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Collective interaction effects associated
with mammalian behavioral traits reveal
genetic factors connecting fear and
hemostasis
Hyung Jun Woo and Jaques Reifman*

Abstract

Background: Investigation of the genetic architectures that influence the behavioral traits of animals can provide
important insights into human neuropsychiatric phenotypes. These traits, however, are often highly polygenic, with
individual loci contributing only small effects to the overall association. The polygenicity makes it challenging to
explain, for example, the widely observed comorbidity between stress and cardiac disease.

Methods: We present an algorithm for inferring the collective association of a large number of interacting gene
variants with a quantitative trait. Using simulated data, we demonstrate that by taking into account the non-
uniform distribution of genotypes within a cohort, we can achieve greater power than regression-based methods
for high-dimensional inference.

Results: We analyzed genome-wide data sets of outbred mice and pet dogs, and found neurobiological pathways
whose associations with behavioral traits arose primarily from interaction effects: γ-carboxylated coagulation factors
and downstream neuronal signaling were highly associated with conditioned fear, consistent with our previous
finding in human post-traumatic stress disorder (PTSD) data. Prepulse inhibition in mice was associated with
serotonin transporter and platelet homeostasis, and noise-induced fear in dogs with hemostasis.

Conclusions: Our findings suggest a novel explanation for the observed comorbidity between PTSD/anxiety and
cardiovascular diseases: key coagulation factors modulating hemostasis also regulate synaptic plasticity affecting the
learning and extinction of fear.
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Background
Mammalian behavioral traits, such as burrowing and par-
enting in wild mice [1, 2], as well as emotional behaviors in
lab mice [3], domesticated animals [3, 4], and pets [5, 6],
have strong genetic components that interact tightly with
the environment. Animal models, which allow transgenic
experiments and controlled phenotyping, also help us
understand the neurobiological bases of human psychiatric
disorders, such as schizophrenia, autism, depression, anx-
iety, and post-traumatic stress disorder (PTSD). Recent

developments in genome-wide association studies have
made it possible to perform unbiased, high-resolution inter-
rogation of associated loci. However, such studies have
largely been limited to human genetics, in which typical
linkage disequilibrium (LD) between individuals is relatively
small and high-quality reference panels of common variants
are available [7].
Recent studies of outbred mouse stocks [8, 9] with

lower degrees of relatedness than lab mice and of mul-
tiple breeds of domesticated animals [5, 6] have demon-
strated the feasibility of genome-wide mapping of
behavioral traits. Although near gene-level mapping
resolution has been achieved, levels of LD between vari-
ants in many associated loci remain substantially higher
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than in typical human studies. With higher overall LD,
difficulties in interpreting the results of association tests,
in which each single-nucleotide polymorphism (SNP) is
treated separately, are more pronounced than in human
samples. In this context, analytical approaches that test
groups of variants for collective association with traits
have the potential to reveal hidden genetic factors other-
wise undiscoverable by analyzing independent loci.
Here, we report the development of an analytical

method to infer collective genetic associations of a group
of SNPs with quantitative traits. In this method, which is
analogous to a similar approach for binary case-control
phenotypes [10–12], pre-selected groups of variants (e.g.,
genes or pathways) are tested for their association with
phenotypes while taking into account the distributions of
both genotypes and phenotypes within the cohort.
In conventional association studies, loci highly associ-

ated with quantitative traits are first identified using lin-
ear regression-based methods, and the putative causal
genes near the loci are tested for enrichment in curated
databases of pathways. Studies targeting epistatic effects
have largely focused on extending single-SNP methods,
namely via exhaustive or selective testing of SNP pairs
[13–15]. Statistical models considering a large number
of variants necessarily require regularization or variable
selection. Such regularized high-dimensional inferences
have a wide range of applications, including inference of
gene expression network structures [16]. More specific-
ally, in the context of quantitative trait analysis, such ex-
amples include studies aiming to build genomic
predictors that employ aggregates of non-interacting,
genome-wide SNPs [17]. In our approach for quantita-
tive trait association analysis, we first select all variants
proximal to genes belonging to a given pathway, and
infer the collective association strength of these variants
while taking into account the aggregated effect of inter-
actions between them. This inference goes beyond linear
regression and its multi-dimensional extension, ridge re-
gression (RR), by accommodating nonuniform genotype
distributions. The high degree of polygenicity observed
in human psychiatric disorders [18], as well as evidence
that prioritizing variants based on functional annotations
enhances power [19, 20], suggests that collective genetic
effects uniquely considered in the proposed method po-
tentially make similarly important contributions to
mammalian behavioral traits.
We first used simulated data to demonstrate that sub-

stantially higher power could be achieved by such collective
inference than by independent loci inference of quantitative
trait associations and RR-based multi-locus tests. We chose
RR for comparison because it extends linear regres-
sion―the main approach used for most association tests
using single variant data―in a manner analogous to how
our approach uses penalizer-based regularization. We then

applied our method to the recent data sets of behavioral
traits in outbred mice [8] and dogs [5], analyzing five be-
havioral assays for mice (fear conditioning, prepulse inhib-
ition, elevated plus maze, forced swim test, and sleep) and
fear-related personality traits for dogs. We tested the associ-
ation of SNP groups formed by curated pathways, while in-
cluding interaction effects within each SNP group. The
classes of biological processes represented by highly ranked
pathways associated with each trait, together with known
experimental evidence from the literature, provide a mark-
edly enhanced understanding of key psychiatric conditions,
including fear, anxiety, and depression [21]. In particular,
our inference results for fear conditioning suggest that
γ-carboxylated proteases (thrombin and other coagulation
factors) play a central role in modulating fear, consistent
with recent experimental findings [22, 23], and offer a pos-
sible explanation for the comorbidity of PTSD in blood
pressure [24] as well as coronary diseases [25, 26]. Our re-
sults from dog personality trait data reported by Ilska et al.
[5]—fear of noise and fear of humans/objects—provided
further support to this main conclusion.

