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Abstract

Background: The care of traumatized children would benefit significantly from accurate predictive models for
Posttraumatic Stress Disorder (PTSD), using information available around the time of trauma. Machine Learning (ML)
computational methods have yielded strong results in recent applications across many diseases and data types, yet
they have not been previously applied to childhood PTSD. Since these methods have not been applied to this
complex and debilitating disorder, there is a great deal that remains to be learned about their application. The first
step is to prove the concept: Can ML methods – as applied in other fields – produce predictive classification
models for childhood PTSD? Additionally, we seek to determine if specific variables can be identified – from the
aforementioned predictive classification models - with putative causal relations to PTSD.

Methods: ML predictive classification methods – with causal discovery feature selection – were applied to a data
set of 163 children hospitalized with an injury and PTSD was determined three months after hospital discharge.
At the time of hospitalization, 105 risk factor variables were collected spanning a range of biopsychosocial domains.

Results: Seven percent of subjects had a high level of PTSD symptoms. A predictive classification model was
discovered with significant predictive accuracy. A predictive model constructed based on subsets of potentially causally
relevant features achieves similar predictivity compared to the best predictive model constructed with all variables.
Causal Discovery feature selection methods identified 58 variables of which 10 were identified as most stable.

Conclusions: In this first proof-of-concept application of ML methods to predict childhood Posttraumatic Stress we
were able to determine both predictive classification models for childhood PTSD and identify several causal variables.
This set of techniques has great potential for enhancing the methodological toolkit in the field and future studies
should seek to replicate, refine, and extend the results produced in this study.
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Background
More than 20% of children in the United States will
experience a traumatic event before they are 16 years
old [1, 2]. Of those who experienced a trauma, between
10 and 40% [3–5] will develop Posttraumatic Stress
Disorder (PTSD) [6], a disorder that results in significant
functional impairment and may have deleterious conse-
quences for brain development [7–9]. The early identifica-
tion of a child’s level of risk – and specific vulnerabilities
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– opens the possibility of preventative intervention
tailored to the child’s specific needs. Therefore, the ability
to predict risk for PTSD from the time of the trauma is
extremely important. Unfortunately, the extant research
literature has been unsuccessful in reliably identifying a
set of risk factors for PTSD common to all traumatized
children or specific sets of risk factors that may allow the
individualized treatment of a child based on their risk
[10, 11]. This limited progress in the field points to
the need to identify and apply new methods that
might provide improved ways to conduct research to-
wards the reliable and accurate identification of risk
factors for childhood PTSD.
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This article describes a study of risk for PTSD in acutely
traumatized children that – for the first time – employs
Machine Learning (ML) computational methods of in
order to determine if these methods can identify variable
sets and models that predict the development of PTSD.
As will be detailed, we believe ML may offer much
needed advantages for advancing the field of risk fac-
tor research for childhood PTSD because of its track
record for these purposes in other fields [12–26] and
its success in its first application to adult PTSD in
the pages of this journal [27].

The current state-of-the-science for child PTSD risk factor
research
Over the last twenty years, a sizeable literature on child-
hood PTSD risk factors has accumulated. Unfortunately,
the literature has not converged on a set of risk factors
that accurately identify risk or inform care. Meta-
analytic studies have concluded that many of these risk
and protective factors have small effect sizes for
traumatic stress, and the results on these effect sizes are
not consistent, between studies [10, 11]. Trickey and
colleagues published the most definitive meta-analysis to
date, examining 64 studies of risk factors for traumatic
stress in 32,238 children (aged 6–18 years) over a 20-
year period (1990–2009). Of note, only 25 risk factors
were examined, as these were the only ones reported in
more than one study and only six risk factors were
assessed in more than 10 studies. Ten risk factor vari-
ables showed medium to large effect sizes, but four of
these were only examined in two studies and three were
found to have inconsistent effect sizes across studies.
Only one risk factor was found to have a large effect size
in a large number of studies (post-trauma psychological
problem) [10].

The fit between the complexity of childhood PTSD and
the data analytic methods used to determine risk
A key observation relevant to our study is that from a
mathematical perspective, a risk factor is a variable that
conveys statistical information about the likelihood of
the phenotypic response of interest. The discovery of
accurate risk factors from data critically depends on the
choice of data analytic approach. A large literature on
feature selection methods developed and applied in
various fields over the last several decades shows that
different features (i.e., risk factors in our study) and
models using those features will be selected by different
data analysis methods. For a broad introduction to
modern feature selection see Guyon and Elisseeff [28].
Tsamardinos and Aliferis showed that there cannot be a
uniformly “best” feature selection method, and that
feature selection methods must be designed for specific
requirements [29]. For example if a maximally compact
risk factor set is desired among the sets that are maximally
predictive, a feature selector that discovers Markov
Boundaries has to be employed (more on this later in the
manuscript). This property of Markov Boundaries is in-
trinsic to the system under study and does not change by
the method a researcher chooses to study the system.
In the majority of traditional data analysis in psychiatry

