted using two
separate queues since mortality is reported sepa-
rately for the first year of life and for years 1-4 in
Statistics Canada mortality tables). Arena can track
the number of entities in a queue having a specified
attribute. To represent age-specific LTP, the number
of entities in an age group’s queue possessing the
attribute representing LTP was divided by the total
number in the queue. These age-specific queues
were made sex-specific, so that the model could
simulate age and sex specific LTP (sex was also
represented by an attribute attached to each entity
at the time of birth). The model was run through a
warm-up period in order to attain a steady state
LTP. The simulation clock used days as a base-mea-
sure and the simulations were run for 100,000 days
(approximately 274 years) in order to ensure that a
steady state was reached. In reality, simulated LTP
changed little when the simulations were run for
long enough to replace the entire population. How-
ever, in simulations of cohort effects relevant to
elderly age groups (e.g. cohorts born ninety years
prior to the end of a simulation run) it was consid-
ered essential that the model be in steady state prior
to these simulated births. For simplicity, all of the
simulations used a 100,000 day simulation interval
in order avoid a need to change the simulation inter-
val for different simulations. An entity that survived
a particular five year age interval moved to a queue
representing the subsequent age group. Those that
did not survive were removed from the model using
a “dispose” module, leaving the queue at the simu-
lated date of death.
e. Transition to false negative status. At the time of
movement from one queue to the next, in other

words at five year intervals, each entity was sub-
jected to a probability of transition to false negative
diagnostic status. False negative diagnostic status for
an entity was represented using another attribute.
The risk of transition to false negative status was a
variable in the model, so that the effects of different
false negative rates on “apparent” LTP (i.e. cases that
would be detected despite false negative ratings
using a diagnostic instrument) and actual LTP could
be measured. Apparent and actual LPT were calcu-
lated using the same denominator (the number of
entities in the queue), but with the false negative
cases only being included in the actual LTP category.
f. Mortality ratio: When an entity developed MDD,
their subsequent mortality was simulated using a
model parameter that represented the elevated risk
of mortality associated with MDD. This parameter, a
mortality ratio (MR), was the ratio of age-specific
death rates in lifetime depressed respondents divided
by those in the general population. For example, if
the MR was set at 2.0, then the mortality risk in any
age group with MDD after the onset of the disorder
would be twice that of the general population in that
age group. After age-specific mortality rates for the
LTP positive entities were calculated a date of mor-
tality (and related attributes) was then re-simulated
for these entities.
g. Cohort effects: Simulation effects were repre-
sented by altering model parameters for sets of enti-
ties created (i.e. “born”) during specified time
intervals as the simulation was running. For exam-
ple, entities created 90 to 75 years prior to the end
of a simulation comprised a birth cohort that was
between 75 and 90 years old when the simulation
run was over. Using this cohort as a baseline, relative
risks were used to represent higher incidence in later
birth cohorts.

An animation was developed for the model using the
Arena 3D Player [14]. The various queues were depicted
in the animation as a traditional “population pyramid”
although, since the mortality rates in the model derived
from a developed country, the shape was more cylindri-
cal than pyramidal. Sex was depicted in the animation
using different entity symbols for men and women, and
LTP was depicted using a red colour for symbol repre-
senting the entity. False negative status was depicted
using a yellow colour coding, see Figure 2.

Validation of the Model
In order to be considered a valid representation of MDD
epidemiology, it was necessary that the simulation
model depict a pattern of LTP consistent with theoreti-
cal expectation. This included an expectation that: (1)
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LTP should increase with age (in any realistic scenario
where C is greater than zero) so long as r was zero
(incidence is constant with age), the relative risk of mor-
tality is 1.0 (MDD does not influence mortality) and the
false negative measurement risks are zero. (2) LTP
should cease to increase at some age when r is large
since age-specific incidence will eventually approach
zero in this scenario, but so long as the relative risk of
death and false negative measurement are unchanged
the LTP should not decrease with age. (3) An increased
relative risk for mortality or a sufficiently high false
negative rate would both result in declining age-specific
lifetime prevalence.