Methods
Continuous discriminant analysis for quantitative traits
We formulated and implemented a collective inference
algorithm adapted to genotype-quantitative trait data
sets, as described in this subsection. We denote the data
as D = {ak, yk}, where n is the total number of individuals
and k = 1, …, n; ak denotes the genotype count vector for
individual k (components aki ¼ 0; 1; 2 and i = 1, …, m,
where m is the number of SNPs); and yk is a
continuous-variable phenotype of individual k. The
log-likelihood of a statistical model is defined as:

L ¼
X
k

ln Pr ak ; yk
� � ¼ X

k

ln Pr ak jyk
� �þ A; ð1Þ

where A = ∑k ln Pr(yk) is the likelihood of the marginal
distribution of the phenotype. We assume that the latter
is distributed normally with mean μ and variance σ2.
Maximizing L with respect to these two parameters
leads to their estimates μ̂ and σ̂2 (the sample mean and
variance), which complete the specification of the mar-
ginal phenotype distribution. The conditional genotype
distribution is modeled as:

Pr ajyð Þ ¼ eH a;yð Þ

Z yð Þ ; ð2Þ
where
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X1
l¼0
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and ZðyÞ ¼
X
a

eHða;yÞ is the normalization factor. In

Eq. (3), the two terms inside the brackets represent
single-SNP and interaction effects, respectively, with pa-

rameters θ ¼ fhðlÞi ðaÞ; J ðlÞij ða; bÞg defined for SNP indices

i, j = 1, …, m, genotype indices a, b = 0, 1, 2, and the
index representing phenotype-independent and
-dependent effects, l = 0, 1. These parameters are set to
zero if a = 0 or b = 0. The null hypothesis (no association
between genotype ai and phenotype y) is then repre-

sented by the condition hð1Þi ðaÞ ¼ J ð1Þij ða; bÞ ¼ 0; under

which Eq. (2) becomes independent of y. Maximization
of L in Eq. (1) with respect to these parameters involves
computing derivatives:

∂L=n

∂h lð Þ
i að Þ

¼ f̂
lð Þ
i að Þ− f lð Þ

i að Þ−λ1h lð Þ
i að Þ; ð4aÞ
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ij ða; bÞ ¼ n−1P

ky
l
kδðaki ; aÞδðakj ; bÞ are the (phenotype-weighted if l

= 1) sample genotype frequency and covariance, re-
spectively; the Kronecker delta symbol is defined as
δ(a, b) = 1 if a = b and 0 otherwise; and the corre-
sponding quantities without the hat are population
averages defined by:
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The aforementioned convention of setting the parame-
ters to zero whenever a or b is zero makes the total
number of unknown parameters equal to that for the
sample genotype frequencies and covariances after tak-
ing into account constraints associated with their
normalization conditions [10]. In Eq. (4), the last terms
penalize overfitting under small sample sizes by forcing
single-SNP and interaction parameters to be close to 0.
The penalizers λ1 and λ2 are determined below by
cross-validation.
To calculate Eq. (2) and use it for Eqs. (4) and (5), an

approximate treatment is necessary. We used the
pseudo-likelihood (PL) method [27], which replaces the
full distribution by a product over single-SNP distribu-
tions conditional on the data:

Pr ajyk
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The use of Eqs. (6) and (7) in Eq. (5) allows one to
avoid full marginalization over genotypes via the use of
single-SNP densities conditional on the data, making the
computation tractable for large numbers of interacting
SNPs. We determined the penalizers λ1 and λ2 by opti-
mizing the Bayes estimator for phenotypes

y að Þ ¼
Z

y Pr yjað Þdy ¼
R
y Pr ajyð Þ Pr yð ÞdyR
Pr ajyð Þ Pr yð Þdy ð8Þ

evaluated by the trapezoidal rule under cross-validation,
in which we divided the n individuals into training and
test groups at a 4:1 ratio, inferred parameters from the
training group under the given penalizers, and calculated
Eq. (8) for the test group individuals (Fig. 1). We selected
λ1 and λ2 that maximized the prediction score, defined as
the correlation between predicted and actual phenotype
values, R ¼ Cor½yk ; yðakÞ�.
The software GeDI (Genotype distribution-based infer-

ence), which implements the quantitative trait analysis
algorithm, is available at https://github.com/BHSAI/
GeDI.

Ridge regression
For purposes of comparison, we implemented RR, which
fits the data to the model

y að Þ ¼ αþ
X
i

aiβi þ
X
i< j

aia jγ ij þ ε; ð9Þ

where ε � Nð0; σ2yÞ , or y ¼ Xb , where y is the column

vector with elements yk, b is the coefficient vector with
p = 1 +m +m (m – 1) / 2 elements {1, β, γ}, and X is the
n × p data matrix with 1 for the first column, aki for col-
umns 2 to m + 1, and aki a

k
j for the rest. This approach

can be regarded as approximating the log likelihood of
the data as:
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where the marginal genotype distribution is assumed to
be uniform. We added a penalizer and maximized L − λ′

btb to obtain:

b̂ ¼ XtXþ λIð Þ−1Xty ¼ V RtRþ λIð Þ−1Rty; ð11Þ

where σ̂2y ¼ ðy−XbÞtðy−XbÞ=n, λ ¼ λ0σ̂2y , I is an identity

matrix of dimension p, and V is a p × n orthogonal
matrix from singular value decomposition [28] of X. The
second form of Eq. (11) reduces computational costs for
p > n. To enable this form, we chose λ to be uniform for
all components of b in RR, whereas in CDA we used
two distinct penalizers for the single-SNP and inter-
action terms, respectively.