and in PTSD research, including all of the 64 studies
described in the Trickey et al., risk factors are discovered
using either univariate association, or stepwise proce-
dures within various forms of the General Linear
Model (GLM) family of multivariate analysis methods
[30–32]. The GLM refers to a broad category of
established statistical models based on regression that
includes Analysis of Variance, Linear Regression,
Logistic Regression, and Poisson Regression among
other types of classical multivariate analysis. These
approaches, however, do not guarantee predictive op-
timality and do not guarantee parsimony in a data
analysis-independent manner. Very importantly, the
results are tied to the specific method used for ana-
lysis and are essentially an artifact of the analysis
method used and not an intrinsic property of the sys-
tem under study. In addition, robust understandings
of childhood PTSD, in all likelihood, involve the
influence of a great many variables from a diversity of
modalities (e.g. genomic, neurologic, physiologic,
social, developmental) and, most importantly, the
interaction between these variables. Traditional data
analytic methods (e.g., classical regression and sister
methods from the GLM family, but also clustering and de-
cision tree methods) impose considerable restrictions on
the number of variables that can be used in a given ana-
lysis and, especially, the analysis of interactions. Another,
major, problem with older methods concerns their limited
ability to shed light on causality when the data does not
come from randomized experimental designs. Experimen-
tal designs however are unethical in (non-animal) risk
factor research related to trauma (i.e. assigning a child to
a trauma exposure condition). It is for this reason
that all human risk factor research for childhood
PTSD is correlational. The essential correlational
nature of this research has considerable implications
for prevention. An identified risk factor can represent
a promising target of preventative intervention if –
and only if – it represents a cause of the
phenomenon it is thought to influence. ML computa-
tional techniques offer advantages for each of the
above limitations of older/classical data analytic
methods [33–36]. For example, the aforementioned
Markov Boundary feature selection methods will also
find the local causal neighborhood of the response
variable in most distributions [29, 37].
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Newer advances in data analysis contributed by the
field of Machine Learning greatly extend the researchers’
ability to make meaningful discoveries also by:

1. Enabling accurate and reliable prediction using data
with very large numbers of variables and small
sample sizes.

2. Avoiding the significant hurdles of estimating
accurate variable coefficients and of modeling the
data generating processes by directly building
accurate predictive classification models for
phenomena of interest and testing the reliability
and accuracy of these models without the need for
data-generative models and accurate coefficient
estimation.

3. Enabling causal inference within non-experimental
data sets.

The conceptual foundations for these algorithms are
based on thoroughly validated body of work exemplified
by the Nobel and Turing award winning work of
Herbert Simon, of Turing award winner Judea Pearl, and
of Nobel laureate Clive Granger, among other pioneers
of non-experimental causal discovery [38–42]. On a
purely empirical and practical level, research using ML
methods has met exceptional success in a wide range of
scientific and technological fields [34], and it is begin-
ning to penetrate the domain of clinical science, includ-
ing the fields of psychiatry and pediatrics. ML has
demonstrated utility in a variety of applications includ-
ing the accurate classification in pediatric disorders
such as epilepsy, asthma, heart disease, and head injury
[20–23]. Within psychiatry, ML has been successfully
used in the predictive classification of autism, atten-
tion deficit hyperactivity disorder, and schizophrenia
[24–26]. ML has recently been used to predict PTSD
in acutely traumatized adults [27, 43]. It has not yet
been used to predict PTSD in children or to identify
causal processes for PTSD, however. The possibility
of using ML to identify causal processes – initiated
shortly after exposure to trauma – has important im-
plications for prevention. The detection of such causal
processes may thus identify promising targets for pre-
ventative intervention.
The current study addresses two broad hypotheses:
Hypothesis 1: ML methods can identify an accurate

and reliable predictive classification
model for childhood PTSD, from
variables measured around the time of
trauma.

Hypothesis 2: ML methods can identify variables that
not only have predictive value for child-
hood PTSD, but can also identify those
with causal influence.
Methods
Data set
The research data set comprises information on 163
children aged 7–18 collected as part of a National Insti-
tute of Mental Health funded study (R01 MH063247) on
risk factors for PTSD in children hospitalized with injur-
ies. This study was funded in 2002 to gather information
– using the best methods available at that time – about
risk for PTSD from children hospitalized with injuries.
Thus variables originally selected for this study (and
now contained in this data set) include a broad range of
risk variables hypothesized (at the time) to predict the
development of PTSD. The basic study design is as
follows: injured children were assessed within hours or
days after their hospitalization and reassessed three
months following discharge. The data set includes 105
variables measured during the hospitalization that will
be considered as possible features for our predictive
model. These ‘feature’ variables belong to such domains
as childhood development, demographics, parent symp-
toms, stress, magnitude of injury, candidate genes, neu-
roendocrine and psychophysiologic response, and child
symptoms and functioning. The target variable is a
UCLA PTSD Reaction Index Score of 38 or greater, mea-
sured three months after hospital discharge. This cutoff
score is based on a high level of symptoms of PTSD and is
strongly related to a DSM IV diagnosis of PTSD [44]. Due
to space restrictions, we provide detailed information
about each of the variables in Additional file 1. The data
set can be found in Additional file 2.

