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Abstract

Background: Although depression has a high rate of recurrence, no prior studies have established a method that
could identify the warning signs of its recurrence.

Methods: We collected digital data consisting of individual activity records such as location or mobility information
(lifelog data) from 89 patients who were on maintenance therapy for depression for a year, using a smartphone
application and a wearable device. We assessed depression and its recurrence using both the Kessler Psychological
Distress Scale (K6) and the Patient Health Questionnaire-9.

Results: A panel vector autoregressive analysis indicated that long sleep time was a important risk factor for the
recurrence of depression. Long sleep predicted the recurrence of depression after 3 weeks.

Conclusions: The panel vector autoregressive approach can identify the warning signs of depression recurrence;
however, the convenient sampling of the present cohort may limit the scope towards drawing a generalised conclusion.

Keywords: Depression, Kessler psychological distress scale, Kurashi-app, Lifelog, Long sleep time, Panel vector
autoregressive model, Patient health Questionnaire-9

Background
Depression has a high rate of recurrence. Epidemio-
logical and clinical evidence suggests that major depres-
sive disorder typically follows a recurrent course, with a
third to half of the patients relapsing within 1 year of
discontinuation of treatment [1]. The greater the num-
ber of prior depressive episodes, the higher is the prob-
ability of a future recurrence [2, 3]. Therefore, it is very
important to identify the warning signs of recurrence
early in order to prevent it.
A large number of studies have investigated the environ-

mental factors that predict depression recurrence. Social
support including marriage may reduce the recurrence risk
[4], and women are more vulnerable to depression recur-
rence in midlife [5, 6]. However, factors such as educational
attainment, socioeconomic status, life events, and number

of children have shown no significant association with de-
pression recurrence [6]. Key lifestyle factors that may pre-
dict recurrence are still poorly understood. One study
involving healthy individuals found that a more irregular
social rhythm—not going to bed or eating meals at a similar
time every day—was predictive of dismal mental health [7].
In recent years, it has become easier to obtain lifelog data
from smartphones and wearable devices. Lifelog refers to
digital data of individual activity records such as location
information or mobility information. Nevertheless, no study
has investigated the relationship between depression recur-
rence and the daily activities of patients in remission.
Statistical analysis is often laden with ambiguities

when investigating the relationship between mental
health status and lifestyle factors (e.g., sleeping habits).
Cox proportional-hazards models are commonly used
when examining time to recurrence [2, 4, 8–10] or when
testing for moderation of maintenance-treatment effects
on recurrence [11]. However, survival analysis using Cox
proportional-hazards models cannot take into account
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the bidirectional relationships between lifestyle factors
and poor mental health status. For example, insomnia
can increase depression risk and vice versa [12]. On one
hand, the value of weekly Kessler Psychological Distress
Scale (K6) in the current period is likely to correlate
with its value in the previous period; whereas on the
other hand, bidirectional causal relationships between
weekly K6 and its closely related variables might be dis-
covered. The changes in lifestyle can be seen as the pre-
dictors of future recurrence of depression, or as
precursors that are early signs of depression recurrence.
The estimation function should include two aspects of
predictors and precursors, regardless of whether true
roles are independent predictors or not.
Therefore, multivariate regression such as vector auto-

regressive (VAR) models must be used when analysing
possible risk factors of depression recurrence. The VAR
models fit each dependent variable on past lags of itself.
In the present study, we examined whether the change

of activity record on weekly basis calculated from lifelog
data collected via smartphone and a wearable device,
such as time spent sleeping, exposure to ultraviolet (UV)
light, number of meals, etc., could predict the recurrence
of depression among patients with major depression re-
mission. We estimated panel VAR (PVAR) models con-
sidering both directions of the relationship between risk
factors of recurrence and poor mental health status.
This manuscript is organised as follows. Section 2 out-

lines the characteristics of the data collected through
lifelogging applications via a smartphone app and a
wearable device. In this section, the variables of interest
and the empirical methods are described. Section 3 re-
ports the estimation results of the PVAR models. Section
4 discusses the specificity of this study. Finally, Section 5
contains the conclusions.

Methods
This study explored the dynamic interdependencies be-
tween poor mental health status and lifestyle factors. We
used PVAR models that have lags of all endogenous vari-
ables and analysed the weekly interdependencies among
variables of interest.

