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Temporal patterns of suicide and
circulatory system disease-related mortality
are inversely correlated in several countries
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Abstract

Background: Nearly 800,000 suicides occur worldwide annually and suicide rates are increasing faster than
population growth. Unfortunately, the pathophysiology of suicide remains poorly understood, which has hindered
suicide prevention efforts. However, mechanistic clues may be found by studying effects of seasonality on suicide
and other mortality causes. Suicides tend to peak in spring-summer periods and nadir in fall-winter periods while
circulatory system disease-related mortality tends to exhibit the opposite temporal trends. This study aimed to
determine for the first time whether monthly temporal cross-correlations exist between suicide and circulatory
system disease-related mortality at the population level. If so and if common biological factors moderate risks for
both mortality types, such factors may be discoverable and utilized to improve suicide prevention.

Methods: We conducted time series analyses of monthly mortality data from northern (England and Wales, South
Korea, United States) and southern (Australia, Brazil) hemisphere countries during the period 2009–2018 (N = 41.8
million all-cause mortality cases). We used a Poisson regression variant of the standard cosinor model to determine
peak months of mortality. We also estimated cross-correlations between monthly mortality counts from suicide and
from circulatory system diseases.

Results: Suicide and circulatory disease-related mortality temporal patterns were negatively correlated in Australia
(− 0.32), Brazil (− 0.57), South Korea (− 0.32), and in the United States (− 0.66), but no temporal correlation was
discernable in England and Wales.

Conclusions: The negative temporal cross-correlations between these mortality types we found in 4 of 5 countries
studied suggest that seasonal factors broadly and inversely moderate risks for circulatory disease-related mortality
and suicide, but not in all regions, indicating that the effect is not uniform. Since the seasonal factors of
temperature and light exert opposite effects on suicide and circulatory disease-related mortality in several countries,
we propose that physiologically-adaptive circulatory system responses to heat and light may increase risk for
suicide and should be studied to determine whether they affect suicide risk. For example, heat and light increase
production and release of the bioactive gas nitric oxide and reduce circulatory system disease by relaxing blood
vessel tone, while elevated nitric oxide levels are associated with suicidal behavior, inverse effects that parallel the
inverse temporal mortality patterns we detected.

Keywords: Suicide, Season, Temperature, Thermoregulation, Light

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: Kaufman@mclean.harvard.edu
1Department of Psychiatry, Harvard Medical School, McLean Imaging Center,
McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
Full list of author information is available at the end of the article

Kaufman and Fitzmaurice BMC Psychiatry          (2021) 21:153 
https://doi.org/10.1186/s12888-021-03159-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12888-021-03159-5&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Kaufman@mclean.harvard.edu


Background
Nearly 56 million deaths occur each year worldwide
including close to 800,000 suicides [1]. While substantial
progress has been made to reduce mortality associated
with circulatory system diseases and cancers [2, 3], sui-
cide deaths in the United States and worldwide continue
to increase [4, 5] at rates faster than population growth
[6, 7], perhaps in part because deaths from other mortality
types are declining. Our slow progress at advancing
suicide prevention is due in part to our incomplete
understanding of the pathophysiology of suicide,
which to date has resulted in the development of few
treatment options [8, 9].
Important clues to better understanding suicide patho-

physiology may be found by considering research on
seasonal variations in mortality patterns for suicide and
for circulatory system diseases, which account for 1.4
and 32%, respectively, of worldwide all-cause mortality
[1]. Peaks and nadirs in suicide deaths tend to occur
in spring-summer and fall-winter periods, respectively
[10, 11]. Conversely, mortality peaks and nadirs for
diseases of the circulatory system tend to occur in
fall-winter and spring-summer periods, respectively
[12, 13]. The same seasonal patterns are observed in
the northern and southern hemispheres [10, 13] meaning
that these temporal patterns likely are a consequence of
seasonal factors such as temperature or light fluctuations. It
has been proposed that physiological mechanisms that
drive seasonal fluctuations in circulatory system morbidity
and mortality, some of which have been identified, could be
exploited to reduce circulatory system disease-related
mortality [14]. By extension, physiological mechanisms
activated by seasonal factors that moderate suicide risk,
some of which could overlap with those driving circulatory
system morbidity and mortality, may be discoverable and
exploited to better identify those at increased risk for
suicide.
Suicide risk increases soon after a major cardiovas-

