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Abstract

Background: Multivariable risk prediction algorithms are useful for making clinical decisions and for health
planning. While prediction algorithms for new onset of major depression in the primary care attendees in Europe
and elsewhere have been developed, the performance of these algorithms in different populations is not known.
The objective of this study was to validate the PredictD algorithm for new onset of major depressive episode (MDE)
in the US general population.

Methods: Longitudinal study design was conducted with approximate 3-year follow-up data from a nationally
representative sample of the US general population. A total of 29,621 individuals who participated in Wave 1 and
2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have
an MDE in the past year at Wave 1 were included. The PredictD algorithm was directly applied to the selected
participants. MDE was assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule, based
on the DSM-IV criteria.

Results: Among the participants, 8 % developed an MDE over three years. The PredictD algorithm had acceptable
discriminative power (C-statistics = 0.708, 95 % CI: 0.696, 0.720), but poor calibration (p < 0.001) with the NESARC
data. In the European primary care attendees, the algorithm had a C-statistics of 0.790 (95 % CI: 0.767, 0.813) with a
perfect calibration.

Conclusions: The PredictD algorithm has acceptable discrimination, but the calibration capacity was poor in the
US general population despite of re-calibration. Therefore, based on the results, at current stage, the use of PredictD
in the US general population for predicting individual risk of MDE is not encouraged. More independent validation
research is needed.
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Background
Major depression is a prevalent mental disorder in the
general population and imposes considerable burden on
society [1–3]. According to the Global Burden of Disease
study, major depression is a leading cause of disability at
all ages worldwide [4]. By 2030, major depression is

expected to rank first in disease burden in the high-
income countries [2]. The average lifetime and 12-month
prevalence of major depression were 14.6 % and 5.5 % in
high-income income countries, respectively [5]. In the US
general population, the lifetime prevalence of major de-
pression was 16 % [3].
The prevalence of major depression is influenced by

incidence and episode duration [6]. Major depression is
highly recurrent in general populations and clinical set-
tings. It is well recognized that the risk of recurrence in-
creases with the number of previous episodes. Preventing
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new or incident cases of major depression can reduce the
overall disease burden of major depression on society [7].
One of the challenges in the prevention of major depres-
sion is its multi-factorial etiology. In the past decades,
population-based studies across the world have identified
a number of risk factors for major depression, including
age, sex, educational level, marital status, employment sta-
tus, ethnicity, living alone or with others, physical illness,
lifetime depression, stress, financial strain, self-rated phys-
ical and mental health, alcohol use, childhood adversity,
major life events, poor social support and experiences of
discrimination on grounds of sex, age, ethnicity, appear-
ance, disability, or sexual orientation [8–12].
For the purpose of early identification and early inter-

vention, health professionals and policy makers need
tools that can accurately identify individuals who are at
high risk of developing major depression in the future so
that preventive actions can be taken. In the clinical
setting, predictive risk algorithms are embedded in
clinicians’ daily practice as the primary tool to estimate
individuals’ risks of future disease. There have been mul-
tivariable risk prediction algorithms for first onset [8],
new onset [9, 13] and recurrent [7] major depressive epi-
sode (MDE) in different populations and settings. The
PredictD algorithm was developed in primary care at-
tendees in 6 European countries, who were between the
ages of 18 and 75 and who did not have MDE in the past
6 months [13]. The algorithm was developed to predict
individuals’ risks of MDE in the next 12 months. Be-
cause the predictive performance of a model based on
the development data is often optimistic, it is important
that the developed model is validated in different popu-
lations, in different geographic regions or in different
time periods [14, 15]. This addresses the accuracy of a
model in individuals from a different but plausibly related
population. However, most reports evaluating prediction
models focus on the issue of internal validity, leaving the
important issue of external validity behind. The PredictD
international algorithm had good performance in the de-
velopment data. It was validated with Chilean data as part
of the PredictD study. To our knowledge, the algorithm
has not been validated in populations besides those in the
PredictD study. In the present study, the objective
was to validate the PredictD algorithm in the US general
population.