Procedures
We used a smartphone (iPhone, Apple inc.) app called
Kurashi-app (“kurashi” means “life” in Japanese) and a
wearable device (Silmee W20, TDK Co. Ltd., Japan) to
collect lifelog data from 89 patients who had suffered
from major depression, but were then in remission. We
collected the activity diaries of the patients over a period
of 1 year.
There are some advantages of having patients record

their activity diaries via a smartphone. First, it is easier
for patients to record their activity, regardless of time

and place, compared to the conventional method of pen
and paper. Secondly, utilizing the lifelogs, patients can
record their activity diaries more easily. The Kurashi-
app collects individual’s lifelogs via smartphone and esti-
mates their activities based on them. It predicts 16 types
of activities from lifelog data of location information,
mobility information, and steps information and displays
them on screen. The patients are expected to check
them every day, and when the prediction is incorrect,
they can rectify it. Consequently, the precision of the
prediction improves. The recordings of the 16 activities
on Kurashi-app can therefore be regarded as semi-
automated self-reports. The system is expected to in-
crease precision and to reduce burden on the part of the
participants. When being presented with their estimated
activities, users can be helped to record activity diaries
even when they cannot distinctly remember certain ac-
tivities from their daily lives [13].
The Kurashi-app includes 16 kinds of activities: meeting

friends or family, bath/shower, childcare/caregiving, com-
muting, domestic work, exercise, hospital, meal, shopping,
sitting idly, sleep, study/work, hobby/entertainment/learn-
ing, TV/DVD/game/music, reading/newspaper/magazine,
and other activities. These 16 activities were selected from
the classification of the Basic Survey on Social Life (Shakai
seikatsu kihon chosa) by the Statistics Bureau of the Min-
istry of Internal Affairs and Communications in Japan. Sit-
ting idly is included because “time spending vaguely
without doing anything in particular” is considered im-
portant with regard to poor mental health status. The
Kurashi-app extracts clusters of activities where patients
stay for more than 30min at a time.
Simee W20 is a wrist watch type wearable device

which can collect UV data automatically, in addition to
location and mobility information.
We collected the activity diaries of each patient for 1

year. Outpatients were recruited at four university hospi-
tals and their associated hospitals and clinics. Kyoto
University was the central secretariat, and the 4 univer-
sity hospitals were Kochi University, Hiroshima Univer-
sity, Nagoya City University, and Toho University. We
recruited a hundred patients in total into the study be-
tween October 2016 and March 2017. Ten patients
withdrew themselves from the study; while one patient
did not meet the inclusion criteria and was therefore ex-
cluded. Inclusion criteria were as follows: (1) age be-
tween 22 and 69 years; (2) meet DSM-5 criteria for
major depressive disorder, recurrent; (3) in remission as
defined by the Beck Depression Inventory-II score of 9
or less [14]; (4) with or without anxiety disorder or dys-
thymia; (5) able to use a mobile phone; (6) able and will-
ing to participate in the study. We excluded patients
with bipolar disorder, substance use disorder, psychosis,
and personality disorder.
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We used two screening and diagnostic tools to assess
depression, K6 and the Patient Health Questionnaire-9
(PHQ-9). Using the Kurashi-app, patients completed
the K6 by themselves once a week. However, such re-
cordings are prone to lapses because they rely on
self-reports on the smartphone. At the doctor’s con-
sultation every 4 weeks, clinical study coordinators of
Kyoto University assessed the patients through the
PHQ-9 on the telephone. When the patients failed to
visit the doctor, we contacted them by telephone to
make the monthly assessments with PHQ-9 in order
to minimise carelessness.
The K6 is a six-item screening instrument assessing

psychological distress developed by Kessler and his col-
leagues [15]. Respondents rated how frequently they had
experienced the following six symptoms over the past 7
days: a) feeling nervous, b) feeling hopeless, c) feeling
restless or fidgety, d) feeling depressed to the point that
nothing could cheer you up, e) feeling everything was an
effort, and f ) feeling worthless. Respondents rated each
item using a 5-point scale: 0 (“none of the time”), 1 (“a
little of the time”), 2 (“some of the time”), 3 (“most of
the time”), or 4 (“all of the time”). Responses to the six
items were summed to yield a K6 score between 0 and
24, with higher scores indicating a greater tendency to-
wards mental illness. Using the receiver operating char-
acteristic curve, Prochaska et al. [16] identified a K6
score ≥ 5 as the optimal cut-off point indicative of mod-
erate mental distress. The coefficient of correlation be-
tween K6 and the Hamilton Depression Rating Scale
was 0.516 at the 1% significant level [17].
The PHQ-9 questionnaire asks respondents how fre-

quently they have experienced the following nine symp-
toms over the past 2 weeks: a) having little interest or
pleasure in doing things, b) feeling depressed or hope-
less, c) having trouble staying asleep or sleeping too
much, d) feeling tired, e) having poor appetite or over-
eating, f ) feeling bad about oneself, g) having trouble
concentrating on things, h) moving or speaking so
slowly that other people could have noticed, i) having
thoughts that you would be better off dead. Respondents
rated each item using a 4-point scale: 0 (“not at all”), 1
(“several days”), 2 (“more than half the days”), or 3
(“nearly every day”). The PHQ-9 is commonly used to
screen for depression with 10 as the cut-off score; a
score of 10–14 indicates moderate depression, 15–19
moderately severe depression, and 20–27 severe depres-
sion. We have slightly modified the time frame for
PHQ-9 in this study and asked the participants to rate
their symptoms during the worst two weeks of the past
month, in order to increase sensitivity to detect a de-
pressed episode between the monthly assessments. The
item responses on the PHQ-9 exhibited the same math-
ematical pattern as the other depression screening scales

such as K6 and the Center for Epidemiological Studies
Depression Scale [18].
Daily chart of the 16 activities were visualised on the

