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Abstract

Background: Despite its popularity as an inferential framework, classical null hypothesis significance testing (NHST)
has several restrictions. Bayesian analysis can be used to complement NHST, however, this approach has been
underutilized largely due to a dearth of accessible software options. JASP is a recently developed open-source
statistical package that facilitates both Bayesian and NHST analysis using a graphical interface. This article provides
an applied introduction to Bayesian inference with Bayes factors using JASP.

Methods: We use JASP to compare and contrast Bayesian alternatives for several common classical null hypothesis
significance tests: correlations, frequency distributions, t-tests, ANCOVAs, and ANOVAs. These examples are also used
to illustrate the strengths and limitations of both NHST and Bayesian hypothesis testing.

Results: A comparison of NHST and Bayesian inferential frameworks demonstrates that Bayes factors can complement
p-values by providing additional information for hypothesis testing. Namely, Bayes factors can quantify relative
evidence for both alternative and null hypotheses. Moreover, the magnitude of this evidence can be presented
as an easy-to-interpret odds ratio.

Conclusions: While Bayesian analysis is by no means a new method, this type of statistical inference has been
largely inaccessible for most psychiatry researchers. JASP provides a straightforward means of performing reproducible
Bayesian hypothesis tests using a graphical “point and click” environment that will be familiar to researchers conversant
with other graphical statistical packages, such as SPSS.
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Background
The prevailing inferential framework for summarizing
evidence in psychiatry is null hypothesis significance test-
ing (NHST), which is a hybrid of Fisherian and
Neyman-Pearson statistics [1]. NHST generates a
test-statistic, such as a t-value, and then the probability
(p-value) of observing this value or a more extreme result
is computed, assuming that the null hypothesis is true.
P-values are used in concert with alpha and beta levels to
minimize false-positive (Type I) and false-negative (Type
II) errors in the long run by either rejecting or failing to

reject the null hypothesis. If interpreted as a measure of
discrepancy from a null sampling distribution, p-values
can be especially informative [2].
Despite its enduring popularity, the p-value has been

the subject of a growing chorus of criticism. Excellent
treatments of p-value limitations and common misunder-
standings are already available [3, 4], so we will only briefly
cover two issues especially relevant for psychiatry re-
search. First, as the traditional p-value approach is only
concerned with disproving the null hypothesis, there is no
way to assess if the data favors the null hypothesis
compared to the alternative hypothesis. Even a “large”
non-significant p-value does not provide evidence for the
null hypothesis [5]. Consequently, examining statistical
equivalency is beyond the reach of conventional p-value
test approaches — but see the “two one-sided test” for an
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approach that uses the same framework underlying
p-values [6, 7]. Second, unless an a priori power ana-
lysis is performed, there is no clear indication if a data-
set is sensitive enough to detect a true effect when
using p-values [8].
P-values and alpha levels fall under the classical school

of frequentist statistics, and are used to control long-run
error rates. The Bayesian framework [9, 10] offers an al-
ternative approach, as it allows for the probabilistic de-
scription of parameters and hypotheses. There have
been several publications detailing the philosophical and
practical differences between these two viewpoints [3,
11, 12], but it suffices for our purposes to note that only
the Bayesian framework allows us to quantify how much
more likely the data are under the null hypothesis (H0)
compared to the alternative hypothesis (H1), given a
prior probability. A Bayes factor, which is a popular im-
plementation of Bayesian hypothesis testing, can quan-
tify the degree to which the data favor one of two
hypotheses by considering the prior odds. It is important
to note that the Bayesian framework also includes par-
ameter estimation, which can address the size of an ef-
fect [for an excellent treatment of Bayesian parameter
estimation, see [10]]. While Bayesian parameter estima-
tion is a valuable tool, hypothesis testing via Bayesian
model comparison can facilitate theory prediction by
providing a measure of relative evidence between two
models [13], typically a null and alternative model.
Specifying a prior distribution of the parameter in a

statistical model is central to Bayesian inference, and
serves many purposes such as improved parameter esti-
mation [14–16]. We will return to prior distributions in
the examples below, but will now provide a brief sum-
mary. A prior distribution can quantify, or at least ap-
proximate an idealized concept of, prior information
about the parameters of the model before the data is
considered. Unlike classical inferential frameworks,
Bayesian inference can incorporate such prior know-
ledge [17]. For instance, if dealing with an effect size
parameter, such as Cohen’s d, we may judge a priori that
values of d less than − 1 or greater 1, are much less likely