Methods
Study design and population
We used the data from the longitudinal cohort of the
US National Epidemiological Survey on Alcohol and
Related Conditions (NESARC). The NESARC was a
nationally representative survey of the US general
population funded by the National Institute on Alcohol
Abuse and Alcoholism. Wave 1 of the NESARC was

conducted between 2001 and 2002 and included 43 093
respondents aged 18 years and older. Wave 2 of the
NESARC was conducted between 2004 and 2005, about
3 years after Wave 1. 34 653 participants of the original
Wave 1 sample completed interviews at Wave 2. Of the
34,653 NESARC participants, we included 29,621 partici-
pants who were aged 18 to 75 years and who did have
MDE in the past year at Wave 1, which resembled the
sample of the PredictD study. A detailed description of
the design and field procedures of the NESARC has
described elsewhere [16, 17]. The NESARC data were
collected using face-to-face computer-assisted interviews
by trained lay interviewers. As current study was a sec-
ondary data analysis of public use data, ethics review was
waived by the Conjoint Health Research Ethics Review
Board of University of Calgary.

Assessment of mental disorders
MDE and other Axis-I and Axis-II mental disorders were
assessed using the Alcohol Use Disorder and Associated
Disabilities Interview Schedule (AUDADIS), based on the
DSM-IV criteria [18, 19], a fully structured diagnostic
interview that can be used by trained lay interviewers.
Lifetime and past-year diagnoses were assessed at Wave 1.
At Wave 2, diagnoses since Wave 1 were assessed.

Predictors
There are 10 predictors in the PredictD algorithm. The
NESARC contains the following predictors similar with
those in the PredictD study, which were measured using
the same instruments or similar questions:

1) Age (years)
2) Sex (Male/Female)
3) Educational status was defined as completing

beyond secondary, secondary/high school, primary/
no education and trade/other education.

4) For the predictor “Difficulties in paid and unpaid
work”, the NESARC did not include questions about
work stress as measured by the Job Content
Questionnaire in the PredictD. We used the answers
to the questions: experiencing difficulties with boss
or co-workers, and being fired or laid off in the
past 12 months, as a proxy predictor. It was
dichotomized as having or not having difficulties
for paid or unpaid work.

5) Physical component score (PCS) measures physical
quality of life in the past month, which was assessed
by the Medical Outcomes study—Short Form
(SF-12, version 2) [20] in both the NESARC and
the PredictD study.

6) Mental component score (MCS) measures past
month mental quality of life. It was assessed by
Medical Outcomes study—Short Form (SF-12,
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version 2) [20] in both the NESARC and the
PredictD. The PCS and MCS scores were
standardized, ranging from 0 to 100.

7) History of depression in first-degree relatives was
assessed as part of the AUDADIS [18]. Same as the
PredictD study, the NESARC participants were
asked about whether their biological parents and
siblings ever had depression (yes/no).

8) Experience of discrimination was assessed using
NESARC questions on the grounds of physical
disability, race-ethnicity, gender, sexual orientation,
religion and being overweight. These questions were
asked at Wave 2 and accommodated two time
periods: the past 12 months, and prior to the past
12 months. In this study, we assumed that
people’s experience of discrimination did not
have a significant change over a short period of time
(e.g., 2 years). Therefore, we used participants’
answers about experience of discrimination
prior to the past 12 months as an indicator for
discrimination. Same as the PredictD study, the
experience of discrimination was categorized
into three levels: no discrimination, having
discrimination in one of the above grounds/area,
and in more than one area.

9) Any lifetime MDE prior to 12 months at Wave 1
(yes/no) was assessed using AUDADIS based on the
DSM-IV criteria [18, 19].

10) Country: As we validated the PredictD model in the
US population, in our validation, we entered “0” for
the coefficient of “country”, assuming that the
NESARC participants were similar with the UK
sample.