Kurashi-app, and all participants could check the data
themselves at any time. The data from wearable device
could be checked by connecting the device to their
iPhone (this task was voluntary).
Since participants experienced some recurrence of de-

pression, their motivations to know the sign of recur-
rence was high. We paid 5000 JPY (= about 47 USD) per
month to the participants for 1 year. About half of the
participants had their own iPhone and downloaded the
app. To the remaining half, we lent our study iPhones,
which were returned after the follow up period. We also
lent wearable devices to all participants. The patients
were expected to don the wearable device except when
they bathed. We also accepted it when some patients
preferred not to wear it while asleep. All data obtained
from the app and wearable device were uploaded to the
database server at Kyoto University. We monitored the
adherence of the participants and reminded them when
the adherence dropped during their monthly visits to
the clinics/hospitals.

Collected data
We analysed the data of K6 score in order to observe
weekly change of mood. Because K6 is a self-reported
questionnaire on the smartphone, some participants for-
got to enter their responses on the Kurashi-app weekly.
When K6 data is missing, the lagged variables of the
PVAR models do not show real-time differences. In
order to avoid this problem, the researchers must sup-
plement missing data. Assuming that data is missing at
random (MAR), to supplement missing K6 data, we used
the PHQ-9 score as an explanatory variable of the mul-
tiple regression equation. Daily missing data was not as-
sociated with the recurrence of depression, and we used
its imputed series for weekly data series.
When dealing with MAR data, we can consider that

the probability distribution of missing data is independ-
ent of that of non-observational data. We conducted Lit-
tle’s CDM (covariate-dependent missingness) test [19] as
a special case of MAR. The CDM test gave a p-value
0.102 and the hypothesis that the variables of interest
are MCAR (missing completely at random) were not
rejected at the 5% significance level. Therefore, the esti-
mate is biased when one ignores the missing data [20].
We corrected this bias by estimating the regression
equation using auxiliary variables. A previous study
showed that the use of many auxiliary variables may
contribute to satisfy the premise of MAR [21].
The regression equation approach may underestimate

the standard deviation of the true value. However, Stata
(ver. 15) cannot run PVAR models after multiple
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imputations. We thus estimated the multiple regression
equation and imputed missing variables. The long length
of activity diaries may increase the number of recurrence
episodes over the sample period. Considering this, re-
searchers must pay attention to heteroskedasticity prob-
lems. We used the number of weeks from entry in the
study as the analytic weight of the regression equation.
This variable is inversely proportional to the variance of
observations. Lifelog data were aggregated by the week.
Explanatory variables of the regression equation to im-
pute K6 data were as follows: PHQ-9 score, mean of
sleep hours during the past week, long sleep time, short
sleep time, gender, educational attainment, occupational
status, and marital status.
We selected the variables of the PVAR models as fol-

lows. The first candidate variables were enough time
spent sleeping and exposure to UV light. These are good
lifestyle factors recommended by Sarris et al. [12]. The
second candidate variables were selected using a two-
sample t-test for difference of means. The homogeneity
of variance was assumed. The two-sample t-test (the
sample was divided between those with long sleep time/
short sleep time and without) showed differences for five
variables: meal, sitting idly, study/work, domestic work,
and exercise. Finally, we calculated the correlation coef-
ficient between K6 scores and these five activity vari-
ables, and selected two as explanatory variables of the
PVAR models. The correlation coefficients of the two
variables with K6 scores were 0.229 for sitting idly and
0.199 for the number of times lunch was not eaten.
The UV light exposure data were collected every mi-

nute by a wearable device Silmee W20. We defined a
missing UV light value when collected data was below
80% of 1440min (1152 min). Major reasons for missing
out on UV light data were depleting battery life or re-
strained donning of the wearing device because of peri-
odic irritation. Considering the differences in eating
habits, we calculated a standardised variable of the num-
ber of times lunch was not eaten and used it as an ex-
planatory variable of the PVAR models. We used
standardised variables in order to accommodate patient
heterogeneity that may account for large portion of total
variances of key variables when using non-standardised
variables. Since the standard deviation of the number of
times lunch was not eaten was a large value of 2.46, we
considered that the raw variable did not capture the dif-
ferences in eating habits. Like the procedure for K6
scores, we imputed missing values of UV light and the
standardised variable of the number of times lunch was
not eaten.