Calibration of the Model
The Arena software includes an automated utility, called
OptQuest, that can expedite the identification of sets of
parameters achieving specified objectives. OptQuest
runs a series of simulations while varying specified input
parameters and seeking to find combinations of these
input parameters that most closely reflect specified
objectives. After validation, OptQuest was used to cali-
brate the simulation model under various sets of
assumptions using the CCHS 1.2 estimates presented in
Figure 1, above. A variable representing the sum of
squares of simulated minus observed LTP (from the
CCHS) summed separately for men and women across
all of the age categories was used to identify values for
the C parameter, r, the MR, and the false negative rate

leading to simulated LTP pattern most closely resem-
bling the observed pattern of age and sex-specific LTP.
The simulated output representing apparent lifetime
prevalence was used (ie. false negative diagnostic ratings
were not counted in the denominator of the prevalence
proportion) in these calibrations since the CCHS 1.2
data are subject to recall failure. In simulations explor-
ing the ability of cohort effects to account for the
observed pattern of LTP, the r parameters were set to
zero, as was the probability of a false negative rating.
This allowed OptQuest to identify the set of birth-
cohort-specific relative risks that would best explain the
observed pattern of LTP.

Presentation of the Simulations
A simulation model consists of a series of statements
about probabilities and is therefore akin to a set of popula-
tion values, whereas the results of any particular simula-
tion represent random variables arising from the model.
As such, any particular simulation is subject to random
error. For this reason, a set of n = 1000 simulations were
run for most of the scenarios presented, and a 95% confi-
dence interval based on the t-distribution is presented
along with the simulation output for some of the simula-
tions (Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7,
below), as recommended by Law [18]. An animation of
the working simulation may be found here [19]. The ani-
mation runs at 864,000 times real time, so that ten days of
simulation time pass by in 1 second of real time.

Figure 2 Layout for animations of model simulations.
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Figure 3 Simulated age-specific LTP: constant incidence, no false negatives, no effect of depression on mortality. C = 0.01, r = 0, false
negative rate = 0, MR = 1, error bars represent 95% CIs.
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Figure 4 Simulated age-specific LTP: declining incidence with age, no false negatives, no effect of depression on mortality. C = 0.01, r
= 0.05, false negative rate = 0, MR = 1, error bars represent 95% CIs
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Figure 5 Simulated age-specific LTP: declining incidence with age, 15% false negatives after 5 years, no effect of depression on
mortality. C = 0.01, r = 0.05, false negative rate 15% per 5 years, no effect of depression on mortality, error bars represent 95% CIs. One set of
simulated values represents the actual lifetime prevalence, the other the apparent lifetime prevalence in which false negative results are not
counted in the numerator of the prevalence proportion.
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Figure 6 Simulated age-specific LTP: effect of mortality with incidence that declines with age. The dark line represents a strong effect of
mortality (MR = 2.0) in the absence of false negative ratings and declining incidence: C = 0.01, r = 0, false negative rate = 0. The lighter line
represents a more realistic effect of mortality (MR = 1.4) in the absence of false negative ratings and declining incidence: C = 0.01, r = 0, false
negative rate = 0. The error bars represent 95% CIs.
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Results
Validation of the Model
As noted above, three scenarios in which the pattern of
age-specific LTP could be predicted based on epidemio-
logic theory were explored for purposes of validation.
Figure 3 presents simulated LTP with the C parameter
for incidence set at 0.01 (1% per year), the MR set to
one and the false negative risk set to zero. As expected,
the lifetime prevalence increases with age. Figure 4
depicts simulated lifetime prevalence under the same set
of assumptions but with the r parameter set to 0.05,
depicting a 5% decline in incidence per year of age after
age 15. As expected, the simulated lifetime prevalence
fails to increase after several decades as the incidence
becomes very small with increasing age but, consistent
with expectation, LTP does not decrease. Figure 5
depicts the addition of a false negative risk of 15% per
five year period (approximately 3% per year) in addition
to the features of the second scenario (Figure 4). Includ-
ing a false negative risk > 0 leads to deviation of actual
from apparent LTP, both of which are depicted in the
Figure. “Apparent” LTP does not include the false nega-
tive results in the numerator of the prevalence propor-
tion, which produces an apparent decline in age-specific
LTP. However, the actual LTP continues to increase
and is identical to that depicted in Figure 4. While