ML methods for predictive classification of childhood PTSD
To test Hypothesis 1, we apply ML predictive classifi-
cation methods, as pictorially summarized in Fig. 1.
The analysis protocol simultaneously performs Model
Selection and Error Estimation. Model Selection
refers to examining which parameters of a given clas-
sifier are best for the data at hand. Error estimation
is the calculation of the expected predictivity of the
best model identified when this model will be applied
in data from the same population of subjects. The
protocol is called Repeated Nested N-Fold Cross
Validation (RNNCV), and it has become a standard
way to apply complex ML analysis in a number of fields
because it has a number of important properties: (a) it
provides unbiased estimates of generalizability of the best
model found; (b) it reduces variance of these estimates; (c)
it is fully automated which allows for powerful model dis-
covery and also for testing the analysis for overfitting and
statistical significance. The RNNCV is described in detail
in [45].
Very briefly, RNNCV divides data into two compo-

nents: i. a training data set (comprising 80% of subjects
in our case) and ii. a testing data set (comprising the



Fig. 1 Flowchart for cross validation. a The 5-fold cross validation process. The widths of the rectangular data boxes represent the dimension of
features. The heights of the rectangular data boxes represent the dimension of subjects. An orange rectangular data box represents a testing data
set. b A simple example of Causal Network. Node T represents the “target” (i.e. response variable); Nodes P represent parents of target; Nodes C
represent children of the target; Node S represents spouse of target. MB is the Markov Blanket comprising parents, children and spouse; PC is the
parents and children set. For details please see text (c) 5-fold cross validation process with Feature Selection
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remaining 20% of subjects). This split is performed N
times (N = 5 in our study) so that all data is used exactly
once as test data. The process is repeated multiple times
(30 times in our case) to reduce data split variance. This
is the “outer loop” that performs the Error Estimation.
Within each training data set a second round of nested
cross validation is performed (each training set divided
in N-1 train-train and train-test subsets). Different algo-
rithms and parameters are used to build models with
train-train data and test them on train-test data. This
inner loop is performing the Model Selection compo-
nent of the analysis. By comparing results across data
splits, the protocol can find the most powerful parame-
ters for individual classifiers. Then, these are used to
build models in the outer loop and evaluate future pre-
dictivity. Because – at each application of a model on a
test set – the model had not been previously ‘exposed’
to the test data, the error estimates are unbiased. We
measure the performance of the classification model by
evaluating the Area Under the Receiver Operating
characteristic Curve (AUC) [46] which measures classifi-
cation predictivity over the full range of cutoffs (each
cutoff representing a different tradeoff between sensitiv-
ity and specificity).

Choice of classifier families
Three state-of-the-art ML classifiers (and variants) are
used: Support Vector Machines (SVMs), Random
Forests, and Lasso (Regularized Regression). The classifi-
cation models separate subjects into two groups: 1.
Those whose UCLA PTSD RI score is greater than or
equal to 38 (PTSD Group), 2. Those whose UCLA PTSD
RI score is less than 38 (Non-PTSD Group).
SVMs identify a geometrical hyperplane that maxi-

mizes the margin between these two subject groups.
SVM classification has several appealing properties:
First, it has no restrictive assumptions about the distri-
bution of data. Second, subjects that form the decision
boundary for classification – the “support vectors” – are
the free parameters in an SVM model independent of
the total number of variables. Statistical leaning theory
of SVMs shows that the error of SVMs depends on the
number of support vectors making this classifier
extremely robust to modeling when the number of
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dimensions is very large and the number of subjects is
very small [47]. SVMs also have powerful ways to build
non-linear discriminatory functions examining huge
numbers of interaction effects in seconds and without
overfitting, by doing this implicitly. In our study, we ap-
plied both linear and non-linear (RBF and Polynomial
Kernel) SVMs.
The second type of classifier is Random Forests [48].