cular event, presumably as a consequence of increased
depression, anxiety, and hopelessness accompanying
cardiovascular morbidity [15, 16]. However, the effects
of season were not considered in those studies and to

date, a formal evaluation of the degree of temporal
correlation between suicide and mortality from
diseases of the circulatory system has not been
conducted at the population level. Accordingly, we
did this by analyzing multi-year mortality data for
suicide and for diseases of the circulatory system
stratified by month of occurrence. We obtained deidenti-
fied data from official death registries of northern hemi-
sphere (England and Wales, South Korea, United States)
and southern hemisphere (Australia, Brazil) countries.
The dataset included more than 660,000 suicide and 12.2
million circulatory disease-related mortality cases. We
conducted cross-correlation time-series analyses on data
from each country to determine whether temporal
correlations exist between these mortality causes. We
hypothesized that temporal patterns of suicide would
be negatively correlated with temporal patterns of
mortality from diseases of the circulatory system.

Methods
Data
Multiple years of mortality data stratified by month of
occurrence were obtained from official death registries
in Australia [17], Brazil [18], South Korea [19], the
United Kingdom [20], and the United States [21]. Data
were extracted for mortality cases resulting from suicide
(Intentional self-harm, ICD-10 codes X60–84), from dis-
eases of the circulatory system (ICD-10 codes I00-I99),
for all-cause mortality, and were stratified by sex. Other
potentially-relevant demographics including socioeco-
nomic, psychiatric, and medical status are not available
in these databases and thus are not considered in this
analysis. Data demographics are shown in Table 1.

Statistical analysis
First, we considered within-country seasonality of
circulatory disease-related and suicide mortality counts
separately. Second, we considered within-country
cross-correlation between these two mortality types
over time. Parameters of seasonality within countries
were estimated using a Poisson regression variant of
the standard cosinor model. The cosinor regression

Table 1 Mortality sample cases, sex ratios, and proportions of all-cause mortality

Country All-cause N; (%♂/%♀) Circulatory Disorders N; (%♂/%♀)
%All-cause / ♂:♀ratio

Suicide N; (%♂/%♀)
%All-cause / ♂:♀ratio

Australiaa 1,360,772; (51.3/48.7) 404,082; (48.3/51.7) 29.7 / 0.93 24,590; (75.4/24.6) 1.81 / 3.06

Brazilb 11,129,455; (56.4/43.5) 3,103,220; (52.4/47.6) 27.9 / 1.10 98,646; (78.6/21.3) 0.89 / 3.69

England/Wales c 3,008,294; (48.4/51.6) 854,477; (49.9/50.1) 28.4 / 1.00 29,255; (76.4/23.6) 0.97 / 3.24

South Koreab 2,455,047; (54.8/45.2) 531,094; (47.2/52.8) 21.6 / 0.89 126,633; (69.6/30.4) 5.16 / 2.29

United Statesb 23,860,169; (50.6/49.4) 7,369,083; (50.4/49.6) 30.9 / 1.02 386,536; (77.9/22.1) 1.62 / 3.52

Totals (N) 41,813,737 12,261,956 665,660

Years included: a2009–17; b2010–18, c2010–15

Kaufman and Fitzmaurice BMC Psychiatry          (2021) 21:153 Page 2 of 8



model captures a seasonal pattern using sine and cosine
terms that together describe a sinusoidal pattern [22].
In the cosinor model, the number of suicides (or
circulatory disease-related mortality cases) for each
month was considered to be a Poisson count; specific-
ally, the Poisson regression cosinor model for the mean
or expected mortality count is as follows,

log E Mtð Þ½ � ¼ log dayst=30
� �þ b0 þ b1 sin 2πt=12ð Þ

þb2 cos 2πt=12ð Þ þ b3yeart þ b4 yeart
� �2

; t ¼ 1;…; 12;

where Mt is the mortality count in month t. The offset
term, log (dayst/30), is included to adjust the counts for
the unequal numbers of days in each month (dayst). In
addition, a quadratic trend for year of observation was
included to allow for possible time trends, increases or
decreases in the mortality counts over the years. This
model efficiently estimates the month of peak mortality

incidence, the relative rate (RR) of mortality type during the
month of peak incidence compared with the minimum
incidence during the whole year, and a 95% confidence
interval for the RR. Although the counts of suicide and cir-
culatory disease-related mortality are discernibly different,
we note that seasonal patterns of change are modelled on a
relative, not absolute scale. Finally, the cross-correlation
between monthly mortality counts over time was estimated
based on the residuals from the regression of mortality
counts on a quadratic trend for year of observation, to
adjust for trends in mortality over the years.