than d values around 0. This is a fair assumption for
biobehavioral research, which tends to yield small--
to-medium effect sizes (i.e., d = 0.2 to d = 0.5). If a param-
eter is unconstrained, the use of a Cauchy distribution
centered around an effect is a common approach [18].
This distribution is typically centered on zero by default,
but can be also centered elsewhere. The Cauchy distribu-
tion is similar to a normal distribution, but has fatter tails
and less central mass [19]. Normal and t-distributions are
also common choices for prior distributions [20]. It should
be noted that the lack of general rules for choosing priors
is often used as an objection against the Bayesian frame-
work. Uniform default priors, which suggest that any par-
ameter value over a given range (e.g., a correlation
coefficient ρ ranging from − 1 to 1) is equally likely, can
also be used. However, they can produce Bayes factors
that can be biased towards null models, so they are
generally not recommended [21]. Combining the prior
distribution with the observed data forms the posterior
distribution. A Bayes factor is the ratio between the
marginal likelihoods of the null model and the alterna-
tive model.
Bayesian hypothesis tests in the biobehavioral sciences

typically yield Bayes factor values between 0.01 and 100
[22]. Descriptive classification schemes are often used to
interpret Bayes factors e.g., [18, 23, 24]. The classifica-
tion scheme adopted by JASP [23], which is an adaption
of Jeffery’s scheme [18], proposes a series of labels for
which specific Bayes factor values can be considered
“anecdotal”, “moderate”, “strong”, “very strong”, or “ex-
treme” relative evidence for a hypothesis (Fig. 1). Bayes
factor classification schemes may facilitate scientific
communication [25] as they provide approximate guide-
lines for Bayes factor interpretation. However, any rigid
scheme used to describe Bayes factors cannot be suited
to all possible research contexts. For instance, theoretic-
ally implausible claims should require more evidence
than usual for their support. As we agree that Bayes
factors should be interpreted in light of the research
context [26] and wish to highlight the direct interpret-
ability of Bayes factors, we do not characterize the

Fig. 1 Lee and Wagenmakers’ classification scheme for interpreting Bayes factors (BF10). This classification scheme [18, 23], which has been adopted in
JASP, provides descriptive labels for interpreting a range of Bayes factors. While this scheme provides a useful starting point for understanding Bayes
factor values and may be suitable for many research questions, Bayes factors should be carefully interpreted in light of the research question at hand

Quintana and Williams BMC Psychiatry  (2018) 18:178 Page 2 of 8



results in the present manuscript’s worked examples
using an explicit classification scheme. We do, however,
mention Lee and Wagenmakers’ classification scheme
[23] here given its use in JASP, its relevance in many re-
search contexts, and to provide a preliminary frame of
reference for readers that are new to Bayes factors.
Psychiatry researchers are typically concerned with

three broad types of research questions: i) How strong is
the relationship between continuous variables? ii) are a
set of categorical variables interrelated? iii) do groups
differ on a continuous explanatory variable, and does
this difference covary depending on other variables?
While p-values are typically used to answer these ques-
tions, we will demonstrate that Bayesian inference
provides a useful addition to classical hypothesis testing.
Bayesian inference is by no means a new concept but its
widespread adoption has been hampered, in part, by the
inaccessibility of software packages to perform Bayesian
analysis. The recent development of the open-source
JASP statistical package [25, 27] provides a straightfor-
ward means of performing both classical and Bayesian
inference using a graphical interface. The aim of this art-
icle is to demonstrate that Bayesian hypothesis testing is
no more difficult to perform than significance tests, and
allows for richer inference than relying exclusively on
classical frequentist methods that dominate hypothesis
testing in both basic and clinical psychiatry research.

Methods
A dataset from van Cappellen and colleagues [28] will be
used to compare and contrast NHST and Bayesian hy-
pothesis testing using JASP (version 0.8.5.1). A core fea-
ture of JASP is the ability to save the entire analysis
pipeline as a .jasp file, which includes the data, analysis
input options, and output. Thus, interested readers can
follow each step of the described analyses by examining
the associated .jasp file (https://osf.io/emz4r/).