Simulated data
We generated simulated data by first randomly assigning
parameter values from normal distributions for a given num-
ber m of interacting SNPs. Phenotype values for a varying
number of individuals (sample size) were sampled from the
standard normal distribution. We then used Eq. (2) to

calculate the probabilities of all possible genotypes (2m in
total) for each value of yk and chose one genotype for
each individual based on these probabilities. We then
applied CDA and RR, performed 5-fold
cross-validation, and determined the penalizers by
maximizing R. For these simulations, we used the
dominant model to reduce the computational cost of
enumerating all possible genotypes. For all other com-
putations using animal trait data, we used the geno-
typic model, which includes the dominant model as a
special case and generally enhances the power to infer
associations relative to the dominant model [12].

Outbred mice data
We used the genotype data for 1934 mice reported by
Nicod et al. [8] and selected animals for which the trait
values under consideration were available. The sample
size for mice ranged from 1065 to 1716 (Additional file 1:
Table S1). We used the corrected mean time freezing
during the cue and context tests for fear conditioning,
average pulse reactivity for prepulse inhibition, fraction
of time in open arms for the elevated plus maze, and
sleep length in 24 h, as well as the difference in light and
dark periods for sleep (Additional file 1: Table S1).
Non-integral dosage values for imputed SNPs were
rounded off to integral allele counts. The total number
of SNPs for all data sets was 359,559. Fractional trait

Fig. 1 Continuous discriminant analysis for quantitative traits. Paired genotype (a)-phenotype (y) data for individuals are divided into training and
test sets. The training set is used to model the conditional distribution Pr(a|y), while including the interaction effects between all m SNPs.
Parameters with large magnitudes that often result from insufficient data are made unfavorable by the penalizer λ. Bayes’ rule is then used to
obtain Pr(y|a) and applied to predict phenotype values for individuals in the test group. The correlation R between the predicted and actual
phenotypes is optimized with respect to λ. Because of the training/test set division, R2 is in general not equal to r2, the proportion of phenotype
variance explained by genetic predictors. The latter can be estimated by using the optimized penalizer and repeating the inference
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values between 0 and 1 were log-transformed before use
with small constants added in the argument to avoid sin-
gularities. We examined the quantile-quantile plots of
independent-SNP p-values obtained from linear regres-
sion for each data set, and sought to eliminate any infla-
tion by stratifying the data set into two sub-samples
based on a covariate. The division into male and female
mice proved adequate for many traits, whereas forced
swim and sleep difference between light and dark
periods required different choices (immobility during
the first 2 min and average body weight, respectively;
Additional file 1: Table S1).

Meta-analysis
We implemented and used a meta-analysis scheme for col-
lective inference involving multiple sub-samples [12, 29]
(two in this work). Each sample was first divided into train-
ing and test sets, and the training sets were used to infer
single-SNP and interaction parameters separately for each
sub-sample. These models were then averaged with
sample-size weighting and subsequently used to predict
phenotypes for the aggregated test animals of all
sub-samples. The prediction score R was then optimized
with respect to the penalizers.

Labrador retrievers
We used the genotype data for 885 Labrador Retrievers,
reported by Ilska et al. [5]. For the two traits we consid-
ered (fear of noise and of humans/objects), the sample
sizes were 868 and 882, respectively (Additional file 1:
Table S1). The values on the questionnaire scale (from 1
to 5) were log-transformed before use as for mice. We
used the first principal component to stratify animals
into two groups (large and small principal component
values; see Additional file 1: Figure S5) and performed
meta-analyses. We chose 110,419 SNPs with known
CanFam3 positions [30] for analysis.

Association testing of pathway-based variant groups
We used mouse and dog pathways from the Reactome
database [31] (downloaded on December 23, 2016). For
each gene set (mouse/dog orthologs of the human genes in
the corresponding human pathway), we formed a union of
all SNPs whose positions in the genome were within 50 kb
of the coding regions of all genes. We considered all path-
ways with 5 or more SNPs (1502 and 1459 in total for mice
and dogs, respectively). The mouse data set typically con-
tained groups of neighboring SNPs with near perfect LD;
before association testing, we used PLINK [32] (window
size 50 bp shifted by 5 SNPs, LD threshold 0.9) to prune
the SNP set of a given pathway, and then stratified the set
into two covariate-dependent subgroups and performed
collective inference meta-analysis. We chose this pruning
procedure on the basis of our previous work showing that

pathway-based association tests are insensitive to local LD,
typically from 1.0 to ~ 0.5 [10, 12]. Pruning with a threshold
of 0.9 substantially reduced the number of SNPs for each
pathway in the mouse data set, allowing for consideration
of much larger pathways than without pruning. We used
the dog data set without pruning because it did not contain
large chunks of SNPs with maximal LD.
The main statistic we used for association testing was

the prediction score R, defined as the correlation be-
tween the predicted and actual phenotypes calculated
for individuals in the test set within cross-validation.
The use of cross-validation allows us to avoid any bias
arising from overfitting. We optimized the prediction
score R with respect to λ1 and λ2, which we allowed to
vary independently between 0.01 and 100. We included
in this optimization the special case in which the inter-
actions were turned off (λ2 =∞).
To estimate the p-values of SNP sets, we used the fact that

our main statistic is a correlation, for which the null distribu-
tion is well-known analytically. We used P= 1−Φ (z), where
Φ is the cumulative distribution function of the standard
normal distribution, z ¼ ffiffiffiffiffiffiffiffi

