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Abstract

of each hippocampal subfield in MDD.

state functional connectivity

Background: Many studies have found that the hippocampus plays a very important role in major depressive
disorder (MDD). The hippocampus can be divided into three subfields: the cornu ammonis (CA), dentate gyrus (DG)
and subiculum. Each subfield of the hippocampus has a unique function and are differentially associated with the
pathological mechanisms of MDD. However, no research exists to describe the resting state functional connectivity

Methods: Fifty-five patients with MDD and 25 healthy controls (HCs) matched for gender, age and years of
education were obtained. A seed-based method that imposed a template on the whole brain was used to assess
the resting-state functional connectivity (rsFC) of each hippocampal subfield.

Results: Patients with MDD demonstrated increased connectivity in the left premotor cortex (PMC) and reduced
connectivity in the right insula with the CA seed region. Increased connectivity was reported in the left
orbitofrontal cortex (OFC) and left ventrolateral prefrontal cortex (vVIPFC) with the DG seed region. The subiculum
seed region revealed increased connectivity with the left premotor cortex (PMC), the right middle frontal gyrus
(MFG), the left ventrolateral prefrontal cortex (vVIPFC) and reduced connectivity with the right insula. ROC curves
confirmed that the differences between groups were statistically significant.

Conclusion: The results suggest that the CA, DG and subiculum have significant involvement with MDD.
Specifically, the abnormal functional connectivity of the CA may be related to bias of coding and integration of
information in patients with MDD. The abnormal functional connectivity of the DG may be related to the
impairment of working memory in patients with MDD, and the abnormal functional connectivity of the subiculum
may be related to cognitive impairment and negative emotions in patients with MDD.
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Background

Major depressive disorder (MDD) is a psychiatric illness
that seriously affects society and life [34, 43]. MDD af-
fects 350 million people worldwide each year (WHO,
2017), and its lifetime prevalence can reach 3.4% in
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China [76]. The main symptoms of MDD include per-
sistent negative effects, loss of power, inattention and in-
creased guilt and appetite, which are associated with
abnormal brain function and structure [5]. Furthermore,
the WHO predicts MDD will become the world’s
second-largest disease by 2020 [46]. However, the patho-
physiology of the disease is still unclear and the recur-
rence rate is very high.

The hippocampus is a core component of the limbic-
cortical dysregulation model of MDD, which is involved
in the foundation of MDD neurobiology and plays a very
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important role in memory and cognitive function [25,
41, 51]. Moreover, the hippocampus also plays an im-
portant role in the regulation of stress and emotion [18].
Therefore, the memory deficits and depression experi-
enced by patients with MDD may originate with the
hippocampus [40, 58]. Unsurprisingly, many studies have
found abnormal activation of the hippocampus in pa-
tients with MDD [32, 44]. These findings indicate that
the hippocampus may be involved in the neurobiological
basis of MDD.

Recently, it was discovered that the hippocampus can
be divided into three different subfields for research.
This is because the different subfields of the hippocam-
pus have distinct functions [65]. The three subfields are:
the cornu ammonis (CA), dentate gyrus (DG) and subi-
culum [17] [1]. The CA is related to learning and mem-
ory functions in humans and other mammals, and
mainly participates in short-term image contact, image
formation and fear memory formation. In addition, the
CA plays an important role in medium-term and short-
term spatial memory [28]. The DG, on the other hand,
is the receptacle for incoming spatial information to the
hippocampus. At the same time, it also processes and
encodes spatial information, which plays an important
role in spatial learning and memory [33]. Meanwhile, the
subiculum is the main component of hippocampal infor-
mation output, transmitting information processed from
the DG to the corresponding neuroendocrine system
and is also the effector of the baroreceptor reflex [47].