PVAR model
As a key dependent variable of weekly K6, we considered
a 5-variate PVAR of order p with panel-specific fixed

effects represented by the following system of linear
equations:

Y it¼Y it−1A1 þ Y it−2A2 þ⋯þ Y it−pAp þ XitB
þ vit þ eit ð1Þ

where Yit is a (1 × 5) vector of dependent variables; Xit is
a (1 × q) vector of exogenous covariates; vit and eit are
(1 × 5) vectors of dependent variable-specific fixed-
effects and idiosyncratic errors, respectively. The (5 × 5)
matrices A1, A2,…, Ap and the (q × 5) matrix B are pa-
rameters to be estimated.
With the presence of lagged dependent variables in

the right-hand side of the system of equations, estimates
would be biased even with a large N [22]. Fixed-effects
estimation tends to underrate the predictions of the co-
efficient of the lagged dependent variables. Taking these
problems into consideration, following the procedure of
Michael-Abrigo and Love [23], we used unbalanced
panel data and estimated PVAR models by fitting a
multivariate panel regression of each dependent variable
on lags of itself and on exogenous variables. The estima-
tion was done using the generalised method of moments
(GMM). Because the presence of a unit root will invali-
date the GMM specification, the estimates of the PVAR
model must satisfy the stability condition. If all the ei-
genvalues lie inside the unit circle, the stability condition
of the PVAR model is satisfied and the PVAR model is
invertible.
We specified the PVAR model as follows. First, using

the overall coefficient of determination (CD), we speci-
fied the maximum lag order to be included in the PVAR
model. As explained below in section 3.1, the PVAR
model consisted of five dependent variables as follows:
the natural logarithm of {(K6 + 1)/square root of the
number of episodes}, dummy variable of long sleep time
or short sleep time, standardised variable of the number
of times lunch was not eaten, natural logarithm of stan-
dardised variable of UV light, and dummy variable of sit-
ting idly. Because the K6 repeated with relatively high
frequency may cause respondent’s “learning curve” reac-
tion, we used the square root of the number of previous
episodes to control for each patient’s past experiences of
depression. All the patients suffered from recurrent de-
pression and those with increased numbers of previous
episodes tended to report, on average, higher K6 scores.
In order to balance the sensitivity of K6 scores across
the subjects with variable number of previous episodes,
we divided their natural logarithm of (K6 + 1) scores by
the square root of their number of previous episodes.
Second, we confirmed the stability condition of the es-

timated PVAR model. Third, based on the value of CD
shown in Table 1, we decided that the maximum lag
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order was 4. The CD captures the proportion of vari-
ation explained by the PVAR model as follows:
CD = 1–(determinant of covariance matrix of idiosyn-

cratic errors/determinant of unconstrained covariance
matrix of the dependent variables).

Results
Patient characteristics and PVAR variables
Initially we recruited 100 patients, but one patient was
found not to have met the inclusion criteria at baseline
and was therefore excluded. Of the 99 remaining pa-
tients, 10 dropped out. The reasons were as follows: too
burdensome (n = 6), house relocation (n = 2), recovered
(n = 1), and lost to follow up (n = 1). While 92 % of activ-
ity diaries during the sample period were recorded, the
patients corrected one third of estimated activities by
the Kurashi-app. Table 2 shows the characteristics of pa-
tients at the baseline and the variables of the PVAR
models are shown in Table 3. The mean age of patients
at the time of entry was 44.3 years; 74% of patients had
received education after high school graduation. The lar-
gest proportion had regular employment (54%), followed
by inactive persons (16%) and part-time workers (13%).
Married persons accounted for 54% of the sample,
followed by those who never married (33%) and divorced
persons (12%). The mean age at the first depression epi-
sode was 34.9 years. The mean time period from the first
episode was 9.4 years. The mean number of depression
episodes was 2.5. The correlation between the time from
the first depression episode and the number of episodes
was significant at the 1% level. The correlation coeffi-
cient was 0.38 for women and 0.33 for men.
It is well known that there is a positive relationship be-

tween sleep disorders and depression [24]. Taking this
relationship into account, we defined dummy variables
of both long sleep time and short sleep time. Hours of
sleep were considered the total hours slept from noon of
the previous day to noon of the current day. The
dummy variable of long sleep time took the value of 1
when the number of hours of sleep was higher than the
sum of mean hours of sleep over the past 7 days and its

standard deviation. In contrast, the dummy variable of
short sleep time took the value of 1 when the number of
hours of sleep was lower than the difference between the
mean hours of sleep over the past 7 days and its stand-
ard deviation. Long sleep and short sleep were defined
according to the sleep time which participants had self-
reported on Kurashi-app.

Estimation results
We excluded two patients whose K6 scores were ex-
tremely high through the study period, and thus used 87
samples (Average Observations per panel = 44.33 weeks)
for the PVAR model estimation (Fig. 1). Because invari-
ant variables such as educational attainment are ex-
cluded when estimating PVAR models, we used a
seasonal dummy variable and a pseudo-positive dummy
variable as exogenous variables. The seasonal dummy
variable took the value of 1 if the month during the
study period was December or January, and 0 otherwise.
The pseudo-positive dummy variable took the value of 1
if K6 score > 9 and PHQ-9 score < 5. It means a false
alarm of recurrence of depression. The prevalence of
pseudo-positive was 0.3% (17/4863).