The primary interest of the study from van Cappellen
and colleagues [28] was whether a single intranasal ad-
ministration of the neuropeptide oxytocin could impact
self-reported spirituality. The role of the oxytocin system
in human interconnection has been the subject of con-
siderable research interest in psychiatry [29], however, it
is not known if the oxytocin system is also involved in
spiritual interconnection. In this study, participants were
randomized to receive a single administration of either
intranasal oxytocin or placebo, after which they
responded to measures assessing spirituality. One of the
outcomes used to index spirituality was a single item
measure that asked, “Right now, would you say that spir-
ituality is important for you?”. After receiving the nasal
spray, participants responded on a scale from 0 (Not at
all) to 7 (Completely). The study dataset was collected
from manuscript’s Open Science Framework webpage
(https://osf.io/rk2x7/) For pedagogic purposes, several
variables not used in the current demonstration were re-
moved from the original dataset and we perform
additional analyses that were not reported in the original
manuscript.

Results
Correlations
Before performing the primary analysis, it is of interest to
first assess if spirituality is related to age. A scatterplot
visualization of this data suggests that age and spirituality
is not related (Fig. 2a). A Pearson correlation coefficient
confirms our intuitions, as there is no statistically
significant relationship between age and spirituality
[Pearson’s r = 0.04, 95% CI (− 0.19, 0.26), p = 0.75].
Nonetheless, with p-values, we cannot be certain if
non-significance is due to data insensitivity or to evidence
supporting a lack of relationship between these two
variables [4, 19, 30].
For our Bayesian analysis, we will compare two models:

the null hypothesis (H0) that the data is distributed

Fig. 2 Correlation analysis. A scatterplot visualizing the relationship between age and spirituality (a). The prior and posterior distribution for the
relationship between age and spirituality (b). A robustness check illustrating the effects of assigning a range of stretched prior widths on Bayes
factor values (c). The grey dot represents the selected prior (stretched beta prior width of 0.5)
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according to a bivariate normal distribution with zero
covariance — and therefore that there is no correlation
between the spirituality and age (i.e., ρ = 0) — and the al-
ternative hypothesis (H1) that age and spirituality distrib-
uted according to a bivariate normal distribution with a
non-zero covariance are related. A default prior probabil-
ity distribution for ρ restricts the parameter space between
any value of − 1 and 1, however, values around ρ = 0 are
far more likely. We can prescribe more mass to values
around ρ = 0 by assigning a smaller stretched beta prior
width. Here, we assigned a stretched beta prior [31], with
a width of 0.5, in the JASP interface. The dashed line in
Fig. 2b illustrates the prior distribution for our example.
We now test how the observed data updates our prior
distribution with the posterior distribution. Assuming that
there is a relationship between age and spirituality, the es-
timate of the correlation coefficient (ρ) was 0.03 and the
central credible interval ranged between − 0.18 and 0.25,
which suggests that we are 95% confident that the true
value of ρ is located within these bounds. Although confi-
dence intervals were calculated for the NHST analysis de-
scribed above, these intervals are calculated by average
performance over the long run of a series of future hypo-
thetical replications. Therefore, it is inaccurate to con-
clude using NHST confidence intervals that we are 95%
confident that the true effect size lies between a set of
confidence intervals [2]. However, as the Bayesian frame-
work uses the present data to determine the credible inter-
val, then such a conclusion is valid. As BF01 = 4.55, this
indicates the null model is 4.55 more favored than the al-
ternative model, given the data. Not only does this provide
evidence for H0 relative to H1 — something not possible
with p-values — but the Bayes factor also conveys the
magnitude of this evidence. Note that JASP reports
equivalent BF10 and BF01 values (Fig. 2b), with the latter
simply the inverse of the former. Here, it makes more
sense to report the BF01 value, as we are more
interested in how much more favored the null model
(the first subscript number) is than the alternative
model (the second subscript number). An illustration of
the effects of assigning a range of different prior distri-
butions (i.e., a Bayes factor robustness check) is pre-
sented in Fig. 2c. If the data is not bivariate normal,
then the Bayesian equivalent to Kendall’s tau [32] is
also available as an analysis option in JASP.