The hippocampus is composed of several subfields
that are differentially associated with MDD [72].
However, most studies of MDD in hippocampal sub-
fields focus on volume. Many studies have reported
smaller hippocampal subfield volumes compared to
healthy controls [9, 10, 26] however, smaller hippo-
campal subfield volumes in patients with MDD is not
a universal phenomenon, so it is controversial to use
hippocampal subfield volume as a biomarker of de-
pression [3, 16, 59]. Therefore, it is not enough to
study the changes of hippocampal subfield volume in
patients with MDD. We should also explore the dif-
ferences in functional connectivity of hippocampal
subfields between groups.

fMRI research has increased dramatically in recent
years, especially in the field of resting-state functional
connectivity (rsFC). rsFC represents the temporal coher-
ence of the blood-oxygen-level-dependent (BOLD) signal
within or between brain regions or networks during rest,
and subsequently helps to reveal the neurobiological
basis of MDD [45, 62]. Seeing that many studies have
found that some symptoms of MDD are related to ab-
normal rsFC [30, 69], this article uses the method of
resting-state fMRI to explore rsFC of hippocampal
subfields.
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The aim of this study was to extend our understanding
of the role of hippocampal subfields in MDD by examin-
ing rsFC of each hippocampal subfield with the whole
brain along with differences in rsFC of hippocampal sub-
fields between patients with MDD and HCs. We hypoth-
esized that rsFC of each hippocampal subfield would
differ between patients with MDD and HCs and that
rsFC would further elucidate the differences between the
CA, DG and subiculum.

Method

Participants

Patients with MDD were recruited from the Department
of Medical Psychology of Nanjing Brain Hospital, affili-
ated with Nanjing Medical University. HCs were re-
cruited from society through advertising and matched
with MDD patients in terms of age, gender and
education.

Inclusion criteria for patients with MDD included: (1)
conformation to the DSM-IV diagnostic criteria of
MDD, (2) 20-50vyears old, (3) in their first onset, (4)
Scores >18 on the 24-item version of the Hamilton Rat-
ing Scale for Depression (HAMD, Hamilton M, 1960),
(5) right-handed, (6) voluntary participation and signed
informed consent. Exclusion criteria for patients in-
cluded: (1) patients with other psychotic disorders, se-
vere physical illness or infectious diseases, (2) substance
abuse, (3) current pregnancy, (4) MRI contraindications,
(5) patients who received systemic drug therapy, psycho-
therapy or electroconvulsive therapy within 6 months
prior to enrollment.

HCs met the following criteria: (1) 20-50 years old, (2)
right handed, (3) voluntary participation, and signed in-
formed consent. The exclusion criteria for HCs included:
(1) people with nervous system disease, mental illness or
serious physical illness, (2) personal history/family his-
tory of psychiatric disorders or psychiatric illness, (3)
have taken psychotropic drugs or had psychological
counseling within the past 3 months, (4) current preg-
nancy, (5) MRI contraindications.

fMRI data acquisition and processing

All rs-fMRI data were acquired on a Siemens Verio MRI
3.0 Tesla scanner. Before scanning, foam pads and ear-
plugs were used to reduce head movement and noise.
All subjects were instructed to stay awake and close
their eyes during the scan. In order to reduce data er-
rors, subjects whose heads exceeded 3° of motion were
rejected. fMRI scanner parameters: gradient-echo and
echo-planar-imaging, T1-weighted structure image, TR =
1900 ms, TE =2.48 ms, flip angle =90°, FOV =250 mm,
matrix = 256 x 256, 176 slices, slices thickness/gap = 1.0
mm/0.5 mm. T2-weighted functional image: TR = 3000
ms, TE =40 ms, flip angle = 90°, FOV = 240 mm, matrix =
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64 x 64, 32 slices, slice thickness/gap =4 mm/4 mm,
total time = 8min6s.