Figure 5 demonstrates that false negative diagnostic rat-
ings can lead to an apparent decline in age-specific LTP
when incidence declines with age, differential mortality
is another possible explanation for this pattern. In the
simulations depicted in Figure 6, the r parameter has
been set to zero so that incidence does not decline with
age and the rate of false negative ratings has also been
set to zero. The Figure presents two simulations, one in
which the MR is set to 1.4, consistent with existing lit-
erature, and one in which the MR is set to 2.0 (a value
likely to be too high). Comparison of Figure 3 to Figure
6 confirms that differential mortality can affect age-spe-
cific LTP, but the effect tends to be evident only in
elderly age groups. Combining the declining incidence
depicted in Figure 4 with a MR of 1.4 leads to a lower
LTP value and an earlier age for maximum LTP, see
Figure 7, but the peak prevalence continues to occur at
an older age group than has been reported by epidemio-
logic studies.

Optimization
As the results presented above are consistent with theory
and support the validity of the model, OptQuest was
used to calibrate the various parameters as described
above. The overall MR was set at the realistic level of 1.4
[10] prior to the optimization. The high LTP in women
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Figure 7 Simulated age-specific LTP: effect of mortality with incidence that declines with age. The dark line depicts constant incidence C =
0.01 that declines with age (r = 0.05) and there are no false negative ratings. This is the same simulation depicted in Figure 4 and is presented here
for comparison to the lighter line, which represents a simulation based on the same assumptions except that MR is 1.4.
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in the youngest age group meant that a better fitting
model could be achieved by allowing the baseline LTP in
women at age 15 to be approximately 5% rather than
starting at zero. OptQuest identified comparable C para-
meters for women than for men (0.020 compared to
0.015). In women, r was 0.084 compared to 0.034 in men.
The sex-specific MR was 1.2 in women and 1.7 in men.
Finally, the false negative rate was 0.10 in women
(approximately 2% per year) and 0.23 (approximately 5%
per year) in men. The optimization results suggest that
the error rate in assessment of LTP may be higher in
men than in women, consistent with previous reports
indicating that the diagnosis of LTP is less reliable in
men than women [20]. Figure 8 presents the observed
and simulated values for LTP for women using these
parameter values and Figure 9 represents the observed
and simulated values for men. While the simulation
model presented here was calibrated using a particular
set of epidemiologic estimates (which were considered
subject to false negative misclassification of diagnosis), it
is also of some interest that the model output includes
the actual lifetime prevalence. For this reason, Figure 8
and Figure 9 also show simulated age-specific LTP under
the optimized values for the input parameters. The actual
LTP proportions depicted are much greater than most
published LTP estimates, but resemble estimates arising

from previous simulation studies in women [13]. A pre-
diction of the models depicted in Figure 8 and Figure 9 is
that the actual lifetime prevalence in men and women
may actually be comparable after about age 40, although
apparent LTP continues to be higher in women. How-
ever, if the model is constrained to include a single false
negative rate for men and women the optimized value is
approximately 0.14 over 5 years (approximately 3% per
year), and the simulated actual LTP peaks in the range of
30% for women and 20% for men, see Figure 10.
Different combinations of model parameters can lead to

similar patterns of simulated age-specific LTP. Figure 11 is
a contour plot showing the sum of squares of differences
between CCHS 1.2 and simulated LTP values at various
combinations of values for these parameters and with the
C parameter held constant at 0.012. The magnitude of the
sum of squared differences is depicted on the vertical axis
in relation to the false negative rate and rate of decline in
incidence with increasing age on the horizontal axes. The
lowest “altitude” on the vertical axes (depicted using the
colour blue in the contour plot) represents a set of combi-
nations of these two variables that minimize the sum of
squares value. The plot shows a diagonal band in the blue
contour, indicating that in circumstances of more rapidly
declining incidence lower rates of false negative measure-
ment are needed to accurately represent the CCHS 1.2
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Figure 8 Simulated age-specific LTP in women: model parameters optimized to CCHS 1.2 data. C = 0.13, r = 0.08, MR = 1.2, FNR = 0.10.
These parameter values derive from multiple simulations seeking to minimize the sum or squares of differences between simulated and
observed age and sex-specific LTP estimates. The r parameter represents a decline in incidence with age > 15 (an age effect).
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Figure 9 Simulated age-specific LTP in men: model parameters optimized to CCHS 1.2 data. C = 0.15, r = 0.03, MR = 1.7, FNR = 0.23.
These parameter values derive from multiple simulations seeking to minimize the sum or squares of differences between simulated and
observed age and sex-specific LTP estimates. The r parameter represents a decline in incidence with age > 15 (an age effect). The simulation
includes an adjustment that places the LTP at 5% at the low end of the age range (age 15).
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Figure 10 Simulated and observed LTP in men and women and estimated actual LTP for men and women, with model constrained to
a single value for the false negative rate. The false negative rate is constrained to a single value, which was optimized at 0.14 per five year
period, or approximately 3% per year.
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age-specific LTP estimates. With more slowly declining
age-specific incidence, higher false negative measurement
rates provide a better description of the observed pattern.
It is theoretically possible that incidence does not