Random Forest classification ensembles multiple
decision trees, performs internal feature selection, and
error estimation, and assigns a class to new cases based
on the mode over the distribution of predictions pre-
dicted by the individual trees in the forest.
The third type of classifier is Lasso. Lasso is a com-

bination of classical Regression with Regularization.
Regularization (also employed by SVMs) refers to im-
posing a restriction on the weights of all variables so
that the sum of squared weights is minimized while the
model fit to the data is simultaneously maximized. Both
Lasso and SVMs tend to implicitly eliminate unnecessary
variables by settings their weights to zero.
Thus, we examine predictive performance using five

approaches to ML predictive classification: 1. SVM
Linear, 2. SVM RBF, 3. SVM Polynomial Kernel, 4.
Random Forest, and 5. Lasso.
We also examine the predictive performance using

more conventional classification methods in order to
determine the ‘added value’ of the newer ML methods
for predictive classification. Accordingly, in addition to
ML models we also build predictive models for the
PTSD target using: 1. Logistic Regression alone, and 2.
Logistic Regression coupled with Stepwise (forward-
backward) Feature Selection.
Finally, we examine the predictive performance of all

seven classifiers (five ML and two conventional), when
each classifier is coupled with ML feature selection.
Classification performance metric
As described, AUC is used to evaluate the prediction
performance of the classification model. It is based on
the Receiver Operating characteristic Curve (ROC): a
plot of the sensitivity versus 1-specificity by varying the
classification cut off point between one group and
another group [46]. AUC scores range between 0 and 1,
with higher scores corresponding to better classification
performance. An AUC score of 0.5 corresponds to ran-
dom assignment of subjects to classification groups
(from 0.5 to 1, predictivity increases for classifying to the
correct class; from 0.5 down to 0, predictivity increases
for classifying to the wrong class, i.e., 1 = perfect classifi-
cation to the correct class, 0 = perfect classification to
the wrong class; 0.5 = random classification normalizing
for classes difference in sample).
Testing for overfitting and p-values for overall predictive
signal: Label shuffling test
Label Shuffling permutation testing is used to (a) Test
the null hypothesis that there is no signal in the data
(i.e., equivalently determine whether the model will
achieve more accurate prediction than what would be
expected by chance if the data does not have any
predictive information about PTSD) and (b) Quantify
the degree of overfitting when sampling under the null
hypothesis. If the mean AUC under the null hypothesis
is not 0.5, then the analysis protocol is biased by an
amount equal to the distance from 0.5.
The label reshuffling procedure is implemented by

randomly shuffling the PTSD outcomes within the data
set and then conducting the same ML predictive analytic
procedure on this ‘null’ data set, as described previously.
This Label Shuffling process is repeated by permutation
400 times to create 400 data sets sampled under the null
hypothesis for the ML predictive classification analysis.
The mean AUC for the 400 random data sets is derived
and the distribution of AUCs of the shuffled data sets is
compared to the AUC of the actual data set to calculate
the probability (one-sided p-value) of deriving an equal
or higher AUC score than that observed from the
original data (without Label Shuffling).

ML methods to select variables with causal relations
to PTSD
Thus far, the ML analysis seeks to build a predictive
classification model for PTSD from all the features in
the data. There are reasons to try to select a set of fea-
tures, amongst all those measured, and to determine the
reliability and accuracy of this smaller set of predictive
features compared to the entire model. The main rationale
for Feature Selection in this study is (a) to identify highly
predictive and compact feature sets (Hypothesis 1) and (b)
to identify a set of features with possibly mechanistic
(causal) influence on PTSD (Hypothesis 2). Several high
quality causal discovery Feature Selection methods are
available. The one we employ is called semi-interleaved
HITON-PC without symmetry correction [41, 42], and we
use this method within the ML predictive classification
approach to identify possible causal features for PTSD
that also form an accurate predictive classification model,
as explained before.
ML methods used to test Hypothesis 2 are the same as

those used to test Hypothesis 1, except that a classification
model is built with variables selected by the HITON-PC
Feature Selection method rather than from all features in
the data set. HITON-PC performs causal discovery
through learning local causal networks and approximating
Markov Boundaries [41, 42]. A Causal Network is a graph
that represents the causal relations between a set of
random variables. In this study, a causal network would



Fig. 2 Performance of Predictive Classification Methods constructed
with all variables. Predictive performance that are significant at
p < 0.05 is labeled with *, predictive performance that are significant
at p < 0.01 is labeled with **. The dotted line placed at AUC = 0.5
indicates the expected performance under the null hypothesis
(no signal in the data)
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represent the causal relations from sets of features in the
data set and our response variable (the “target”) – whether
a child would have a UCLA PTSD RI score of 38 or
greater. An example of a simple causal network is shown
in Fig. 1b. Each node represents a random variable. An
edge between two nodes means that there is a direct
causal relationship between them. In our study, the nodes
are either features measured in the hospital or the target
measured three months later. In Fig. 1b the node labeled
with T represents the target (i.e., the response variable,
PTSD in our study); the nodes labeled with P represent
direct causes (in causal graph terminology, called the
“parents”) of the target; C represent direct effects (called
the “children”) of the target; and S represent the direct
causes of the direct effects (called the “spouses”) of the
target. Under broad distributional conditions, the Markov
Boundary of the target is the set of variables comprising
the parents, children and spouses of the target. Variables
in the Markov Boundary have a fundamental property:
they are the minimal set of variables that capture all the
available non-redundant predictive information in the data
regarding the target that we want to predict [41, 42].
Accordingly, we aim to identify variables/features that are
in the Markov Boundary of the target and only use those
variables to predict the target. It is important to note that
HITON-PC does not find the full Markov Boundary, but
only the direct causes and direct effects of the response
variable. Since the response variable in this study (PTSD)
is a terminal one, there are no spouses. Therefore, it is not
necessary to use algorithms that will discover the full
Markov Boundary. In this study, because PTSD is terminal
and thus has no children, HITON-PC can be expected to
contain only the direct causes of PTSD and that set to ap-
proximate the full MB properties.