Rs-fMRI data were preprocessed using Data Processing
Assistant of Resting State fMRI (DPARSF) within the
MATLAB toolbox, which is based on SPM (Statistical
Parametric Mapping) and REST (Resting-State fMRI
Data Analysis Toolkit) (http://restfmri.net/forum/). Data
preprocessing included: realignment and head motion
correction (head motion or rotation greater than 3°
would be excluded), spatial normalization (the functional
images were spatially normalized to MNI (Montreal
Neurological Institute) template and resampled to 3*3*3
mm3) and smoothing (full width at half maximum,
FWHM = 6 mm*6 mm*6 mm). Then, detrending and fil-
tering (0.01~0.08) were used to remove high-frequency
physiological noise and low-frequency drift. We also
regressed out nuisance covariates including 6 head mo-
tion parameters, global mean signal, cerebrospinal fluid
signal and white matter signal. The group differences of
head motion were assessed with the two sample t-test
according to the following formula:

Head

L
T 2i
\/|xi—xi,1|2 + y~y,1> + |zi~zi1|* [78]. The results in-
dicated that there was no significant distinction between
the two groups (two sample t-test, t=-1.3101, p=

0.1943 for translation, and ¢=-1.3132, p=0.1933 for
rotational).

Motion/Rotation==

Hippocampal subfields definition

The hippocampal subfield template we used divided the
hippocampus into three subfields: CA, DG and subicu-
lum (Fig. 1). The hippocampal subfields were divided by
probabilistic maps that had organizational structure
boundaries. Then, they were resliced according to the
spatial voxel size of 3 mm x 3 mm x 3 mm and selected
so that at least 50% of the voxels fell into the seed area
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to make the final seed area. Each voxel belonged to only
one seed area. Then the time course of the seed area
was extracted after averaging the BOLD signals of the
bilateral seed areas, respectively, for the following func-
tional connectivity analysis.

Data analysis

There were no significant differences in age, years of
education or gender between groups at a significance
level of P <0.05. In contrast, there were significant dif-
ferences in HAMD score between the two groups
(Table 1). Analyses were based on the Statistical Package
for the Social Sciences25 (SPSS25) (https://www.ibm.
com/analytics/spss-statistics-software).

After processing, individual- subject level voxel-wise
analyses were built in the REST toolbox (Song et al,
2011) by using Fisher’s r-to-Z transform to convert the
data to Z-scores. In order to identify the differences in
rsFC of each hippocampal subfield with the whole brain
and the differences in rsFC of hippocampal subfields be-
tween patients with MDD and HCs, rsFC analysis was
performed using the second-level model in SPM8.

Finally, the ROC curve, which can discriminate pa-
tients with major depressive disorder from healthy con-
trols, was drawn by using Z scores of hippocampal
subfield rsFC with between-group differences. The ROC
curve was done in SPSS25, with a larger area under the
curve (AUC) providing more accurate results. The Z
scores of rsFC that were extracted from each voxel in
significant clusters were also used to test the correlation
between HAMD scores and functional connections
through Pearson linear partial correlation at 95% confi-
dence level in SPSS25.

Results

Demographics

Demographic and clinical data were collected from par-
ticipants upon recruitment. Patients with MDD and HCs

X =29

¥ =~18

CA
DG

* Subiculum

Z==13

Fig. 1 Hippocampal subfields. CA, cornu ammonis (shown in red); DG, dentate gyrus (shown in blue); subiculum (shown in green)
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Table 1 Comparison of demographic and clinical variables
among MDD and HCs

Variable MDD (n=55) HC (n=25) t/x2 p

Gender (males/females)  20/35 13/12 1315 0.193
Age 34.80 £9.04 3824+1013 -1561 0123
Education 1412£203 1432275 0329 0.744
HAMD 2500£5.16 272+£146 29.548  0.000

MDD major depressive disorder, HCs healthy controls, HAMD Hamilton
Depression Scale

were compared in terms of gender, age, HAMD scores
and years of education. While there were no significant
differences in gender, age or years of education, there
was a significant difference in HAMD scores; HAMD
scores in patients with MDD were significantly higher
than HCs (Table 1).