Frequency distributions
Next, we would like to assess if participants could cor-
rectly identify whether they had been administered an
oxytocin or placebo spray. As several participants
responded that they did not know, only definitive “oxy-
tocin” or “placebo” responses were assessed in the ori-
ginal article. Thus, a recoded variable only including
definitive responses was added to the present dataset to

reproduce the original analysis. As reported in the ori-
ginal article, a classical χ2 test suggests that these groups
are not distributed differently [χ2(1) = 1.55, p = 0.21].
The log odds ratio for this analysis was − 0.92 [95% CI
(− 2.4, 0.54)]. Like the previous analysis of correlational
data, this does not provide any evidence for the null hy-
pothesis nor provide any confidence that the true log
odds ratio lies between the CI bounds. Bayesian fre-
quency distribution analysis was performed using inde-
pendent multinomial sampling, as the crucial test was a
comparison of two proportions and the number of
people assigned to receive each treatment was presum-
ably fixed [33, 34]. The median log odds ratio was −
0.86, with a 95% credible interval of − 2.31 and 0.51. The
null model was only slightly favored over the alternative
model (BF01 = 1.16). A Bayes factor close to 1 suggests
that there were too few data for this analysis [4].

T-tests
The primary outcome of interest is whether intranasal
oxytocin modulates self-reported spirituality. An inde-
pendent samples Welch’s t-test reveals increased ratings
of spirituality after oxytocin (mean = 3.84; SD = 2.26) com-
pared to placebo (mean = 3.25; SD = 2.34), however this
was not statistically significant [t(75.98) = 1.14, p = 0.26,
Cohen’s d = 0.26, 95% CI for Cohen’s d (− 0.19, 0.7)]. If
there was a pre-registered directional hypothesis for group
differences, then a one-sided t-test, in which the alterna-
tive hypothesis is that the oxytocin group would report
increased feelings of spirituality compared to the placebo
group, would be a valid approach [35]. In this case, how-
ever, a one-sided t-test was also not statistically significant
(p = 0.13).
For our Bayesian t-test alternative, we compare two

models for effect size δ: the null hypothesis that the spir-
ituality rating effect sizes for each intervention groups are
equal (δ = 0), and the alternative hypothesis that the mean
spirituality ratings of each group are different [JASP im-
plements methods described by Rouder and colleagues
[19]]. Here, we assign δ a Cauchy distribution prior
centered on zero [18], with an interquartile range r = 0.5
[δ ∼Cauchy(0, 0.5)]. A default Cauchy prior with a scale
parameter of 0.5 (which presumes we are 50% confident
that the true effect size will lie between −.5 and .5) is used,
so that the H1 model includes more realistic effect sizes.
The corresponding Bayes factor provides anecdotal evi-
dence for the null hypothesis relative to the alternative hy-
pothesis (BF01 = 1.93; Fig. 3a), with a posterior median of
0.2 and a 95% credible interval range of − 0.2 to 0.61. As
this BF01 value was close to 1, this is suggestive of data in-
sensitivity [4]. In other words, more data needs to be col-
lected. A robustness check was also performed to assess
sensitivity to the prior (Fig. 3b), with a wide prior yielding
a BF01 = 3.2. While some would consider this BF01 value
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as moderate support for the null hypothesis, a wide
Cauchy distribution scaling factor of 1 presumes we are
50% confident that the true effect will lie between d = − 1
and d = 1, which would be unrealistic for most areas of
psychiatry. Directional hypothesis testing, similar to a clas-
sical one-sided t-test, is also possible with a Bayesian
framework. Prior distributions can incorporate prior
knowledge and be constrained to specific intervals. With
a pre-registered hypothesis that intranasal oxytocin can
increase ratings of spirituality (H+), the prior distribu-
tion can be set with more mass around zero (as per our
non-directional test), but no mass less than zero
(Fig. 3c). The directional test provided only very modest
support in favor of the H0 model compared to the H+

model (BF01 = 1.2).
A final consideration for Bayesian t-tests is that that the

default prior distribution centered on zero may not best
represent prior expectations of an effect size, or the
small-to-medium effect sizes commonly observed in the
biobehavioral sciences. Instead of using a default prior dis-
tribution, an informed distribution can nominate the cen-
tral location and scale of a prior distribution. For example,
we can use the average effect size of oxytocin studies in