Stability assessment
HITON-PC is asymptotically correct, but in modest
samples sizes such as in the present study, further
filtering may be helpful for identifying highly robust
causes of the target. Specifically, we filter the results
from HITON-PC by bootstrapping stability analysis as
follows: 100 bootstrap samples of the data set are
created and HITON-PC feature selection is applied to
each. The frequency of each feature/variable selected by
HITON-PC out of the 100 bootstrap samples is
recorded, and we focus on causal variables with the
highest stability across these bootstrapped samples.
Friedman and colleagues detail the rationale and applica-
tion of stability filtering for these purposes [49].

Missing data
The percentage of missing data for each variable was cal-
culated and variables missing greater than 50% of subject
data were eliminated. We then use the Knnimpute
method [50] to impute missing data in an unsupervised
manner. Knnimpute is a non-parametric nearest neigh-
bor method to impute data. Using this method, variables
are also normalized to a range of 0 to 1 to reduce data
artifacts due to differences in scaling.

Results
Eleven of the 163 (7%) of injured children received a
score of 38 or higher on the UCLA PTSD Reaction
Index and would be classified within our PTSD Group.

Performance of predictive classification models for
childhood PTSD
Hypothesis 1 is tested by examining the mean AUC
results for the classification of PTSD using each of the
five ML classification methods (SVM linear, SVM poly,
SVM RBF, Random Forest, Lasso), compared to the two
conventional methods (Logistic Regression, Stepwise
Logistic Regression). Figure 2 shows the results of this
analysis. As can be seen, using each of the five ML clas-
sification methods, a classification model was obtained
with considerable predictive signal (best model: mean
AUC = 0.79). These results are much stronger than the
performance yielded by the conventional classification
methods where predictive signal was at the chance level.
Randomly shuffling labels diminished performance
significantly for the five ML classification methods
(Table 1).



Table 1 Performance of classifiers and feature selection methods

Classifier All features Feature selection with HITON-PC

SVM linear observed data 0.79 (0.02)** 0.68 (0.04)*

label shuffling 0.50 [0.32 0.71] 0.50 [0.36 0.67]

SVM poly observed data 0.78 (0.02)* 0.68 (0.04)

label shuffling 0.50 [0.31 0.71] 0.50 [0.34 0.71]

SVM RB observed data 0.76 (0.02)* 0.68 (0.04)

label shuffling 0.50 [0.36 0.70] 0.50 [0.35 0.69]

Random forest observed data 0.78 (0.01)** 0.74 (0.01)*

label shuffling 0.50 [0.33 0.67] 0.50 [0.33 0.73]

Lasso observed data 0.67 (0.01)** 0.74 (0.01)*

label shuffling 0.50 [0.44 0.57] 0.50 [0.35 0.68]

Logistic Regression (LR) observed data 0.47 (0.01) 0.72 (0.01)

label shuffling 0.50 [0.35 0.64] 0.51 [0.32 0.74]

Stepwise LR observed data 0.57 (0.02) 0.72 (0.02)*

label shuffling 0.51 [0.39 0.64] 0.49 [0.31 0.71]

The performance (measured as Area Under the ROC Curve) of individual classifiers and feature selection methods in the observed data and under the null
hypothesis of no signal in the data (estimated with label shuffling). For observed results the mean and (standard deviation) were presented. For the label
shuffling, mean and [95% confidence interval] were presented. Predictive performance that are significant at p < 0.05 is labeled with *, predictive performance
that are significant at p < 0.01 is labeled with **

Fig. 3 Performance of Predictive Classification Methods with HITON-
PC Causal Discovery Feature Selection. Predictive performances
that are significant at p < 0.05 are labeled with * and predictive
performances that are significant at p < 0.01 are labeled with **. The
dotted line placed at AUC = 0.5 indicates the expected performance
under the null hypothesis (no signal in the data)
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Performance of predictive classification models – With
causal discovery feature selection - for childhood PTSD
Examining the mean AUC results by applying the HITON-
PC causal discovery feature selection method addresses
directly Hypothesis 1 and indirectly Hypothesis 2. Figure 3
shows the results of these analyses using each of the five
ML classification methods (SVM linear, SVM poly, SVM
RBF, Random Forest, Lasso) and the two conventional
methods (Logistic Regression, Stepwise Logistic Regres-
sion). In this case, strong predictive performance was
yielded in models obtained by all seven methods (including
the two conventional methods). When the labels were
randomly shuffled, the predictive performance was entirely
diminished for all seven classification methods (Table 1).
Figure 3 shows the distribution of predictivity estimates

across the RNNCV (nested 5-fold cross validation AUC
estimate over 30 repeated runs of cross validation). As can
be seen from this distribution, all yielded AUC estimates
are greater than chance with a mean AUC of 0.79.