n−3
p ð f − f 0Þ , where f = (1/2)

ln[(1 + R)/(1 − R)] and f0 = (1/2) ln[(1 + R0)/(1 − R0)]
(Fisher’s transformation). To obtain the mean correl-
ation R0 under the null hypothesis necessary in this
formula, we repeated the inference 10 times with pheno-
type labels permuted and calculated the mean of the cor-
relations. This mean value was typically close to zero and
positive but negative for some pathways. We tested this
null distribution (the Fisher-transformed correlation is
normally distributed) for a selection of SNP sets and
calculated p-values by phenotype-label permutation dir-
ectly as the fraction of replicates among ~ 1000 for which
R < R0 (Additional file 1: Figure S3). We also tested the
possibility of assuming R0 = 0, and found it to yield substan-
tial deviations from the diagonal in the quantile-quantile
plots for pathways with P close to 1; the only choice that
produced correct p-value distributions was to allow R0 to be
negative and to estimate it by phenotype permutation for
each pathway (Additional file 1: Figure S4 and Fig. 4).
We also compared the results based on the main

Reactome pathway set with those based on an up-
dated version (February 2018). We tested the associ-
ation of 102 pathways that had been added to the
main database with fear conditioning (cued test) and
found that the highest ranked pathways had P values
on the order of ~ 10− 3 (Additional file 1: Table S2).

Heritability
We estimated the broad-sense heritability of a pathway as
follows: for a given pathway, we first divided the cohort
into two halves and used the first half to identify the opti-
mal values of penalizers λ1 and λ2, which maximize the
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prediction score R under cross-validation. We then
applied the inference for the second half under these
penalizer values and calculated the squared correl-
ation between the predicted and actual trait values.
For comparison, we used the software GCTA [33]
and LDAK [34] to estimate the proportion of variance
explained by non-interacting SNPs (narrow-sense her-
itability) contained in the same pathway (Fig. 8). In
the latter calculations, we included sex (cued fear and
prepulse inhibition) and the first principal component
(fear of noise in dogs) as covariates.

Results
Collective inference for quantitative traits
We implemented the algorithm we termed the continu-
ous discriminant analysis (CDA) procedure for quantita-
tive traits, where the genotype-phenotype data for m
SNPs and n individuals were fit to a joint distribution
model using the maximum likelihood method (Fig. 1).
We first modeled the phenotype data by a normal distri-
bution. We then considered the genotype distribution
conditional on phenotypes parameterized by the sum of
the additive and interaction terms of all variants. For
binary phenotypes, these additive and interaction param-
eters are defined separately for case and control groups
[12]. In contrast, for a single cohort with quantitative
traits, we considered these parameters to be linear func-
tions of the phenotype value. The intercept and slope of
the additive and interaction parameters of the genotype
distribution conditional on phenotypes were then
inferred using the maximum likelihood method (see
Methods). For the typical model sizes we considered (m,
the number of SNPs, of up to ~ 1000), the total number of
model parameters including the interaction terms often
greatly exceeded the sample sizes, and regularization was ne-
cessary to prevent overfitting. We adopted a cross-validation
scheme in which we divided the sample into training and
test groups, and performed inference by using only training
individuals (Fig. 1) in the presence of penalizers. The geno-
type distribution conditional on phenotypes was then used
to predict the phenotype values for test individuals. We cal-
culated the correlation R between the true and predicted
phenotypes as the performance measure and maxi-
mized it with respect to the penalizers to determine
the optimal fit. Because of the training/test group div-
ision, this prediction score R2 is distinct from the
usual proportion of variance explained by regression
(r2). We estimated the latter by dividing the sample
into two parts, using the first half to determine the
optimal penalizer values, and using the second half to
calculate the squared correlation from self-prediction.
We tested our algorithm using simulated data, for

which m was small enough so that we could enu-
merate all possible genotypes. We maximized the

prediction score R as a function of the penalizer
under conditions where the inferred interaction pa-
rameters were closest to the true values for a given
sample size (Fig. 2). Cross-validation efficiently iden-
tified the regularization conditions that optimized
prediction, while avoiding overfitting for small sam-
ple sizes. We then compared the power to detect the
overall significance of a group of interacting SNPs
under CDA and RR [28] (i.e., linear regression, in-
cluding all interaction terms, and regularized by the
same cross-validation scheme as that for CDA). The
optimized prediction score R was higher for CDA
than for RR in all cases; in addition, the differences
were greater the smaller the sample size n and the
larger the number of SNPs m, which led to higher
power (type I error α = 0.05, evaluated over multiple
replicates of simulated samples) (Fig. 3). These results sug-
gest that for small sample sizes and high dimensionality
(number of interacting variants considered), CDA
achieves higher power than regression-based methods
to detect collective association strengths of interacting
SNPs. The statistical significance of an inference
scored by R can be evaluated using p-values obtained
from the null distribution of R known for normally
distributed data (see Methods).