Table 1 Maximum lag order of PVAR

Number of participants = 87

Average number of weeks = 41.95

Lag CD

1 0.98562

2 0.98827

3 0.98933

4 0.98972

5 0.98762

6 0.96484

CD coefficient of determination, T Observations per panel

Table 2 Characteristics of patients

Variables Number (%) or Mean (SD)

Gender (Male) 49 (55.1)

Age 44.3 (10.8)

Educational background

Junior high school 3 (3.4)

High school 20 (22.5)

University, etc. 66 (74.2)

Occupational status

Regular worker 48 (53.9)

Part-time worker 12 (13.5)

Leave 3 (3.4)

Homemaker 6 (6.7)

Retired 3 (3.4)

Inactive 14 (15.7)

Other 3 (3.4)

Marital status

Never married 29 (32.6)

Divorced 11 (12.4)

Widowed 1 (1.1)

Married 48 (53.9)

First depression episode

Age at first episode 34.9 (11.6)

Years from first episode 9.4 (5.8)

Number of episodes 2.5 (1.7)

N = 89
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The PVAR model using the whole sample, which in-
cluded five dependent variables and four lags, satisfied
the stability condition. The estimated coefficient indi-
cated that 3-week lagged long sleep increased the K6
score in the present week. Results of Model I (N = 87)
indicated that long sleep time in patients predicted the
recurrence of depression after 3 weeks (Table 4). The es-
timated coefficient of this week-lagged long sleep was
0.172. This implies that long sleep time increased the K6
score from 5 to 6.126 after 3 weeks. Model I had positive
lagged effects of long sleep on K6 and not eating lunch,
and negative lagged effects of K6 on not eating lunch
(not shown in Table 4).
The prevalence of long sleep time was about 6% in the

patients aged 50–59 years, while it was almost 3% in the
other age groups. Patients aged 50–59 years had a higher
regular employee ratio (72.2%), and the proportion of
regular employees in the other age groups was 50.3%.
Because there was an intergenerational difference in
both the prevalence of long sleep time and regular em-
ployee ratio, we used sub-samples. We estimated two

PVAR models: (II) sample excluding patients aged 50–
59 years (N = 69) and (III) patients aged 50–59 years
(N = 18).
Model II with a pseudo-positive dummy variable con-

sisted of five dependent variables, which satisfied the sta-
bility condition (lags = 4, CD = 0.987953). On the other
hand, model III without a pseudo-positive dummy vari-
able consisted of four dependent variables, which satis-
fied the stability condition (lags = 4, CD = 0.994561). A
pseudo-positive dummy variable was not significant in
model III.
Tables 5 and 6 show the estimation results of models

II and III. We found that long sleep time was an import-
ant risk factor for the recurrence of depression. Model II
excluding patients aged 50–59 years suggested two as-
pects of long sleep time as a strong predictor of depres-
sion recurrence. First, we found a replicated effect
including positive lagged effects of long sleep on K6 and
not eating lunch, and negative lagged effects of K6 on
long sleep and not eating lunch. Secondly, long sleep
time was a superior predictor of depression recurrence,

Table 3 Dependent variables of panel vector autoregressive (PVAR) models

Variables N Mean SD Min Max

K6 4830 4.19 4.35 0.0 24.0

Natural logarithm of (K6 + 1) 4830 1.30 0.87 0.0 3.22

Daily sleep hours during the past week

Mean 4476 7.99 1.61 0.9 20.1

SD 4401 1.48 1.05 0 8.5

Coefficient of variation 4401 0.19 0.14 0 2.6

Dummy variable for long sleep 4863 0.04 0.19 0 1

Dummy variable for short sleep 4863 0.04 0.21 0 1

Daily hours sitting idly during the past week 4501 1.13 1.43 0 14.5

Daily UV light during the past week 4840 16.47 16.66 0 136.6

Number of days of not eating lunch 4863 2.48 2.46 0 7

Four university hospitals and their associated hospitals and
clinics (from October 2016 to March 2017)

100 patients

89 patients

87 patients

10 patients withdrew their consent

1 patient was not to be met inclusion criteria

2 patients whose K6 scores were extremely high
over the study period

Fig. 1 Flow chart of recruited patients. Note: Inclusion criteria are as follows: (1) Age between 22 and 69 years; meet DSM-5 criteria for major
depressive disorder recurrent episode; (3) Beck Depression Inventory-II score 0–9 (which means remission); (4) with or without anxiety disorder or
dysthymia; (5) able to use mobile phone; (6) able and willing to participate in the study
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compared to other factors because not eating lunch did
not have a significant effect on K6 at the 5% level.
Results of PVAR indicate that a long sleep in patients

aged 50–59 years predicted the recurrence of depression

after 4 weeks (Table 6), and a long sleep in the other age
groups can predict it after 3 weeks. The estimated coeffi-
cient of this week-lagged long sleep was 0.271 (Table 5).
This implies that long sleep time increased K6 score

Table 4 PVAR model I (N = 3857)