Identifying the most stable causal features for childhood
PTSD
As described previously, the utility of ML causal discovery
feature selection methods will be based on examining the
variables selected in resulting causal predictive models for
their potential to identify possible preventative intervention
strategies (since they are expected to represent mecha-
nisms that influence PTSD). Fifty-eight variables were
discovered to contribute to the performance of these causal
models. We then sought to identify the most stable of these
causal variables in order to identify those might be reliable
targets of preventative intervention. These were identified
in the bootstrapping analysis. The results of the bootstrap-
ping stability assessment are shown in Fig. 4 with the
frequency of selection for each of the 58 causal variables
within the 100 bootstrapped samples of our data set. The



Fig. 4 Frequencies of causal variables selected out of 100 bootstrap samples. (Variables of frequency greater than 20% to the left of dotted line)
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variables selected by HITON-PC were ranked by the
frequency that a given variable appeared in one or more
of the 100 bootstrapped samples. This frequency ranged
from 1 to 88. Ten causal variables appeared in more than
20 of the bootstrapped samples and are operationally
considered the most stable causal variables for our pur-
poses. Figure 4 identifies these 10 variables, and each will
be reviewed in the Discussion section. Details of how
these variables were measured are offered in Additional
file 1. We note that all features selected by HITON-PC
must pass several univariate and multivariate tests for
statistical significance in order to be output and are fur-
thermore corrected for false positives due to multiple
comparison testing by the algorithm’s inherent control for
such false positives. Thus, low stability levels are not indi-
cative of the variables being uninformative or random but
are mostly due to information overlap between variables.
See Additional file 3 for further technical details on the
interpretations of HITON-PC output, causal validity of
the identified variables, and SVM model weights.

Discussion
In this first study of the application of ML methods for
the prediction of childhood PTSD, several significantly
predictive classification models were discovered from
variables measured around the time of trauma. The
AUC performance results support this conclusion. The
performance results of the SVM models using causal fea-
ture selection also yielded strong predictive performance,
which combined with the terminal nature of the PTSD
variable and the theoretical correctness of HITON-PC for
discovering the causal causes and effects of the response
variable, as well as the Markov Boundary of the response
in the absence of “spouse” variables suggest that the
identified features are the direct causes of PTSD in this
dataset. Label Shuffling Tests showed that the analysis
and error estimation protocol is unbiased and that the
strongly predictive models had statistically significant pre-
dictivities. Thus, this study demonstrated the potential
utility of ML methods for childhood PTSD, even with a
sample of very modest size. We also successfully applied
several safeguards against, and detection procedures for,
model overfitting (e.g. using regularized classifiers,
applying consistent feature selection procedures, five-fold
cross validation, bootstrapping for stability assessment,
and label shuffling). Obviously, such results should be rep-
licated and methods refined, but the results should gener-
ate confidence in the promise of these methods.
It is also instructive to compare the performance of

classical analysis approaches to modern ML ones.
Traditional analysis (Logistic Regression) without feature
selection was incapable of discovering any predictive
signal. Traditional analysis with conventional feature
selection (via forward-backward selection) was also
incapable of discovering any statistically significant pre-
dictive signal (and nominal signal was very weak). When
combining traditional LR with modern ML feature selec-
tion, robust signal is detected. Similarly replacing trad-
itional regression analysis with regression that is fitted
via modern ML regularization (Lasso) robust signal is
also detected. These analyses, consistent with the theory
of modern statistical machine learning, vividly demon-
strate that traditional analysis methods, used for years in
the field, cannot cope with high-dimensional large data-
sets commonly found in present-day research, and that
modern methods can provide valuable enhancements.
The performance of the ML predictive models is

strongly encouraging. Using causal discovery feature
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selection, predictive models with strong performance
were also identified. Moreover, the specific variables that
were found to be most stable in the predictive classifica-
tion model are interesting and may shed light on the
process by which PTSD emerges – and the possibility of
prevention – in acutely injured children. In this discus-
sion, we focus on the 10 most stable causal variables. Of
note, several (but not all) of these variables have been
associated with PTSD in previous correlational studies
(e.g. prior PTSD, pain, parent’s acute symptoms, exter-
nalizing symptoms, candidate genes) [51–56]. None of
the previously described variables, however, have been
associated with childhood PTSD in a research design
that enables causal inference within a sound ML causal
discovery model. We review these causal variables, next.

Prior PTSD
The causal influence of a child’s history of PTSD may re-
late to the disordered threat-response system that many
describe as underlying traumatic stress psychopathology
[57, 58]. In children with disorders of these systems, a
new trauma may evoke extreme survival laden emotional
states and defensive behavior through threat response
systems already potentiated by prior PTSD. These
results indicate the importance of assessing prior PTSD
in an acutely traumatized child.