Statistical analysis
The outcome variable of the prediction algorithm was
new onset of MDE ascertained with Wave 2 data. We
applied the PredictD algorithm in the NESARC data,
using the exact same coefficients of the nine predictors
in the PredictD model: age, sex, education, experiencing
difficulties at work and laid off, physical and mental
health, family history, discrimination and lifetime de-
pression (Table 1).
We applied the prediction model directly to the selected

NESARC participants with and without re-calibration. Re-
calibration is a method of adjusting an existing model
to predict risk in a new setting. It involves estimating
only two new parameters that are expected to pro-
duce reasonable predictions beyond the dataset used
for recalibration. The logit risk score (Z) was recali-
brated to predict onset of MDE by fitting a logistic
model with Z as the predictor variable, i.e. the slope
(a) and intercept (b) were estimated for the model
logit = a + bZ [21].

We assessed the model performance by discrimination
and calibration. Discrimination is the ability of a pre-
diction model to separate those who experienced the
outcome events from those who did not. We quantified
discrimination by calculating the C statistic, which is
identical to the area under a receiver operating charac-
teristic (ROC) curve when the outcome is binary, also
known as AUC. Calibration measures how closely the
predicted outcomes agree with actual outcomes (or ac-
curacy). For this we used the Hosmer–Lemeshow (H–L)
χ2 statistics. A χ2 statistic was calculated to compare the
differences between the mean predicted and the observed
risks; large P-value (i.e., greater than 0.05) indicates good
calibration.
We also assessed the calibration by grouping individuals

into deciles of risk and visually comparing the observed
and the predicted risk, so that the overall calibration,
and the areas with over or under prediction could be

Table 1 Risk factors in the PredictD algorithm and the
regression coefficients after shrinkage

Prognostic factor Levels in factor Coefficientsa

Constant 1.155

Age Each year −0.005

Sex Female

Male −0.212

Education Beyond secondary education

Secondary education 0.089

Primary/no education 0.409

Trade/other 0.566

Difficulties in paid
and unpaid work

No difficulties or often supported

Difficulties without support 0.366

Physical health Each point on SF-12 subscale score −0.030

Mental health Each point on SF-12 subscale score −0.055

First-degree relative
with emotional
problem

No

Yes 0.395

Discrimination No

In one area 0161

In more than one area 0.736

Lifetime depression No

Yes 0.489

Country UK

Spain 0.23

Slovenia -0.729

Estonia -0.467

The Netherlands -0.115

Portugal -0.169
a Regression coefficients after shrinkage (King et al. 2008) [13]
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identified. We re-calibrated the algorithm to improve
the agreement between the predicted and observed
risks. All analyses were performed using Stata release
13 (Stata Corp. LP, USA).

Results
The characteristics of the participants in the PredictD
study and the NESARC are presented in Table 2. The
participants in the two studies resembled each other, but
slightly differed in gender, race and marital status. In the
NESARC sample, the lifetime and 12-month prevalence
of MDE at Wave 1 were 19.7 % and 8.6 %, respectively.

The 12-month prevalence of MDE in the PredictD
sample was 7.7 %.

External validation of the PredictD study in the US
population
In NESARC participants who had complete data on all
predictors (n = 24311), 8 % developed an MDE over
three years. The C-statistic for the PredictD algorithm in
the NESARC data was 0.708 (95 % CI: 0.696 - 0.720),
and had poor calibration, as assessed by the Hosmer-
Lemeshow (H-Lχ2) test with p < 0.001. Figure 1 shows
the ROC curve; the diagonal indicates no discrimination
above chance. In the PredictD participants, the algo-
rithm had a C statistic of 0.790 (95 % CI: 0.767 - 0.813)
with a perfect calibration. The NESARC data showed
that, based on the PredictD algorithm, the observed and
the mean predicted risk of MDE were 8 % and 5 %,
respectively. As indicated in Fig. 2, the observed and
predicted risks of MDE in the highest decile of risk score
in the NESARC participants were 21 % and 19 %, re-
spectively. This suggests that the PredictD model tends
to under estimate the risk of MDE in the US general
population, overall and in the high risk groups. Compar-
ing the 10th (mean predicted risk = 22.7 %) and the first
(mean predicted risk = 3.1 %) decile group, the PredictD
model could identify over 7-fold of risk. Using the
minimum risk of the 8th, 9th, and 10th decile group as
cutoffs, the sensitivity (specificity) was 58.0 % (72.1 %),
44.3 % (82.1 %), and 26.2 % (91.4 %), respectively (Fig. 1).
Overall, the positive and negative predicted values were
37.4 % (95 % CI: 28.6 - 47.0 %), and 92.3 % (95 % CI: 91.9 -
92.6 %), respectively.
With re-calibration, the C-index score (C = 0.708)