Behavioral traits of outbred mice
We applied our algorithm to the genotype-quantitative
trait data of outbred mice [8] (Additional file 1: Table S1
and Figure S1). Independent SNP p-values from CDA
for the special case of single SNPs without interaction
effects were numerically close to linear regression
outcomes over a wide range of significance levels
(Additional file 1: Figure S2). To account for the effects
of covariates, such as sex, we used meta-analyses with
sample size-weighted averaging of parameters [29],
where the sample was sub-divided into two subgroups
based on covariate distributions. For each group, we sep-
arately performed CDA inference and averaged the in-
ferred parameters over the subgroups. In our inference,
the association strength was quantified by the correl-
ation R, and the corresponding p-value was estimated
from the known null distribution of normally distributed
data (see Methods). We tested this assumption using a
selection of SNP sets and estimating their p-values dir-
ectly by permutation sampling, and found good agree-
ment (Additional file 1: Figure S3), which indicated that
the computationally expensive permutation-based test-
ing can be avoided in general. We then clustered SNPs
into 1502 groups of varying sizes corresponding to path-
ways [31] and tested the association of each group with
behavioral traits. (See Additional file 2: Table S3 for
top-ranked pathway lists of all traits considered.)
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Fear conditioning
We considered two fear conditioning traits: the fraction
of time freezing during presentation of a tone (cue test)
and that during exposure to the context alone (context
test) [8]. Quantile-quantile plots of all pathway gene
set-based SNP groups indicated adequate control of

genomic inflation under meta-analyses with sex-based
subgroups (Fig. 4a). We found stronger associations of
top-ranked pathways for the cue test compared to the
context test (Fig. 5a–b): for cue testing, the first group
of pathways contained two that exceeded the Bonferroni
threshold [Effects of phosphatidylinositol 4,5-phosphate
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Fig. 2 Regularized inference of genotype-quantitative trait associations for two different sample sizes and varying penalizer values. a–d Simulated
data with n = 100, where the overall dependence of prediction score R (correlation between predicted and actual phenotype values for test
individuals) is shown in a, and b–d show the comparisons between predicted and true parameter values (single-SNP parameter h and interaction
J for each SNP and SNP pairs, respectively) for three different penalizer λ values. Closer to the diagonal is better. Note that the condition λ = 0.1 in
c optimizing R (see a) gives the best fit. e–g Analogous results for n = 104. The sample size is large enough such that overfitting under small λ is
negligible. The number of SNPs was m = 5 and the dominant model was used. Parameters were generated randomly from normal distributions:
h(0) ~ N(−0.3, 0.12), h(1)~ N(0.3, 0.12), J(0) ~ N(0, 0.052), and J(1) ~ N(0.1, 0.052). The phenotype values {yk} for k = 1, …, n were generated from N(0, 1)
and, for each individual, the conditional genotype distribution given by Eqs. (2–3) was used to generate genotypes
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(PIP2) hydrolysis, P = 2.4×10−6; Signal transduction, P =
3.3×10−5; see Additional file 1: Figure S4 for R values].
The presence of Signaling by G protein-coupled receptors
(GPCRs; P = 3.6×10−4), which contains the PIP2 hydroly-
sis pathway, suggested that the strongest association
with cued fear arises from the group of genes involved
in post-synaptic signaling by GPCRs during memory
consolidation [35]. The PIP2 hydrolysis pathway con-
tained 82 SNPs (after pruning by LD r2 < 0.9) distributed
over ~ 20 genes. None of these individual genomic loci
were dominant in association strengths without inter-
action effects (Fig. 6a), indicating the collective nature of
the PIP2 hydrolysis-cued fear association.
The second group of highly ranked pathways contained

those involved in γ-carboxylated proteins, including their

synthesis, transport in the endoplasmic reticulum
(ER) and Golgi apparatus, and modifications (Fig. 5a),
of which two had false discovery rates (FDR) < 0.05
(Removal of N-terminal propeptides from γ-carboxylated
proteins, P = 6.3×10−5; γ-carboxylation of protein precur-
sors, P = 7.6×10−5). The γ-carboxylation of protein precur-
sors pathway contained 10 SNPs after LD pruning near
two coagulation factor-coding genes, F2 (thrombin) and F9,
in addition to the genes Bglap, Ggcx, Gas6, and Proc. Recent
studies have revealed that γ-carboxyglutamate-containing co-
agulation factors, particularly thrombin, in addition to play-
ing central roles in hemostasis of peripheral blood [36], also
regulate synaptic plasticity by stimulating protease-activated
receptor 1 (PAR1) [22]. PAR1, a GPCR highly expressed on
neurons, is activated by the cleavage of its extracellular
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Fig. 3 Collective inference performance. Ridge regression (RR) and CDA were compared using simulated data. We first sampled phenotype values
of n individuals from the standard normal distribution. Restricting ourselves to the number of SNPs (m≤ 20) allowing for the enumeration of all
possible genotypes, we then assigned single-SNP and interaction parameters for m= 10 (a), m = 15 (b), and m = 20 SNPs (c) from normal
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(0) ~ N(0, 0.01), Jij
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(1) ~ N(0, 0.01), and Jij
(1) ~ N(0.1, 0.01), under the dominant model. We next calculated the

genotype distribution conditional on phenotypes for all possible genotypes, and chose a genotype for each individual based on this distribution.
We repeated this sampling for 100 replicates. For each data set, we applied RR and CDA collective inference, using a single penalizer λ
determined by optimizing R by cross-validation (right column). Power was defined as the proportion of replicates for which P < 0.05
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N-terminus via the action of thrombin [37, 38] as a protease.
Coupling of PAR1 to Gαq protein activates phospholipase
Cβ (PLCβ), which hydrolyzes PIP2 to generate second mes-
senger molecules, inositol 1,4,5-triphosphate (IP3) and diac-
ylglycerol (DAG), leading to the phosphorylation of cytosolic
proteins by protein kinase C and mobilization of Ca2+, re-
spectively [37, 39]. Together, the PIP2 hydrolysis and
γ-carboxylation pathway groups in Fig. 5a strongly implicate
this thrombin-PAR1 signaling pathway in cued fear, and in
particular, the dynamic modulation of G protein coupling
during long-term potentiation in the amygdala [22]. These
results are also consistent with our previous finding of a high

association between γ-carboxylation pathways and PTSD in
humans [12, 40] (Fig. 4a in Ref. [12]; Transport of
γ-carboxylated protein precursors from ER to Golgi apparatus,
P=9.6×10−5 in human PTSD versus P=1.8×10−4 in the
current study for cued fear).
The third group of pathways associated with cued fear