decline with age, but that the false negative measure-
ment rate is in itself sufficiently high to account for the
observed pattern. In order to explore this possibility,
additional optimizations were used to identify estimates
for the input parameters, but setting the r parameter to
zero. This did not result in large changes to the C para-
meter or to the MR. In men, the optimized parameters
were found to be 0.014 and 1.52 respectively and in
women they were 0.028 and 1.68 respectively. The opti-
mized false negative rate was much higher than that
identified in optimizations allowing incidence to dimin-
ish with age: in men this was found to be 41% per five
years, or approximately 10% per year, whereas in
women it was 33% per five years, or approximately 8%
per year. These false negative rates seem excessively
high and would need to be associated with very high
actual LTP values in order to produce the observed
pattern. Figure 12 and Figure 13 show the optimized
simulations under this set of assumptions for: women
(Figure 12) and men (Figure 13).

Cohort Effects
The pattern of declining incidence with age employed in
the simulations reported above cannot be distinguished

from increasing incidence in more recent birth cohorts
based on the degree of fit with CCHS 1.2 data because
each annual birth cohort is represented by a single age
category in the cross-sectional CCHS 1.2 data. For this
reason, the simulations reported above essentially
assume that there are no cohort effects. A series of
simulations reported in the following section of this
paper assume constant age-specific incidence in order to
explore the impact of cohort effects.
As described above, OptQuest was used to identify

plausible values for relative risks associated with 10-year
birth cohort categories. The 75 years or older category
was treated as a baseline group for each relative risk
value, such that the relative risks represent the incidence
affecting more recent birth cohorts relative to those of
the 75+ age group. In these simulations, the r parameter
and the false negative rate were both set to zero, so that
changes in age-specific lifetime prevalence could be attri-
butable only to birth cohort effects. The relative risk esti-
mates identified by OptQuest are presented in Table 1.
The optimized simulation for cohort effects is pre-

sented in Figure 14 (women) and Figure 15 (men) show-
ing the simulated experience of each birth cohort. The
black line super-imposed on the plot is the LTP value for
each age cohort at a specific year (taken here to represent
the 2002 year of the CCHS 1.2 survey). For comparison, a
grey line showing the actual LTP estimates (from the
CCHS 1.2) is also presented on the Figures. Because the

Figure 11 Contour plot depicting model fit at various combinations of the false negative rate and r parameter. The vertical axis is the
sum of squared difference between observed age-specific LTP and simulated age-specific LTP. Lower elevation on the contour plot indicates a
better concordance between observed and simulated age-specific LTP. The blue region at the lowest contour tracks diagonally across the plane
at the base, indicating that higher r values provide a better fit when the false negative rate is low whereas lower r values provide a better fit
when the false negative rate is higher.
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Figure 13 Simulated age-specific LTP in men: model parameters optimized to CCHS 1.2 data under the assumption that incidence
does not decline with age. C = 0.14, r = 0.03, MR = 1.5, FNR = 0.40. These parameter values derive from multiple simulations seeking to
minimize the sum or squares of differences between simulated and observed age and sex-specific LTP estimates. The r parameter represents a
decline in incidence with age > 15 (an age effect).
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Figure 12 Simulated age-specific LTP in women: model parameters optimized to CCHS 1.2 data under the assumption that incidence
does not decline with age. C = 0.14, r = 0.08, MR = 1.7, FNR = 0.33. These parameter values derive from multiple simulations seeking to
minimize the sum or squares of differences between simulated and observed age and sex-specific LTP estimates.