Prior externalizing symptoms
Children who displayed externalizing symptoms prior to
the injury were at higher risk for PTSD. Although the
association between externalizing symptoms and child
PTSD has been reported previously [59], the appearance
of this variable in the causal model indicates the import-
ance of assessing prior externalizing symptoms for risk
assessment and consideration of the impact of external-
izing symptoms on an injured child’s functioning for
possible preventative intervention.

Prior loss
The experience of injury may arouse feelings of grief in
the wake of trauma. Injured children may also long for
lost loved ones who they depended on in times of stress
such as hospitalization after injury. Prior loss has been
associated with PTSD in children in correlational studies
[60]. This finding indicates the importance of assessing a
history of loss in an acutely traumatized child and ad-
dressing the child’s grief even when the loss occurred
long ago.

Acute pain
Ongoing pain represents the continuity of the traumatic
experience and can evoke continuing memories of the
injury, lead to ongoing fear about whether recovery will
occur, and may evoke worries about the effectiveness of
caregivers (medical and non-medical) for helping with
pain and distress. Thus, acute pain can be a marker of
risk and a target for preventative intervention.

Acute stress symptoms in the parent
Parents with acute stress may be less able to attend to a
child’s emotional and physical needs. The child’s physical
appearance and level of their distress may evoke
traumatic stress symptoms in the parent causing them
to avoid the child or to become overwhelmed while pro-
viding care [52]. The causal relation between parent’s
acute stress and the child’s PTSD may indicate the
promise of treating the parent, for the prevention of the
child’s PTSD.

Protective factors
A child’s history of breast-feeding and attendance of reli-
gious services were included in the causal predictive
model. There is a large literature on the benefits of
breast-feeding for promoting a young child’s nutritional
status, regulation capacities, and attachment relation
[61, 62] but to our knowledge breast-feeding has never
before been demonstrated to be protective of PTSD.
This finding may contribute to knowledge about the
public health importance of breast-feeding. Similarly,
there is an important literature about religion and
spirituality for fostering a sense of community, social
support, and meaning and purpose in life [63, 64] but it,
too, has never been documented as protective of PTSD.
This finding may suggest a promising approach for
prevention for children and families who are inclined
towards spirituality and religion.

Candidate genes
Single Nucleotide Polymorphisms (SNPs) for several
genes were included in our causal predictive model (e.g.
COMT, CRHR1, FKBP5). These genes have been associ-
ated with PTSD in previous research by our team and
others [53–56]. These findings indicate that these genes
can be used to help assess risk profiles for acutely
traumatized children and—because of their causal rela-
tions to PTSD—may reveal new possibilities for preven-
tion related to the biological pathways in which these
genes form a part.

Prior help seeking
One variable selected in our model was related to inter-
vention but, paradoxically, it has a positive relationship
with PTSD. The variable was based on the response to a
single question asked about the child on the Diagnostic
Interview for Children and Adolescents (DICA) [65]:
“Has the child talked to someone (counselor, doctor,
rabbi, priest, etc.) about his or her troubles?” Import-
antly, this question does not distinguish whether the
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child talked to a mental health professional, a non-
mental health professional, or a non-professional about
their ‘troubles’ (however defined). Nor does it ask
whether the child’s experience of talking about ‘troubles’
lead to any help or relief. Prior negative or neutral expe-
riences may have reduced the likelihood of seeking
appropriate help after trauma. Such an interpretation is
speculative and more research should be conducted on
this issue.

Ketamine
Ketamine, a glutaminergic agent administered to some
children as part of their anesthesiologic protocol was
positively related to the development of PTSD. This is a
surprising result. Ketamine has recently received atten-
tion via its capacity to help treatment-resistant depres-
sion [66]. Obviously, such a result may correctly indicate
that Ketamine intervention can cause PTSD. This result
also reveals a limitation of the causal discovery algo-
rithms we employed. Of the set of measured variables,
these algorithms have a strong track record for accur-
ately detecting causes and eliminating the majority of
distal causes and all distal confounders. They will, how-
ever, allow for some false positives when unmeasured
causes exist in the local causal neighborhood of the re-
sponse variable. It is possible that Ketamine is a proxy
for another unmeasured pharmacologic or extrapharma-
cologic variable that was a true cause of its influence. As
we discuss below, techniques that detect local confou-
ders exist, but typically require larger sample size than
the sample available for our study (and are also compu-
tationally harder to apply to large dimensionalities).