(P < 10−3) were those for transcription and mRNA decay
(RNA polymerase I transcription termination, P= 4.1×10−4;
mRNA decay by 3′ to 5′ exribonuclease, P= 8.7×10−4), which
are likely relevant in the regulation of synaptic plasticity at
the levels of transcription and translation, e.g., by the trans-
port and storage of mRNAs in distal dendrites [41].
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Gene sets associated with the amount of freezing during
the context test showed a distribution similar to those
during the cue test (Fig. 4a) but lacked pronounced groups
of highly ranked pathways (Fig. 5b). The highest ranked
pathways included those for cell cycle and axon guidance,
which likely affect neural development and thereby fear
responses.

Prepulse inhibition
The inference results for prepulse inhibition (Fig. 5c)
were dominated by the top-ranked pathway, Platelet
homeostasis (P = 5.6×10−7), whose strong association was
clearly collective in nature, containing a large number of
variants of individually low association levels scattered

across different chromosomes (Fig. 6d). A pathway lower
in association strength but nonetheless notable was Sero-
tonin clearance from the synaptic cleft (P = 2.6×10−4),
which describes the action of the serotonin transporter
encoded by Slc6a4, the target gene of numerous anti-
depressant drugs known as serotonin reuptake inhibitors
[42, 43]. SNPs for this pathway consisted solely of those
near Slc6a4, whose individual association levels were
negligible in contrast to their collective p-value (Fig. 6e).
Serotonin transporter gene variants have previously been
linked to startle responses in human subjects [44]. The
large body of evidence implicating Slc6a4 in behavioral
traits and psychiatric disorders [42, 43], along with the
strong association of Platelet homeostasis, suggest that

Fig. 6 Independent-SNP and collective association levels of variants contributing to pathways. Those highly ranked for mouse behavioral traits
are shown. a Manhattan plot for fear conditioning, showing single-SNP p-values for linear regression. The mouse SNPs for genes in two pathways,
Effects of PIP2 hydrolysis and γ-carboxylation of protein precursors are shown in color. Horizontal lines show the collective inference p-values for
these two pathways. b–c Detailed views of two loci contributing to pathways in a. d–f Prepulse inhibition and three pathways, Platelet
homeostasis, Serotonin clearance from synaptic cleft, and Metallothioneins bind metals. The collective p-values of the latter two pathways (bottom
horizontal lines) are indistinguishable. Filled rectangles represent the coding regions of genes indicated
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serotonin and its signaling play key roles in prepulse in-
hibition: in addition to modulating brain functions, sero-
tonin is abundantly stored in platelets outside the brain
and regulates vasoconstriction, dilation, and other cardiac
functions [45]. A pathway similar in association strength
was Metallothioneins bind metals (P = 2.7×10− 4), which
contained SNPs near genes Mt1–4 (Fig. 6f).

Elevated plus maze
For elevated plus maze test data, we chose the fraction
of time spent in closed arms as the trait representing
anxiety. A relatively large portion of pathways showed
substantial deviations from the null distribution for this
trait, while the sex-based meta-analysis still adequately
controlled for inflation in pathways (P > 0.1) (Fig. 4d).
The highest-ranked pathways (Fig. 5d) were Intercon-
version of polyamines (P = 2.2×10−6), arising from
SNPs near the Smox gene (Fig. 7b), and Hydrolysis of
lysophosphatidylcholine (LPC; P = 7.7×10−6), containing
SNPs near the Pla2g4a and Gpcpd1 genes (Fig. 7b–c). In
contrast to these pathways, whose association appeared to
arise from SNPs near genes located in one of the loci with
strong LD, Interleukin (IL)-10 signaling (P = 1.5×10−5) was
highly polygenic, similar to Effects of PIP2 hydrolysis and
Platelet homeostasis (Fig. 6a,d).

Forced swim test and sleep-related traits
Inference for the forced swim test (immobility during the
last 4 min as a measure of depression) indicated signs of

inflation under sex-based meta-analysis. We performed
meta-analyses by sub-dividing the cohort into two groups
of high and low immobility during the first 2 min and in-
ferred the association with immobility during the last
4 min separately, so that only the component of depres-
sion traits induced by stress (forced swim) would be
tested. This choice removed genomic inflation (Fig. 4c)
and yielded a top-ranked pathway (Fig. 5e), Negative
feedback regulation of mitogen-activated protein kinase
(MAPK) pathway (P = 2.8×10−4), along with cell cycle
pathways (G2/M DNA damage checkpoint, P = 2.6×10−4).
Our finding of the association of MAPK signaling and its
negative regulators is consistent with reported evidence
for their roles in depression [46, 47]. We additionally
tested two sleep-related traits—overall duration and
difference in sleep length between light and dark periods
[8]—and found Regulation of Frizzled by ubiquitination
(P = 9×10−5) of Wnt signaling and Regulation of signaling
by Nodal (P = 5×10−5) to be highly associated, respectively,
with each trait (Fig. 5f–g).