remained the same. Although the agreement between
the observed and predicted risks improved with re-
calibration, the goodness of fit test remained significant
(H-Lχ2, p = 0.0001) which indicates poor calibration. In
Fig. 3a and b, we plotted the mean predicted probability
vs the observed probability of MDE with and without re-
calibration.

Discussion
We validated the PredictD algorithm for the new onset
of MDE over three years in the US NESARC sample.
The validation results showed that the PredictD algo-
rithm had acceptable discrimination (C = 0.708) but poor
calibration in the US general population. When the
PredictD algorithm was applied in the NESARC, it
under estimated the risk of MDE overall and in high risk
groups. The PredictD was independently validated at
Chilean sites as part of the PredictD study. To our
knowledge, the current study was the first attempt to
validate the PredictD algorithm in a different population.
The absolute differences between the mean predicted

Table 2 Demographic characteristics of the US and European
population

Characteristics US population European populationa

N (%) N (%)

Age (year), mean (SD) 43.8 (15.2) 48.9 (15.5)

Female 16608 (56.1) 4081 (65.9)

Marital status

Married or living together 16 532 (55.8) 4491 (72.6)

Separated or divorced 4654 (15.7) 421 (6.8)

Single 6765 (22.8) 872 (14.1)

Widowed 1670 (5.6) 383 (6.2)

House hold status

Not living alone 22046 (74.4) 5483 (88.6)

Living alone 7575 (25.6) 707 (11.4)

Education

Higher education 17793 (60.1) 1879 (30.4)

Secondary 10084(34.0) 2038 (32.9)

Primary/no education 1634 (5.5) 1767 (28.6)

Trade/other 110 (0.4) 451 (7.3)

Missing 0 55 (0.9)

Employment

Employed/full time student 20993 (71.0) 3256 (52.6)

Unemployed 989 (3.3) 300 (4.8)

Unable to work 1190 (4.0) 322 (5.2)

Retired 4032(13.6) 2269 (36.7)

Missing 2417 (8.2) 43 (0.7)

Professional status

Yes 4628 (15.6) 1313 (21.2)

Missing 4815 (16.3) 143 (2.3)

Born in country of residence

Yes 24727 (83.5) 5655 (91.4)

Missing 80 (0.3) 87 (1.4)

Ethnicity

White European 22466 (75.8) 5988 (96.7)

Missing 0 72 (1.2)
a United Kingdom, Spain, Slovenia, Portugal, The Netherlands, Estonia
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and the observed risk of MDE were improved with re-
calibration.
In prediction research, external validation is necessary

because prediction models tend to perform better in
data on which the model was developed than on new
data. This difference in performance might be an indica-
tion of the optimism in the apparent performance in the
derivation set. C-index provides a standardized way of
comparing the discriminative power that uses different
measurement units in different settings. While the dis-
tance between the predicted outcome and actual outcome
(i.e., calibration) is a central to quantify overall model

performance [21]. The PredictD multivariable algorithm
seemed to perform reasonably well in terms of discrimin-
ation in the US general population (C = 0.708), which is
consistent with the C statistic when the algorithm
was applied to the Chilean data (C = 0.710) in the
PredictD study [13, 22, 23]. Although the agreement
between the predicted and the observed risk was im-
proved with re-calibration, the overall calibration of the
PredictD algorithm was still poor with the NESARC
data. Similarly, when the PredictD algorithm was vali-
dated with the Chilean data, poor calibration was also
indicated [13].