RsFC of hippocampal subfields

Based on results from the one-sample t test, we observed
positive functional connectivity between the hippocam-
pal subfields (CA, DG and subiculum) and a wide range
of brain regions including the hippocampus, lingual
gyrus, inferior temporal gyrus, amygdala, middle occipi-
tal gyrus, orbitofrontal cortex (OFC) and medial pre-
frontal cortex (mPFC). Negative functional connectivity
was noted between the hippocampal subfields and the
insula, posterior parietal cortex (PPC) and dorsolateral
prefrontal cortex (dIPFC) (Fig. 2 and Table 2).

Results from the one-sample t test also revealed that
there were differences in the rsFC maps of the CA, DG
and subiculum. For instance, positive functional con-
nectivity was exhibited by the anterior cingulate cortex
(ACC) with the CA seed region. In addition, negative
functional connectivity was reported between the DG
seed and the left cerebellum. Finally, negative functional
connectivity was demonstrated between the subiculum
seed and the medial frontal cortex (MFC) and right pre-
motor cortex (PMC) (Fig. 2). The results were corrected
using the FDR method (threshold of P < 0.01).

RsFC alterations between patients with MDD and HCs
Compared to HCs, the CA seed region revealed in-
creased functional connectivity with the left PMC in
MDD. On the other hand, reduced functional connectiv-
ity between the CA and the right insula was also shown.
Furthermore, increased functional connectivity was re-
ported between the DG seed and the left OFC and left
vIPEC. With the subiculum seed region, increased func-
tional connectivity was revealed between the left PMC,
the right MFG and the left vIPFC. In addition, decreased
functional connectivity was shown between the subicu-
lum and the right insula (Fig. 3 and Table 3). Results
were corrected using the AlphaSim method (threshold
of P <0.001, cluster: p < 0.05).
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ROC curves can effectively distinguish between pa-
tients with MDD and HCs by measuring area under the
curve (AUC), with larger areas providing greater accur-
acy. In this study, the AUC of the ROC curves of the left
PMC and the right insula were 0.76 and 0.75, respect-
ively, when the CA was the seed region. The AUC of the
ROC curves of the left OFC and the left vVIPFC were 0.82
and 0.76, repectively, when the DG was the seed region.
The AUC of the ROC curves of the left PMC, the MFG,
the left vIPFC and the right insula were 0.79, 0.77, 0.77
and 0.76, repectively, when the subiculum was the seed
region. In addition, the cutoff point for rsFC altertions
in hippocampal subfields was more than 1.32 and the
cutoff point for the left OFC with the DG seed region
was as high as 1.63, which means that the functional cir-
cuits of hippocampal subfields have potential to aid in
clinical diagnosis (Fig. 4).

Discussion

This study was designed to assess differences between
patients with MDD and HCs in functional circuitry of
each hippocampal subfield, the CA, DG and subiculum,
based on whole-brain rsFC. This article demonstrated
that patients with MDD and healthy controls differed in
the rsFC of each hippocampal subfield. Specifically, pa-
tients with MDD primarily displayed alterations between
hippocampal subregions and the PMC, OFC, vIPFC,
MEG and insula.

In MDD patients and HCs, our findings of positive
functional connectivity between hippocampal subfields
and the hippocampus, lingual gyrus, inferior temporal
gyrus, amygdala, middle occipital gyrus, OFC and mPFC
are consistent with previous studies [6, 13, 35, 52, 53,
74]. Both the hippocampus and the amygdala are part of
the limbic system, thus they are involved in emotional
and social processes, along with the temporal gyrus [19].
Although, compared to those brain regions, the mPFC
has a stronger ability to regulate emotions and cognition
as part of the default mode network (DMN) [66]. More-
over, the temporal gyrus can be combined with the oc-
cipital gyrus, OFC and insula to act together on mood
regulation and emotional processes [13, 19]. Finally, the
lingual gyrus is mainly related to verbal memory and fa-
cial emotion recognition [36]. Also consistent with pre-
vious studies are our findings of negative functional
connectivity between the three hippocampal subfields
(CA, DG and subiculum) and the insula, PPC and dIPFC
(X. H [11, 45].). The PCC belongs to the posterior
DMN, which mainly participates in the process of con-
sciousness and memory through its relationship with the
hippocampus [2, 38]. The vIPFC is part of the central ex-
ecutive network (CEN), which plays a vital role in cogni-
tive tasks with a variety of attentional requirements [39].
All of these findings demonstrate that the CA, DG, and
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Fig. 2 Functional connectivity maps of each hippocampal subfield in MDD and HCs. The results were corrected using the FDR method (threshold