Behavioral traits of dogs
To gain further insight into the genetic pathways associ-
ated with fear-related traits, we additionally analyzed re-
cent dog personality trait data reported for Labrador
Retrievers by Ilska et al. [5]. We chose two dog traits for
analysis: fear of noise and of humans/objects. Independent
SNP analysis by linear regression indicated substantial in-
flation from the population structure. We stratified the

Fig. 7 Independent-SNP and collective association levels of variants contributing to pathways associated with elevated plus maze. a Manhattan
plot and variants in three pathways, Interconversion of polyamines, Hydrolysis of lysophosphatidylcholine, and Interleukin-10 signaling. b–c Detailed
views of two loci contributing to pathways in a. Filled rectangles represent the coding regions of genes indicated
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cohort into two groups by principal component analysis
(Additional file 1: Figure S5), and used meta-analysis,
which reduced inflation to levels comparable to those
from linear mixed model analysis [48] for independent
SNPs (Additional file 1: Figure S6). Quantile-quantile plots
of pathways under collective inference indicated distribu-
tions (Fig. 4f) comparable to those of elevated plus maze
for mice (Fig. 4d). Overall, fear of noise, the trait most
strongly associated under independent-SNP analyses [5],
was also more strongly associated with pathways than was
fear of humans/objects.
The pathway most strongly associated with fear of

noise (Fig. 5h) was Hemostasis (P = 7.4×10−7), providing
further support to the suggested contributions of
coagulation factors to cued fear in mice (Fig. 5a) and
serotonin in platelets to prepulse inhibition (Fig. 5c).
Hemostasis is a large pathway (3592 SNPs) whose associ-
ation was entirely collective (Additional file 1: Figure S7).
Two pathways among those exceeding the Bonferroni
threshold for fear of noise were Reversal of alkylation
damage by DNA dioxygenases (P = 1.6×10−5) and LRR
FLII-interacting protein 1 activates type I interferon
production (P = 1.5×10−5). One possible route through
which polymorphisms in these DNA damage and innate
immune pathways could affect the fear response is via the
neural development of cortical interneurons [49], whose
disruption can lead to variations in the ability to control
fear. Further relevance of these pathway groups to fear
response is suggested by recent findings linking
stress-hormone action to DNA damage and cytosolic de-
tection of DNA [50, 51]. Pathways highly ranked for fear of
humans/objects (Additional file 1: Figure S8) represented a
range of similar and other developmentally relevant pro-
cesses, including apoptosis (Breakdown of nuclear lamina,
P = 1.9×10−5). We found that Synthesis of inositol phos-
phates (IPs) in the nucleus was also relatively highly ranked
for fear of humans/objects albeit without exceeding the
Bonferroni threshold (P = 4.9×10−5), consistent with the
high association between Effects of PIP2 hydrolysis and cued
fear in mice (Fig. 5a). These pathways highly ranked for fear
in dogs were all predominantly collective in nature, with no
constituent SNPs dominant in independent-SNP associ-
ation levels (Additional file 1: Figure S7).

Narrow- and broad-sense heritability estimates for
pathways
We estimated the proportion of variance explained by
interacting SNPs for a selection of top-ranked pathways
associated with mouse and dog behavioral traits (Fig. 8).
In contrast to standard linear regression analyses involving
low-dimensional predictors, in our approach, the propor-
tion of variance explained r2 was obtained by evaluating
the correlation between predicted and observed pheno-
types using the optimal penalizing conditions determined

from cross-validation (Fig. 1). This definition also implies
that the genetic component of r2 corresponds to the
broad-sense heritability that is, in general, non-additive.
We compared our estimates of these heritability estimates
for pathways highly ranked for cued fear and prepulse
inhibition in mice (Fig. 8a–b) with the additive (nar-
row-sense) heritability computed by GCTA [33] and
LDAK [34]. The narrow-sense heritability values com-
puted by the two methods were similar, with those
obtained by LDAK being relatively larger in magnitude
overall. In contrast, broad-sense heritability was substan-
tially larger to a varying degree, but typically more so for
larger pathways, which hold more room for non-additive
effects (Fig. 8a).

Discussion
We introduced a quantitative trait-mapping approach that
targets collective associations of a group of SNPs while tak-
ing into account inter-variant interaction effects as well as
the effects of non-uniform, empirical high-dimensional dis-
tributions of genotypes within the cohort. Performance
tests of the algorithm suggested a substantial enhancement
in power compared to regression-based methods, similar to
the finding for binary phenotypes [10]. Although the ap-
proach is marginally more demanding computationally
than case-control analyses, the usual advantage of quantita-
tive trait inference, of requiring smaller sample sizes to
achieve similar levels of power, is expected to apply under
collective inference as well. In addition to the quantitative
trait data covered here and the binary case-control data
considered in a previous study, one could also analyze cat-
egorical data with multiple discrete phenotypes. Categorical
data can be treated by an extension of the binary phenotype
formulation (Supplementary Text 1 in [10]). A limitation
shared by both quantitative and discrete phenotype versions
of our method is the reliance on a pathway database, which
presumably influences the results strongly.
We demonstrated the practical utility of our approach

by applying it to the genotype-phenotype data sets of
outbred mice [8] and pet dogs [5]. In contrast to human
studies for which reference panels of common variants
are available and typical LD values decay rapidly within
genomic loci, these early mammalian genomic data still
contain much higher degrees of LD, limiting the reso-
lution of standard SNP-based analyses and making the
identification of causal genes or SNPs challenging. Our
collective inference approach has the potential to reveal
groups of variants whose associations with a given trait
are non-additive and therefore are relatively insensitive
to the spatial extent of fine-scale correlations within a
locus. Behavioral traits, for which typically SNP-based
inferences yield relatively few dominant associations and
whose genetic architectures are often highly polygenic,
are especially suited to the approach.
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Our inference outcomes for major behavioral traits
(Fig. 5) suggest that the nature of genetic associations of
a given pathway can span the range between the additive
limit, where a few dominant SNPs independently ac-
count for the association, to the purely collective limit,
where a large number of SNPs spanning multiple loci of
negligible individual association levels combine to pro-
duce a strong signal. Examples of additive groups are
γ-carboxylation of protein precursors for cued fear in
mice, for which the variants near the F2 gene had
p-values close to that of the pathway as a whole (Fig. 6b),
Interconversion of polyamines and Hydrolysis of LPC for
anxiety in mice (Fig. 7a), where one or more of the genes
located within associated loci likely raised the association
strengths of pathways containing them. Examples of path-
ways with purely collective association for mice are Effects
of PIP2 hydrolysis (Fig. 6a), Platelet homeostasis (Fig. 6d),
and IL-10 signaling (Fig. 7a), whose associations cannot be
reduced to a few SNPs or genes. Notably, genetic factors
associated with fear in dogs (Fig. 5h) were all predomin-
antly collective (Additional file 1: Figure S7).
One of our major findings on the genetics of behav-