Fig. 1 Discrimination graph: Receiver operating characteristic (ROC) curve

Fig. 2 The predicted risk proportion versus observed risk proportion of major depressive episode by 10 groups
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The difference in the C statistics between the PredictD
study and this validation may be due to many factors.
First, the PredictD algorithm was developed to predict
the risk of MDE in the next 12 months, while the Pre-
dictD in NESARC was validated to predict the risk of
MDE over three years. Second, the PredictD model was
developed in the primary care attendees, where the inci-
dence of MDE might be high. In the present study, we
validated the PredictD in a general population sample.
Third, the PredictD model included a predictor of “coun-
try” (i.e., United Kingdom (reference), Spain, Slovenia,
Estonia, the Netherlands, and Portugal). To validate the
algorithm, a value for “country” needs to be entered. The
present validation study used the same coefficient as the
UK, assuming the NESARC participants were similar with
the UK sample. Fourth, we used ‘experiencing difficulties

with boss or coworker and laid off ’ as a proxy of ‘difficul-
ties in paid and unpaid work’, which might partly explain
the difference in C statistics. Finally, the differences
in the model performance may be due to different
distributions of predictors in the European and American
populations.
The PredictD algorithm might perform well in the

general population as much as in the primary care set-
ting. But the calibration with the NESARC data was
poor. In risk prediction research, calibration should re-
ceive more attention because it determines the model’s
potential clinical utility, in combination with the model’s
discriminative ability [24–27]. The validation results
showed that direct application of the PredictD algorithm
would under estimate the risk of MDE in the NESARC
participants, leading to more false negatives. With re-

Fig. 3 Plots of mean predicted probability against observed probability of Major Depressive. Episode within deciles of predicted risk without (a)
and with re-calibration (b)
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calibration, the performance of the PredictD algorithm
improved but was still poor. This indicated that re-
calibration and/or re-estimation might be needed to
achieve optimal performance prior to applying a risk
prediction algorithm in a new population. Different pre-
dictors included in the prediction algorithm may also
contribute to poor calibration. Wang et al’s prediction
algorithm for first onset of MDE among NESARC partici-
pants had excellent calibration [8]. The model included
predictors such as childhood adversities, traumatic expe-
rience, past panic attack, generalized anxiety disorder
symptom, and suicidal behavior [8]. In PredictD model,
these predictors were not important factors for MDE in
the primary care attendees [13].
Adding other risk factors when training these models

may refine risk assessment and improve the accuracy of
the PredictD model in the general population. Further-
more, the development of sex-specific prediction algo-
rithms for MDE might be important as the predictors
for the risk of MDE and their predicted values may differ
by sex [9].
The strength of this study is that the NESARC data

were population-based and the sample size was large. To
our knowledge, this is the first time that the PredictD
algorithm was validated in a general population sample
outside of Europe. This study also had limitations, in-
cluding the fact that the NESARC relied on self-report.
So reporting and recalling biases were possible. Such
biases may also contribute to the inconsistencies in the
predictive power of some factors in different popula-
tions. However, the instruments used in the NESARC
have been validated and standardized as those in the
PredictD study.

Conclusions
The PredictD algorithm has acceptable discrimination,
but the calibration capacity was poor in the US general
population. Despite of re-calibration, the PredictD algo-
rithm under estimated the risk of MDE in the NESARC
sample. Therefore, based on the results, at current
stage, the use of PredictD in the US general popula-
tion is not encouraged. In psychiatry, there have been
many attempts in developing risk prediction algorithms.
However, the developed tools need to be independently
validated in different populations to ensure the gene-
ralizability of the models. More independent validation
research is needed.
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