MDD

Z=13

subiculum are involved in emotion and cognitive regula-
tion, suggesting that disruption of those functional cir-
cuits affects cognition, memory and emotion.
Importantly, there were some differences between the
rsFC maps of the CA, DG and subiculum. For instance,
the CA demonstrated positive functional connectivity
with the ACC. The ACC plays a very important role in
working memory [57], which is similar to the function of
the CA. The DG displayed negative functional connect-
ivity with the left cerebellum, which has recently been
discovered to be associated with visual memory and has

the ability to encode visuospatial information [7]. Finally,
negative functional connectivity was shown between the
subiculum and the MFC and right PMC. The MEC is a
region involved in action and motor generation [14].
Similarly, the PMC also has the ability to generate motor
plans. Therefore, these differences between the rsFC
maps of the CA, DG and subiculum must be caused by
the unique function of each hippocampal subfield.
Selecting the CA and subiculum as seed regions re-
vealed increased functional connectivity of the left PMC
in patients with MDD compared to HCs. The PMC is
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Table 2 Resting-state functional connectivity of each
hippocampal subfield

Seed Brain region BA voxel t

CA mPFC 10 35 551
Lingual Gyrus 29 256 19.63
Temporal_Inf_L 21 115 19.63
Amygdala 34 75 19.63
Hippocampus 35 75 19.63
Occipital_Mid_R 19 122 19.63
ACC 24 34 5.80
dIPFC 10 306 -6.09
Insula 13 37 -9.33
PPC 40 233 -933

DG mPFC 1 37 4.62
Lingual Gyrus 29 328 3053
Temporal_Mid_R 21 280 30.53
Middle Occipital Gyrus 19 172 3053
Amygdala 34 76 3053
Hippocampus 35 75 30.53
Left Cerebellum 220 -792
dIPFC 10 148 -7.51
Insula 13 30 -5.85
MFG 40 474 -835
PPC 40 281 -835

Subiculum OFC 11 21 6.04
mPFC 10 50 545
Middle Occipital Gyrus 19 21 21.20
Lingual Gyrus 29 204 21.20
Temporal_Inf_L 21 11 21.20
Amygdala 34 77 21.20
Hippocampus 35 75 21.20
dIPFC 10 181 -857
MFC 9 85 —8.57
PMC 6 73 —8.57
Insula 13 62 —857
PPC 40 334 -10.07

mPFC medial prefrontal cortex, ACC anterior cingulate cortex, dIPFC
dorsolateral prefrontal cortex, PPC posterior parietal cortex, MFG medial frontal
gyrus, OFC orbitofrontal cortex, MFC medial frontal cortex, PMC

premotor cortex

generally understood to convert visuospatial information
into a motor plan specific to the position and shape of
the object [22, 31, 42]. As mentioned above, the CA is
mainly involved in the formation of image and spatial
memory, similar to the role of the PMC [28]. This helps
to explain the increased functional connectivity we ob-
served between the CA and PMC. Moreover, the PMC
can also generate avoidance motivation according to
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expected danger [15], which may be related to the avoid-
ance behavior displayed by patients with MDD. The CA
and subiculum seed regions also revealed decreased rsFC
in the right insula. The insula is a core brain area that is
primarily responsible for integrating cognitive and emo-
tional information [60]. In addition, the dysfunction of
insular has been found in psychosis spectrum disorders,
especially in the first-episode depression patients. More-
over, the insular cortex is related to the cognitive-
affective function [64]. Therefore, the dysfunction of in-
sular cortex will destroy the cognitive and emotional
function of depression patients. The insula is also part of
the hate circuit, which exhibits reduced activation in re-
sponse to both positive and negative emotional stimuli,
which is also consistent with the results of our study
[63]. In addition, the insula is considered a biomarker of
MDD, and many studies have found that the functional
and structural abnormalities presented by the insula are
related to MDD [23, 77]. Therefore, the abnormal con-
nectivity between the CA and the subiculum with the
PMC and insula may be related to the symptoms of
MDD, providing evidence for the pathogenesis of MDD.
Both of these findings are consistent with previous re-
search [4, 21, 45, 49, 68, 70, 75].