Patten et al. BMC Psychiatry 2010, 10:85
http://www.biomedcentral.com/1471-244X/10/85

Page 12 of 16



representation of birth cohorts was made using 10-year
intervals and the age-specific LTP is simulated in 5-year
intervals, the dark line (representing age-specific cross-
sectional data), coincides with the experience of a parti-
cular birth cohort at two data points. The cohort effect
does produce the pattern of LTP seen in the epidemiolo-
gic data. The dramatic cohort effects that must underpin
this pattern are depicted by the light grey lines showing
the pattern of age-specific LTP identified by the birth
cohort relative risks in Table 1.
Table 1 indicates that a cohort effect is consistent with

the observed age-specific pattern of LTP under certain
circumstances. A cohort effect impacting only young
people is not consistent with the observed pattern,

instead, there must be a progressive increase in the rela-
tive risk associated with birth cohorts more recent than
1926. Also, the extent of the cohort effect must be very
strong if it is to explain the pattern. The relative risk in
the youngest birth cohort, corresponding to those aged
15-25 in the 2002 survey must have more than a 10-fold
greater increase in incidence relative to the baseline
group. This means that if the pattern of LTP is due
exclusively to a cohort effect, dramatic increases in pre-
valence will be seen in elderly age groups in upcoming
decades. On Figure 14 and Figure 15 moving from the
dark line up to the next light grey line shows the mod-
el’s projection of LPT after 10 years, moving up two of
the lines shows the projection for twenty years into the
future and so on. Women have a peak prevalence of
slightly less than 20% in the 45-55 year old age group,
which is projected to increase to 30-35% over the next
20 years under the assumption that the age-specific LTP
pattern is due to cohort effects. An animation depicting
the predicted age-specific LTP pattern over 60 years
given the cohort effect assumption may be found
here [21].

Discussion
The World Mental Health Surveys Initiative has recently
reported results for the first 17 of the (>30) countries
involved in the initiative [22]. While reported lifetime

Table 1 Relative risks by birth cohort identified by
OptQuest based on CCHS 1.2 data

Birth cohort Age in 2002* Relative Risk

Birth cohort after 1977 < 25 11.2

Birth cohort 1967 to 1976 25 to 34.9 6.4

Birth cohort 1957 to 1966 35 to 44.9 4.9

Birth cohort 1947 to 1956 45 to 54.9 5.3

Birth cohort 1937 to 1946 55 to 64.9 2.8

Birth cohort 1927 to 1936 65 to 74.9 1.7

Birth cohort before 1926 75 and older baseline

* year of the CCHS 1.2 survey.

Figure 14 Simulated age- and sex-specific LTP, by birth cohort in women. The light lines represent the projected age-specific LTP pattern
experienced by the birth cohorts assuming no change in incidence with age (r = 0) and no false negative ratings. The MR is set at 1.4 in these
simulations.
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prevalence varied considerably across countries, most
countries reported an age-specific pattern of LTP similar
to that seen in the CCHS 1.2, an increase in lifetime
prevalence among the youngest age categories followed
by a decline in older age groups. Cohort effects were the
preferred interpretation of this pattern by most authors
[22]. The simulation models presented here demonstrate
that the pattern of LTP can be explained by a combina-
tion of declining incidence with age and a modest false
negative rate in diagnostic assessment. While these
studies cannot confirm or deny the possibility of cohort
effects, they do illustrate that the cohort interpretation
is not necessary to explain the observed pattern.
Furthermore, an explanation based on a cohort effect
must involve two elements that have not previously
been identified: (1) the cohort effects must have had
their onset not with recent birth cohorts. Instead, the
increase in incidence by birth cohort must have been
going on since the time of birth of the eldest members
of the current population, (2) the cohort effect must be
very large in magnitude, with younger birth cohorts
being subject to incidence rates approximately 10 times
greater than those of earlier birth cohorts.
These results are of importance to health policy, since