Selected variables Natural log of {(K6 + 1)/square root of the
number of episodes}

Number of times not eating lunch
(standardized)

Natural log of
UV light

Long
sleep

Sitting
idly

Not eating lunch (−1) 0.0117 0.338*** 0.00208 −0.0385 0.0864

(0.0431) (0.0430) (0.0116) (0.0465) (0.0630)

Not eating lunch (−2) −0.00159 0.191*** −0.00408 − 0.0415 0.0740

(0.0364) (0.0371) (0.0103) (0.0402) (0.0571)

Not eating lunch (−3) −0.0581* 0.111*** 0.00909 −0.0301 0.0132

(0.0348) (0.0353) (0.00885) (0.0355) (0.0509)

Not eating lunch (−4) 0.00318 0.0810*** −0.0106 −0.00718 0.0219

(0.0304) (0.0308) (0.00793) (0.0336) (0.0441)

UV (−1) − 0.0411** −0.0628*** 0.00183 0.450*** 0.0495**

(0.0185) (0.0192) (0.00523) (0.0248) (0.0251)

UV (−2) 0.00857 −0.0205 0.00640 0.164*** 0.0498**

(0.0166) (0.0170) (0.00521) (0.0238) (0.0235)

UV (−3) 0.00510 −0.0344** − 0.00297 0.109*** −
0.00320

(0.0155) (0.0162) (0.00492) (0.0223) (0.0221)

UV (−4) −0.0229 − 0.0358** − 0.00667 0.135*** 0.0333

(0.0150) (0.0157) (0.00512) (0.0218) (0.0205)

Long sleep (−1) 0.0658 0.173* 0.280*** 0.118 −0.144

(0.0895) (0.0899) (0.0397) (0.103) (0.105)

Long sleep (−2) 0.0807 0.287*** 0.123*** 0.0366 0.0359

(0.0757) (0.0903) (0.0345) (0.0959) (0.115)

Long sleep (−3) 0.172** 0.228** 0.142*** −0.0897 −0.0899

(0.0829) (0.0901) (0.0359) (0.0884) (0.0909)

Long sleep (−4) 0.0933 0.209** 0.109*** −0.0217 0.0441

(0.0830) (0.0841) (0.0343) (0.0900) (0.107)

Sitting idly (−1) −0.00942 − 0.0551** − 0.000905 0.0327 0.327***

(0.0196) (0.0215) (0.00506) (0.0235) (0.0518)

Sitting idly (−2) −0.00372 −0.0298* 0.00194 0.0235 0.120***

(0.0161) (0.0180) (0.00466) (0.0203) (0.0376)

Sitting idly (−3) 0.00581 −0.0308* 0.000352 0.0320* 0.0962***

(0.0151) (0.0162) (0.00475) (0.0186) (0.0366)

Sitting idly (−4) −0.00756 −0.0343** 0.000806 −0.0228 0.0911**

(0.0137) (0.0168) (0.00443) (0.0194) (0.0404)

Seasonal dummy
variable

−0.0102 −0.0802* 0.0144 −0.252*** 0.0773

(0.0402) (0.0416) (0.0109) (0.0488) (0.0575)

Pseudo-positive
dummy variable

1.984*** 0.590 0.108 −0.493** 0.283

(0.197) (0.596) (0.145) (0.233) (0.200)

Number of participants = 87
Average number of weeks = 44.33
Lagged dependent variables are included
Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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from 5 to 6.86 after 3 weeks. Lagged long sleep also
contributed to increase in the number of times
lunch was not eaten in the present week. Table 6
shows that the estimated coefficient of 4-week lagged
long sleep was 0.191, which was smaller than 0.271

above. Lagged long sleep in those aged 50–59 years
had smaller effects on K6 scores this week, com-
pared to the other age groups. Moreover, 4-week
lagged UV light exposure had a decreasing effect on
K6 this week.

Table 5 PVAR model II (N = 3023)

Selected variables Natural log of {(K6 + 1)/square root of the
number of episodes}

Number of times not eating lunch
(standardized)

Natural log of
UV light

Long
sleep

Sitting
idly

Not eating lunch (−1) 0.00237 0.295*** −0.0364 − 0.00678 0.0985

(0.0462) (0.0459) (0.0515) (0.0124) (0.0673)

Not eating lunch (−2) −0.0225 0.167*** −0.00376 − 0.0165 0.0553

(0.0393) (0.0392) (0.0435) (0.0107) (0.0608)

Not eating lunch (−3) −0.0734* 0.0875** −0.0256 −0.000261 0.00743

(0.0378) (0.0374) (0.0384) (0.00932) (0.0549)

Not eating lunch (−4) − 0.00421 0.0561* −0.0200 − 0.0101 0.0209

(0.0328) (0.0325) (0.0359) (0.00853) (0.0458)

UV (−1) −0.0394* −0.0726*** 0.421*** 0.00492 0.0631**

(0.0224) (0.0238) (0.0295) (0.00599) (0.0289)