The DG seed region revealed increased functional con-
nectivity with the left OFC. The similar functions of the
hippocampus and OFC may explain this [71]; for ex-
ample, since both the hippocampus and the OFC can
predict what is going to happen based on the current
situation [8, 55], the abnormal connectivity between the
DG and OFC may prompt MDD patients to worry ex-
cessively about the future. Also, because the OFC is on
the receiving end of hippocampal input while the DG is
the on receiving end of spatial information into the
hippocampus, this relationship further serves to explain
why functional connectivity between the DG and OFC is
heightened [29, 33]. In addition, many anatomical stud-
ies have found that OFC has abnormal gray matter vol-
ume. Compared with healthy people, OFC volume of
depression patients is smaller. The study also found that
Subjects with OFC dysfunction showed personality
changes, including behavioral inhibition, emotional in-
stability and reduced motivation [79]. Therefore, it can
be concluded that the abnormal connection between DG
and OFC may be the main cause of depression patients’
low motivation.

When the DG and subiculum were used as seed re-
gions, increased functional connectivity was shown in
the left VIPFC. It comes as no surprise then, that many
studies have found that the vIPFC plays an important
role in working memory and other cognitive functions
[50, 54, 67]. In particular, the left VLPFC is involved in
the assessment of emotion and conscious impulse con-
trol. So, impaired function of VIPFC can lead to
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Subiculum-FC
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Fig. 3 The rsFC alterations of each hippocampal subfield between MDD and HCs, as determined using a two-sample t-test. Warm colors show
increased resting-state functional connectivity and cool colors show decreased resting-state functional connectivity with each hippocampal
subfield compared to HC. The color bar represents t-values. MDD: major depressive disorder; HC: healthy control; L-PMC: the left premotor cortex;
R-insula: the right insula; L-OFC: the left orbitofrontal cortex; L-vIPFC: the left ventrolateral prefrontal cortex; R-MFG: the right middle frontal gyrus

R-Insula

abnormal emotional assessment and excessive self inhib-
ition in patients with depression [20]. And, the VIPFC is
responsible for producing a negative emotional experi-
ence [37], so excessive activation of the vIPFC can pro-
duce unpleasant emotions. Therefore, this abnormal
connectivity may give rise to memory loss and negative
emotions in patients with MDD.

Finally, with the subiculum seed region, increased
functional connectivity with the right MFG was found

and this finding is consistent with previous research
[56]. The right MFG plays a very important role in at-
tention as the point of convergence between the dorso-
lateral prefrontal cortex and the ventrolateral prefrontal
cortex [27]. In addition, the MFG is also involved in
regulating emotion/cognition and contingency awareness
[12, 48]. At the same time, the research shows that
MEG, as a part of DLPFC, also has abnormal gray matter
volume, and the dysfunction of this cortex may result in
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Seed Brain region BA Cluster size t Peak MNI coordinates
XY, Z
CA L-PMC 9 23 387 45,69
R-Insula 38 20 -3.63 —45,12, 36
DG L-OFC 1 18 5.02 -39, -39, 18
L-vIPFC 15 3.80 -36,33,3
Subiculum L-PMC 9 35 4.64 —48, 12, 36
R-MFG 6 17 4.07 39,9, 54
L-vIPFC 14 4.08 -39,33,6
R-Insula 38 27 —-384 45,3, -9

MDD major depressive disorder, HCs healthy controls, L-PMC the left premotor cortex, R-insula the right insula, L-OFC the left orbitofrontal cortex, L-vIPFC the left
ventrolateral prefrontal cortex, R-MFG the right middle frontal gyrus