a cohort effect on MDD prevalence would be of impor-
tance for public health. The cohort interpretation
implies that recent birth cohorts will cause a dramatic

increasing prevalence of MDD in successively older age
groups as these birth cohorts age during upcoming dec-
ades. On the other hand, the results of this simulation
study, and others [11,13] indicate that the observed pat-
tern may reflect several factors, including measurement
artefact.
The idea that the incidence of MDD declines with age

was built into the simulation model by inclusion of
a parameter reflecting a rate of decline in incidence with
increasing age. In the model, incidence that does not
decline with age is a special instance in which the r para-
meter is equal to zero. The decision to build the possibi-
lity of declining incidence into the model was based on
findings from a Canadian longitudinal study [16,17]. The
same pattern was also observed, however, in the Balti-
more follow-up component of the US Epidemiologic
Catchment Area studies [23] in men and to a lesser
extent in women. In that study the peak incidence for
women was in the 30-44 age group. Similarly, data from
the Netherlands Mental Health Survey and Incidence
Study (NEMESIS) indicated peak incidence in men in the
25-34 age group and the 35-44 age group in women [24].
However, each of these studies used LTP as an exclusion
criterion in their assessment of eligibility for first inci-
dence during baseline assessments. As a corollary of the
observation that recall failure probably occurs with this
type of measure, these ages of onset are almost certainly

Figure 15 Simulated age- and sex-specific LTP, by birth cohort in men. The light lines represent the projected age-specific LTP pattern
experienced by the birth cohorts assuming no change in incidence with age (r = 0) and no false negative ratings. The MR is set at 1.4 in these
simulations.
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biased upwards by misclassification of recurrence as first
incidence. These ideas are also consistent with studies of
MDD prevalence in adolescents and young adults that
have usually reported LTP estimates similar to those
reported for general population adult samples [25-27].
The possibility of false negative diagnostic assessment

was built into the simulation model. In the calibration
process, a value for this risk was selected based on the
pattern of LTP observed in the CCHS 1.2, and with simu-
lations incorporating what was considered to be a reason-
able level differential mortality. The values arrived at
appear realistic based on the published literature. The
Andrews et al. study of recall of earlier depressive epi-
sodes [9] took place over 25 years and found that
approximately half of the participants did not meet CIDI
criteria. Using the equation: cumulative risk over 25 years
= 1-(1-annualrisk)25 leads to a projection of 53% when
the annual risk is 3% which falls between the estimates
for men and women arising from this study.
Supporting evidence has also recently been reported

by Moffitt et al. using data from the Dunedin birth
cohort. These authors reported that members of this
cohort, followed prospectively to age 32, had an esti-
mated lifetime prevalence double that of retrospectively
ascertained lifetime prevalence (41.4% versus 18.5%)
[28]. This observation is consistent with the idea that
false negative measurement errors bias LTP estimates
from cross-sectional studies downwards.
What role can simulation play in understanding major

depression epidemiology? Simulation studies cannot defi-
nitively determine the extent to which cohort effects, mor-
tality effects or measurement bias determine the observed
pattern of age-specific LTP. However, by allowing “what
if” scenarios to be examined under various sets of assump-
tions they can support interpretation of the available esti-
mates. The simulations presented here indicate that
differential mortality probably makes only a minor contri-
bution to the observed pattern. Even an implausibly large
extent of differential mortality cannot account for the
decline in age-specific LTP that starts in middle age. If
incidence declines with age it follows that measurement
bias, at a level similar to that reported by previous studies,
can account for the observed pattern of age-specific LTP
without resorting to cohort effects as an explanation.
Cohort effects may contribute to the observed pattern, but
the magnitude of difference in incidence in different birth
cohorts would appear to make such effects unlikely candi-
dates as the sole factor for diminishing age-specific LTP.

Conclusions
The main implication of these results is that a cohort
effect is not the only plausible explanation for the
observed pattern of age-specific lifetime prevalence. Men-
tal health surveys that interpret their results as providing

evidence of cohort effects create an expectation that preva-
lence will increase dramatically in upcoming decades, par-
ticularly in older age groups. The results presented here
indicate that this interpretation may be premature and
that the projected increase may not occur.
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