UV (−2) 0.00750 −0.0187 0.161*** 0.00253 0.0285

(0.0200) (0.0203) (0.0271) (0.00584) (0.0268)

UV (−3) 0.00711 −0.0440** 0.116*** −0.00524 − 0.0106

(0.0188) (0.0196) (0.0257) (0.00552) (0.0252)

UV (−4) −0.0181 −0.0490** 0.142*** −0.00550 0.0370

(0.0185) (0.0193) (0.0249) (0.00557) (0.0233)

Long sleep (−1) 0.126 0.214* 0.152 0.239*** −0.111

(0.113) (0.115) (0.115) (0.0461) (0.134)

Long sleep (−2) 0.0804 0.266*** 0.0850 0.0823** 0.0514

(0.0904) (0.102) (0.0958) (0.0376) (0.120)

Long sleep (−3) 0.271*** 0.351*** −0.111 0.128*** −0.0567

(0.0999) (0.107) (0.102) (0.0417) (0.113)

Long sleep (−4) 0.104 0.282*** 0.0973 0.0614* 0.0433

(0.103) (0.0981) (0.0964) (0.0365) (0.133)

Sitting idly (− 1) −0.0134 − 0.0508** 0.0346 −0.00207 0.357***

(0.0211) (0.0231) (0.0238) (0.00530) (0.0611)

Sitting idly (− 2) − 0.0115 − 0.0332* 0.0302 0.00375 0.104**

(0.0171) (0.0188) (0.0207) (0.00513) (0.0446)

Sitting idly (−3) 0.00236 −0.0250 0.0306 −0.00170 0.114***

(0.0159) (0.0167) (0.0195) (0.00441) (0.0436)

Sitting idly (−4) − 0.00217 − 0.0399** − 0.0174 −0.00554 0.0935*

(0.0145) (0.0176) (0.0190) (0.00438) (0.0493)

Seasonal dummy
variable

0.00857 −0.111** −0.246*** 0.0175 0.0604

(0.0491) (0.0513) (0.0560) (0.0120) (0.0649)

Pseudo-positive
dummy variable

1.969*** 0.737 −0.517* 0.101 −0.0780

(0.227) (0.721) (0.311) (0.154) (0.230)

Number of participants = 69
Average number of weeks = 43.81
Lagged dependent variables are included
Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Discussion
The main findings of the present study were as follows.
A PVAR analysis indicated that long sleep predicted the
recurrence of depression after 3 weeks. Long sleep in pa-
tients aged 50–59 years predicted the recurrence of

depression after 4 weeks, and long sleep in the other age
groups predicted recurrence after 3 weeks.
Sleep disturbance is one of the diagnostic symptoms of

major depression and is closely associated with depres-
sion, mainly in the form of insomnia (approximately

Table 6 PVAR model III (N = 834)

Selected variables Natural log of {(K6 + 1)/square root of the
number of episodes}

Number of times not eating lunch
(standardized)

Natural log of
UV light

Long
sleep

Sitting
idly

Not eating lunch (−1) − 0.0535 0.302*** −0.00145 − 0.000906 − 0.0169

(0.0709) (0.0940) (0.0676) (0.0167) (0.0930)

Not eating lunch (−2) 0.00318 0.152* −0.172** 0.0294 0.140

(0.0602) (0.0913) (0.0732) (0.0231) (0.0913)

Not eating lunch (−3) −0.0583 0.0996 −0.0358 0.0304* 0.0537

(0.0635) (0.0912) (0.0680) (0.0180) (0.0823)

Not eating lunch (−4) −0.152 0.0673 −0.0545 − 0.0457** −0.0129

(0.135) (0.0816) (0.107) (0.0216) (0.162)

UV (−1) −0.0632 −0.0265 0.523*** −0.00834 − 0.0544

(0.0441) (0.0376) (0.0578) (0.0113) (0.0574)

UV (−2) −0.00312 −0.0180 0.127** 0.0195 0.125**

(0.0391) (0.0333) (0.0599) (0.0119) (0.0571)

UV (−3) −0.000449 − 0.000159 0.0436 − 0.00159 0.0194

(0.0279) (0.0330) (0.0432) (0.0111) (0.0517)

UV (−4) −0.0529** −0.00642 0.130*** −0.0102 0.00285

(0.0240) (0.0299) (0.0481) (0.0107) (0.0476)

Long sleep (−1) −0.0295 0.0491 0.0586 0.344*** −0.183

(0.108) (0.124) (0.173) (0.0732) (0.157)

Long sleep (−2) 0.204 0.211 −0.0162 0.208*** 0.0810

(0.128) (0.130) (0.181) (0.0687) (0.220)

Long sleep (−3) −0.0191 −0.0858 0.127 0.117* −0.173

(0.130) (0.141) (0.140) (0.0698) (0.133)

Long sleep (−4) 0.191* −0.0327 −0.218 0.203*** 0.0697

(0.105) (0.126) (0.175) (0.0756) (0.149)