CA

Subiculum

Fig. 4 Receiver operating characteristic (ROC) curve discriminated MDD patients from HCs by evaluating Z scores of rsFC with significant
between-group differences; enhanced accuracy was noted with a larger area under the curve (AUC). With the CA seed region, L-PMC: the left
premotor cortex (AUC:0.76; cutoff: sensitivity:0.60; specificity:0.84); R-insula: the right insula (AUC:0.75; cutoff: sensitivity:0.96; specificity:0.48). With
the DG seed region, L-VIPFC: the left ventrolateral prefrontal cortex (AUC.0.76; cutoff: sensitivity:0.55; specificity:0.92); L-OFC: the left orbitofrontal
cortex (AUC:0.82; cutoff: sensitivity:0.75; specificity:0.88). With the subiculum seed region, L-vIPFC: the left ventrolateral prefrontal cortex (AUC0.77;
cutoff: sensitivity:0.40; specificity:0.92); R-MFG: the right middle gyrus (AUC:0.77; cutoff: sensitivity:0.64; specificity:0.92); L-PMC: the left premotor
cortex (AUC:0.79; cutoff: sensitivity:0.86; specificity:0.56); R-insula: the right insula (AUC:0.76; cutoff: sensitivity:0.92; specificity:0.54)
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damage in retrieval of long-distance memory, manage-
ment of external stimulation, appropriate change of be-
havior and psychological flexibility [79]. Therefore, the
abnormal connectivity between the subiculum and the
right MFG may be related to the lack of concentration,
cognitive dysfunction and excessive worry and tension
experienced by patients with MDD. What’s more, the
subiculum and MFG have similar functions, further
explaining the increase in functional connectivity.

All of the above findings prove that the CA, DG and
subiculum have unique functions and connections with
MDD. Moreover, the abnormal connectivity between
each hippocampal subfield with other brain regions
causes a series of symptoms such as avoidance behavior
in life, low self-evaluation, excessive worry about the fu-
ture, memory loss, tension and bad mood in patients
with MDD. More importantly, through the ROC curve,
we are more convinced that each hippocampal subfield
plays a very important role in the neurobiological basis
of MDD. Therefore, the abnormal connectivity between
hippocampal subfields and other brain regions may be
used as a biomarker for MDD.

This article has some limitations. First, the CA can be
divided into CA1-CA4, but since the 3T MRI scanners
we use are lower in resolution, we cannot accurately dis-
tinguish the difference in functional connectivity be-
tween CA1-CA4. It is hoped that the 7T MRI can be
used in future studies to distinguish the differences be-
tween CA1-CA4. Second, the samples we used included
only Chinese subjects, so we anticipate that future re-
search can be combined with data from the brainnetome
program. Third, this study did not explore the gender
differences of functional connections in the hippocam-
pus, so we should pay more attention to gender differ-
ences in the future research. Finally, our findings did not
correlate with HAMD. It is possible that because most
health controls entered the closed environment of the
MRI for the first time, we did provoke their frightened
and restless instead of MDD patients, thus resulting is
an insignificant relationship between the HAMA score
with the rsFC of abnormal brain areas in patients with
MDD. Therefore, in future research, we should pay more
attention to providing emotional guidance to the partici-
pants, so that all participants can maintain a peaceful
mood, which will make the research results more
accurate.

Conclusion

In conclusion, this study was designed to investigate
rsFC of each hippocampal subfield: the CA, DG and sub-
iculum, with the whole brain as well as their rsFC alter-
ations between patients with MDD and HCs. The
findings demonstrate that there were rsFC differences
between the CA, DG and subiculum and they each have
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significant relationships with MDD. Thus, this paper
emphasizes the importance and contribution of each
hippocampal subfield to MDD, as they may be involved
in its pathogenesis and can be used as a biomarker to
support the clinical diagnosis, treatment and future re-
search of MDD.
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