healthy individuals of d = 0.28 [36] as the central location
with a Cauchy scale of 0.1, which might be considered a
more realistic prior distribution. The corresponding Bayes
factor provides only very modest evidence for the alterna-
tive hypothesis (BF10 = 1.38; Fig. 4a), with a posterior
median of 0.28 and a 95% credible interval range of 0.01
to 0.53. Although we now have evidence for alternative
hypothesis relative to the null hypothesis when using an
informed prior (as opposed to evidence for the null model
when using a default prior), this evidence is still quite
weak. Without explicit prior information, the “Oosterwijk
prior” (a t-distribution centered at 0.35, with a scale of
0.102 and 3 degrees of freedom) can be used as an
informed prior, which is representative of the
small-to-medium effects commonly observed in the bio-
behavioral sciences [37]. The informed Oosterwijk prior
yielded a BF10 of 1.53 (Fig. 4b; posterior median of 0.33;
95% credible interval range of 0.09 to 0.54), which was a
similar result to the first informed prior we presented.

ANCOVA
Given the potential effect of religious affiliation, we will
now carry out an ANCOVA on the main effect of nasal

Fig. 3 Bayesian analysis of group mean differences. The prior and posterior distribution plot for the analysis of group mean differences (a). A robustness
check illustrating the effects of assigning wide and ultrawide Cauchy prior widths on Bayes factor values (b). The prior and posterior distribution plot for a
directional analysis of group differences (c). Here, the prior distribution can be set with more mass around zero, but no mass less than zero

Fig. 4 Informed prior distributions. The prior and posterior distribution plot for the analysis of group mean differences using a prior informed by
existing knowledge of the average effect size reported in oxytocin studies (a). The prior and posterior distribution plot for the analysis of group
mean differences using an informed “Oosterwijk prior”, which represents small-to-medium effect sizes (b)
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spray administration condition with religious affiliation
entered as a covariate, which was the approach used by
van Cappellen and colleagues [28]. The categorical vari-
able for religious affiliation was recoded in the present
dataset to recreate the NHST results from the original
study (i.e., the original variable, with seven religious af-
filiation categories, was recoded into a “yes” or “no” re-
sponse for whether participants were religiously
affiliated). As previously reported, when explaining away
the error variance attributable to religious affiliation
(commonly referred to as “controlling” for a covariate),
oxytocin increases spirituality (F(1, 75) = 4.87, p = 0.03,
ηp

2 = 0.061). For the Bayesian ANCOVA [38], a model
including intervention group and religious affiliation will
be compared against the null model, which only con-
tains religious affiliation (See Table 1 for included
models). The default JASP multivariate Cauchy priors
(fixed effects Cauchy prior scale parameter for fixed ef-
fects = 0.5, Cauchy prior scale parameter for covariates =
0.354) will be used, although these parameters can be
adjusted. As Bayes factors have a transitive relationship
[39], the model with intervention group and religious af-
filiation (BF = 398,231) can be compared to the religious
affiliation model (BF = 230,440) by division (398,231/
230440 ≃ 1.73). Thus, after explaining for the error
variance attributable to religious affiliation, oxytocin
increases spirituality. However, as the oxytocin condi-
tion + religious affiliation model was only preferred
to the oxytocin model by a factor of 1.73, this could
be considered only very modest evidence. Given the
modest magnitude of this Bayes factor, this does not
suggest that there was no effect, but rather that the ob-
served data were insensitive to detect an effect (i.e., more
participants might be required). This is consistent with re-
cent concerns surrounding statistically underpowered
oxytocin studies [36].