Sitting idly (−1) 0.0317 −0.0107 0.0145 0.0121 0.165***

(0.0350) (0.0409) (0.0543) (0.0140) (0.0603)

Sitting idly (−2) −0.00850 0.0431 −0.0792 − 0.0134 0.159

(0.0862) (0.0464) (0.0816) (0.0167) (0.110)

Sitting idly (−3) −0.00393 0.00114 −0.00544 0.00122 0.000576

(0.0516) (0.0399) (0.0533) (0.0133) (0.0645)

Sitting idly (−4) −0.00854 0.0300 −0.0495 0.0234* 0.0202

(0.0285) (0.0395) (0.0455) (0.0130) (0.0535)

Seasonal dummy
variable

−0.126** 0.0424 −0.270*** − 0.00152 0.142

(0.0633) (0.0875) (0.0992) (0.0157) (0.107)

Pseudo-positive
dummy variable

12.66 −3.844 15.84 3.057 −5.221

(21.12) (14.26) (13.99) (2.974) (22.97)

Number of participants = 18
Average number of weeks = 46.33
Lagged dependent variables are included
Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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75%) and less often in the form of hypersomnia (ap-
proximately 10%) [24]. It is one of the most common re-
sidual symptoms of depression [25], which has been
repeatedly found to constitute greater risk for subse-
quent depression recurrence [26, 27]. While it is usually
residual insomnia that has been found to constitute a
risk factor [28], some studies did find hypersomnia to be
a risk factor as well [29]. In either case, however, they
are sleep disturbance measured with an observer-rated
or self-rated symptom inventory and therefore covering
the past one or two weeks, our study was unique in
measuring daily change in sleep hours and singling out
long sleep, rather than short sleep, 3–4 weeks prior to
depression aggravation.
Not eating lunch regularly, sitting idly and UV expos-

ure (as a measure of outings) were candidate variables to
predict depression relapse/recurrence. However, when
taken together with long sleep, they were no longer pre-
dictive. The non-significant nature of their contributions
may be due to low statistical power of the current sam-
ple (n = 89), and their joint predictive capabilities merit
further investigation in a larger sample in the future.
The current explanatory feasibility study has established
that such a study is possible.
This study has important features. First, using the

Kurashi-app, we were able to collect lifelog data from 89
patients for 1 year. While it is difficult for researchers to
analyse sleep habits using conventional pen and paper
methods, accurate information about sleep habits over
longer sample periods allows for an easier empirical ana-
lysis. In general, sleep-diary data tend to be subjective
daily reports of sleep from 1 to 2 weeks [30], which are
data from shorter sample periods than the current data.
Because the Kurashi-app extracts clusters of activities
every 30 min, we were able to record a variety of activ-
ities such as sitting idly. From the viewpoint of the ac-
curacy of activity records, our data of detailed activities,
based on semi-automated recordings, corrected by the
participants under close central monitoring, were super-
ior to data of conventional studies that used several vari-
ants of Life Chart Method to examine mood course over
longer periods of time (see, [31]).
Secondly, we used two screening tools for depression.

By using both K6 and PHQ-9, we imputed the missing K6
data. Missing UV light exposure data were also imputed.
We were able to define a pseudo-positive dummy variable
as a false alarm of recurrence of depression, and used it to
analyse the increase in K6 and PHQ-9 scores, although
this increase was not necessarily indicative of a full de-
pression recurrence above the diagnostic threshold.
Thirdly, we identified predictors of the deterioration of

mental health status quantitatively through the estima-
tion of PVAR models. Our panel VAR model was not li-
able to lead to seriously biased coefficients, compared to

standard panel data methods such as fixed-effects model
or random-effects model. This is a strength of our ap-
proach. Previous studies pointed out efficacy of early
intervention aimed at preventing relapse or recurrence
among high risk populations [32, 33]; however, no prior
studies have established a method for identifying the
signs of recurrence. If one could detect the signs of de-
pression recurrence and perform a cognitive behavioural
therapy intervention in a timely manner, the deterior-
ation of mental health status could be minimised.
On the other hand, the study has some limitations. First,

we did not restrict on medication and psychotherapy, and
therapists could change their treatment depending on the
situation. It might have influenced the relapse. However,
our intention was to capture the approaching relapse even
in such circumstances. Secondly, any prediction model re-
quire replication for extensive validation; however, we did
not have a big enough sample size to ascertain external
validity. We need future studies to examine replication of
our findings. Third, the relapse/recurrence was defined by
self-reports on K6. Finally, the convenient sampling of the
present cohort may limit our ability to generalise findings
from this study.

Conclusion
We found that long sleep time was a risk factor for the re-
currence of depression three to four weeks later. The
PVAR approach using lifelog data could contribute to es-
tablishing a method for identifying the warning signs of
recurrence in patients in remission of major depression.
Future research could focus on identifying the predictors
of long sleep time, which was one of the dependent vari-
ables in the PVAR model in the current study.
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