Clinical implications
In this first application of ML methods to predict risk
for child PTSD, we have identified reliable and accurate
predictive models and – when applying causal discovery
feature selection – we identified risk factors that had
face value as causally influencing the development of
PTSD. Thus, such findings have important implications
for identifying effective preventative interventions and
have potential to translate to clinical care. The variables
that are contained in the predictive causal model provide
all the non-redundant information that that can provide
accurate prediction with the accuracy metrics employed
(AUC ROC). Thus, our models provide information
about the most important variables to assess (and on
variables that do not contribute to accurate risk assess-
ment), thus enabling a more efficient clinical assessment
process.
The variables identified in the resulting causal predict-

ive model can practically be gathered in clinical settings.
Regarding the time needed to gather the information
within the risk models: Of the 10 most stable causal
features shown in Fig. 4: One feature is a SNP for a gene
(COMT69) collected from a saliva sample, one feature is
a variable gathered from the child’s medical record
(Ketamine dose), and the remaining eight features are
gathered from questionnaires or child interviews. We es-
timate that this information can be gathered in no more
than 15 min of a clinical encounter and the benefit
yielded may be considerable: accurate knowledge of a
child’s risk. Of the remaining forty-two variables in the
causal model, twenty are SNPs for seven genes or other
biological variables (e.g. cortisol) collected through saliva
sample and the rest are either items or scales from
questionnaires or information gathered through medical
record review. These can also be easily gathered in a
short period of time. Although it is more convenient to
gather information from questionnaires or interviews
than from biological samples, saliva sampling is non-
invasive, well tolerated by children and families, and – if
biological assessment is focused on the small number of
genes/SNPs found to be predictive – the resulting cost is
quite inexpensive.
These findings also have implications for the thought-

ful allocation of scarce clinical resources that have
become a ubiquitous problem in most clinical settings.
In such settings, the allocation of clinical resources for
care to those most in need (i.e. high risk individuals) is ex-
tremely important. If our results hold up to replication,
these models can help clinical organizations to identify
the children most in need of care and to avoid exposing
children who are not at risk to unnecessary care (and
potential iatrogenic consequences of such care).

Limitations
As described, our data support the promise of ML for
risk factor research for childhood PTSD, but we note
several limitations that future research can address.
These include:

� A relatively small sample size was available. Future
research with larger samples will be helpful for not
only verifying the overall predictivity of our risk
factor panel and the generalizability of individual
risk factors but potentially produce risk factors and
models with even better predictivity. Increased
sample size can also allow application of causal
discovery techniques that can detect confounding in
the data due to unmeasured variables.

� A high PTSD cutoff score was used. A UCLA PTSD
RI score of 38 is indicative of a very high level of
symptoms. Future studies should evaluate ML in
children with more moderate levels of symptoms.

� The sample only included injured children. It
will be very interesting for future studies to test
generalizability across trauma types.
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� PTSD was predicted at three months following
trauma. Future research can seek to predict PTSD
over a longer duration of time.

Statistical methods or machine learning?
We wish to emphasize that the present work is not
advocating abandoning classical statistical or other data
analytic methodologies, but rather to embrace both
older and newer method and choose the right methods
for the data analytic goals of specific studies. Experts in
the field of data analysis appreciate that in certain
circumstances, techniques from different fields exhibit
similar behavior, reduce to the same discriminant
functions, or turn out to give similar results in certain
datasets and tasks. A single layer perceptron for example
is not fundamentally different than a regression model
without interaction effects [67]. And a multi-layered
neural network can be seen as a generalization of regres-
sion to account for non-linearities [67]. On the other
hand, often methods from statistics and from machine
learning tend to give profoundly different results even
when they have many commonalities. For example,
classical regression fitted with Principal Component
Analysis to reduce dimensionality, gives different results
that regression fitted with regularization [68]. The latter
can also provide means to reduce features, not just
dimensions. Or, in another example that is very close to
our approach in the present work, regression used with
propensity scoring to calculate effects of causal interven-
tion can give very different results from regression used
with covariates selected by do-calculus from a causal
graph model of the same data [39]. They both fit a re-
gression model but with very different strategies. Eventu-
ally all methods, from statistics, applied mathematics,
machine learning, etc., are converging into a single new
field – that of Data Science.
Our methodology exemplifies this integration through

the capacity to find a Markov Boundary using a causal
graph method (or a direct Markov Boundary induction
method). In this way, we can fit a conventional regres-
sion statistical model that typically outperforms the
same regression fitted with a weaker feature selector and
also has stronger causal interpretation. Our results
showed this concretely.

Conclusion
The results in this first application of ML algorithms to
childhood PTSD are consistent with theoretical expecta-
tions about the operating characteristics of such methods
and provided data to support that PTSD can be predicted
to a significant degree from information available shortly
after a trauma. Moreover, the integration of causal
discovery algorithms within a ML framework can suggest
promising strategies for preventative intervention. And
several of the causal variables revealed in the present study
offer new promise for prevention. The study limitations
discussed leave open the possibility for even better models
and markers in future studies.
Our data support the notion that Machine Learning

techniques of both predictive and causal flavors have
significant potential for enhancing the methodological
toolkit in the field of childhood PTSD and, more
broadly, psychiatry.
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