ANOVA
The final analytical approach to be presented is repeated
measures ANOVA, which will be used to assess the main
effects of time and nasal spray condition on spirituality rat-
ings, and the interaction of time and nasal spray condition.
This analysis reveals no significant main effect of time (F(1,
74) = 0.21, p = 0.65, ηp

2 < 0.01), treatment (F(1, 74) = 1.25,
p = 0.27, ηp

2 = 0.02), or time × treatment interaction (F(1,
74) = 0.08, p = 0.78, ηp

2 < 0.01). A Bayesian repeated mea-
sures ANOVA compares a series of different models against
a null model [40]. We will compare 4 models against the
null model (Table 2). Of note, the interaction model also
includes the main effects model, as interactions without
corresponding main effects are considered implausible
[41]. The default JASP prior for fixed effects will be used
(r scale prior width = 0.5). Here, the null model was 7.85
times more favored than the main effects model and 32.21
times more favored than the interaction model (Table 2).
There was moderate evidence that the null model was
more favored than the time model (BF = 5.34), but only
very little evidence it was more favored than the condition
model (BF = 1.54), which is suggestive of insensitive data.
Comparison of the main effects model with the inter-
action model (7.85/32.21) reveals that the main effects
model was preferred to the interaction model by a BF of
4.17 (i.e., 1/0.24).

Conclusions
A comparison of classical and Bayesian inferential
frameworks reveals that the Bayesian approach can com-
plement p-values and effect sizes by providing additional
information for hypothesis testing (Table 3). Not only do
Bayes factors quantify relative evidence for both H1 and
H0, the magnitude of this evidence is also presented as
an easy-to-interpret odds ratio. For demonstration, we
have provided worked examples of Bayesian analysis for

Table 1 Bayesian ANCOVA models

Model type Model contents BF10 BF01

Null model Only participants have effects 1 1

Condition model Null model + main effect of condition 0.41 2.44

Religious affiliation model Null model + main effect of religious affiliation 230,440 < 0.001

Condition + religious affiliation model Null model + condition + religious affiliation 398,231 < 0.001

Table 2 Bayesian ANOVA models

Model type Model contents BF10 BF01

Null model Only participants have effects 1 1

Time model Null model + main effect of time 0.19 5.34

Condition model Null model + main effect of condition 0.65 1.54

Main effects model Null model + time model + condition model 0.13 7.85

Interaction model Main effects model + interaction effects 0.03 32.21
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common statistical tests in psychiatry using JASP. Inter-
ested readers that would like to perform other types of
Bayesian analysis not currently available in JASP, or re-
quire greater flexibility with setting prior distributions
can use the ‘BayesFactor’ R package [42].
A few limitations should be considered to help ensure

Bayes factors are used appropriately. First, if researchers
wish to present the size of an effect then the presenta-
tion of an effect size and corresponding confidence (or
credible) interval is important, as Bayes factors alone
can only present the support of the alternative hypoth-
esis model against a null model. Second, changing the
width of the prior will also change the Bayes factor —
sometimes substantially so. But this is not necessarily a
limitation, as robustness checks can be used ensure the
evidence is robust to different prior specifications [43].
Thus, we recommend reporting all assumptions that the
results depend on, along with robustness checks. Third,
inference from Bayes factors depends on the models be-
ing compared. One could compare a non-null hypothesis
(e.g., small effect δ = 0.05) to the alternative prior distri-
bution. This may provide similar evidence for a small ef-
fect compared to the alternative as comparing the null
(δ = 0) to the same alternative. Thus, Bayes factors
should never be interpreted in absolute terms as provid-
ing evidence for or against the null hypothesis. As a con-
sequence, it is inaccurate to say that a Bayes factor can
“prove the null”, as we are only assessing evidence for a
null model proportional to an alternative model. Fourth,
when computing Bayes factors, the prior is often sug-
gested to quantify our belief about the parameters in
question, or to represent our hypothesis. However, in
practice, using default prior distributions does not ex-
press question specific information, unless we believe all
parameters are the same or these defaults happen to suit
our hypotheses. Keeping this caveat in mind, we have
largely adopted the default prior approach, which is gen-
erally advocated for within the psychological literature
[44]. However, for comparison we also present an in-
formed prior approach for t-tests.
Altogether, Bayesian statistics adds an additional fam-

ily of procedures to the researcher’s statistical toolkit,

which can be used to complement classical frequentist
statistics. To help facilitate the wider adoption of Bayes-
ian statistics, we recommend that researchers present
Bayes factors alongside p-values and effect sizes, with
corresponding confidence intervals. We also encourage
researchers to accompany their manuscripts with corre-
sponding .jasp files. As .jasp files integrate data, analysis
input options, and output this will allow readers to in-
spect and recreate reported analyses, which is an import-
ant pillar of reproducible science [45].
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