ioral traits is for fear conditioning in the cued test
(Fig. 5a): γ-carboxylated proteases (thrombin coded by
F2, Fig. 6b) activate neuronal PAR1, triggering G
protein-coupled signaling cascades (Effects of PIP2
hydrolysis, Fig. 5a) and long-term potentiation. Our pre-
vious observation that the same pathway groups were
associated with human PTSD [12] provides strong

support not only for our current interpretation, but also
for the relevance of fear conditioning in mice as a model
of PTSD. Bourgognon et al. explicitly demonstrated that
this PAR1-G protein coupling activated by thrombin oc-
curs in amygdala neurons, allowing for dynamic modula-
tion of fear in mice [22]; they found that in fear-naive
mice, PAR1 couples with Gαq (excitatory) and Gαo (in-
hibitory) proteins, whereas the latter becomes more im-
portant after conditioning. Our finding of the high
association of PIP2 hydrolysis, which is downstream of
the Gαq protein pathway, suggests that genetic polymor-
phisms affecting the generation of second messenger
molecules during the excitatory phase of long-term po-
tentiation contributes significantly to the heritability of
conditioned fear responses.
The role of the thrombin-PAR1 pathway in long-term

potentiation and fear conditioning, furthermore, sug-
gests a possible explanation for the commonly observed
comorbidity of PTSD and cardiovascular diseases [25,
26]: individuals with collections of genetic polymor-
phisms that affect this neuronal pathway would also be
at higher risk of impaired hemostasis and cardiovascular
functions. The Hemostasis pathway was also found to be
most strongly associated with gene sets differentially
expressed in blood from PTSD subjects [52]. A second
arm that is likely also contributing to this comorbidity
involves the role of serotonin in neuronal functions and
psychiatric disorders, including fear conditioning [44, 53]
as well as in platelet homeostasis [45]. We found that

a b

Fig. 8 Broad-sense heritability of pathways compared to proportion of additive variance explained. a Fear conditioning (cue test) in mice. b
Prepulse inhibition (PPI) in mice. The top-ranked pathways in Fig. 5a,c are shown in the same order. CDA values represent r2 estimated using
regularization conditions determined from cross-validation applied to half of the whole cohort and repeating the inference for the other half.
Error bars represent the 95% c.i. The GCTA and LDAK outcomes represent the proportion of variance explained by the same set of SNPs but
without interaction effects. For pathways in which the GCTA/LDAK p-values were higher than 0.05, the proportion of variance was set to zero.
The CDA p-values are all smaller than 10−3 (Fig. 5)
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these overlapping functions of serotonin were associated
with prepulse inhibition in mice (Fig. 5c) and further repli-
cated the association between hemostasis and fear from
the analysis of the fear of noise in dogs (Fig. 5h). The asso-
ciation of polyamine pathways with the elevated plus maze
test (Fig. 5d) is consistent with the known roles of poly-
amines in anxiety and depression, as for instance demon-
strated in studies of high- and low-anxiety mice [54].
The numerous other pathways highly ranked for the

behavioral traits of mice and dogs (Fig. 5) belong to clas-
ses of processes including cell cycle, axon guidance and
migration, DNA repair, innate immune response, apop-
tosis, and cellular stress response. Together, they are
consistent with the view that individual variation in be-
havioral traits are strongly affected by disruptions to
neurodevelopmental processes, owing to the collective
effects of polymorphisms, which likely result in impaired
development of key neuronal structures such as cortical
interneurons [12, 49]. The strong associations of DNA
repair and type I interferon-mediated immune response
pathways with fear of noise in dogs (Fig. 5h), further-
more, support recent experimental findings suggesting
that stress is linked to inflammation via DNA damage
and the resulting recognition of damaged DNA in the
cytosol [50, 51].
Although the genetic architectures of mice/dogs differ

markedly from those of humans, the overall picture sug-
gested by our results on fear-related traits is likely to be
relevant to human genetics, given the common evolu-
tionary origin of fear responses shared by all mammals.
Results using animal genetic data may also offer avenues
for experimental validation. For instance, pharmaco-
logical experiments that target neuronal pathways in-
volving γ-carboxylated proteases in mice [22] could
benefit from the genetic screening results in this work,
and may help identify similar drug candidates for treat-
ing human PTSD and other psychiatric conditions.
Our estimates of the variance explained by interacting

SNPs (Fig. 8) demonstrate that broad-sense heritability
can be computed from genomic data for unrelated indi-
viduals. Furthermore, extensive epistatic effects among
many SNPs make the heritability of different pathways
non-additive.

Conclusions
We presented a novel method to infer collective associ-
ation of a large number of variants with quantitative
traits while taking into account interaction effects.
Applications to mammalian behavioral trait data re-
vealed pathways linking stress-related phenotypes and
hemostasis: neuronal signaling by γ-carboxylated pro-
teases. Our work provides evidence suggesting that
behavioral traits are strongly influenced by large-scale
interaction effects among genetic variants.
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