Results
Of the five countries sampled, three are in the northern
hemisphere (England and Wales, South Korea, and the
United States) and two are in the southern hemisphere
(Australia and Brazil). Brazil spans the equator but more
than 90% of its population lives in the southern hemisphere
[23]. Figure 1 illustrates monthly mortality changes in each

Fig. 1 Monthly suicide and circulatory system disease-related deaths in five countries. Legend: Shown are data for three northern hemisphere
(left panels: England & Wales, South Korea, United States) and two southern hemisphere (right panels: Australia, Brazil) countries as a percentage
of January deaths in each year for each cause. Shown are means (averaged over years sampled) ± standard deviations. These data illustrate that
suicide numbers and deaths from circulatory system-related disease increase and decrease, respectively, in spring-summer periods, with inverse
patterns for each mortality cause occurring in fall-winter periods. Southern hemisphere temporal patterns are inverted versus northern
hemisphere patterns but cross-correlation valences are the same in both hemispheres
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country across all sampled years, expressed as a percent of
total January deaths in all years studied, which adjusts for
trends in mortality across years. Temporal trends are simi-
lar for men and women (data not shown).
For all five countries, there was evidence of seasonality

of circulatory disease-related mortality counts, with
relative rate estimates varying from 16 to 29% higher
during peak months, and with peak incidence in January
in the countries of the northern hemisphere and July in
southern hemisphere countries (Table 2). Thus, for
circulatory disease-related mortality, we find a remarkably
consistent pattern of seasonality, with peak incidence in
January in the northern hemisphere and July in the south-
ern hemisphere.
For all five countries, there also was evidence of sea-

sonality of suicide counts, with relative rate estimates
varying from 8 to 27% higher during peak months, and
with peak incidence in June or July in two of the three
countries of the northern hemisphere and in December
in both southern hemisphere countries (Table 2).
Interestingly, although there was statistically discernible
evidence of seasonality of suicide counts in England and
Wales, the relative rate estimate was low, 1.08 (1.04,
1.12), and with peak incidence in the month of April, 2–
3 months earlier than in the USA and South Korea.
Finally, in four countries there was evidence of a

negative cross-correlation between monthly suicide and
circulatory disease mortality over time, with correlations
ranging from − 0.32 to − 0.66 (Table 2). That is, there
was a negative association between the seasonal counts
of suicide and circulatory disease-related deaths. How-
ever, there was no statistically discernible evidence of
cross-association between suicide and circulatory disease
mortality in England and Wales.

Discussion
We report for the first time using population data from
multiple countries, that negative temporal cross-correlations
exist between mortality resulting from suicide and from
circulatory system-related diseases in four of five countries
studied. Temporal cross-correlations ranged from − 0.32

(Australia and South Korea) to − 0.66 (United States).
These findings suggest that seasonal factors broadly
and inversely moderate temporal patterns for suicide
and circulatory system disease-related mortality to
different extents in each country. Our null finding for
a temporal cross-correlation in England and Wales
highlights that the effects we studied are not uniform
in all regions; the null effect probably is due in part
to a relatively weak seasonal effect on suicide in these
areas (Table 2), consistent with prior studies of this
region reporting marginal [24, 25] or undetectable
[26] effects of season on suicide rates. However, the
patterns we detected in 4 of 5 countries in this study
are consistent with prior reports of seasonal patterns
for circulatory system disease-related mortality [12, 13,
27–29] and for suicide in a number of countries and
regions [10, 11, 24, 25, 30–42]. Although we cannot infer
from our data whether cross-correlations exist in other
countries, studies of temporal patterns of suicide or circu-
latory disease-related mortality in Canada, Chile, Finland,
Greece, Hungary, Iran, Italy, Norway, and Sweden report
apparently inverse temporal patterns for suicide [10, 31,
33, 38–45] and for circulatory disease-related mortality
[13, 14, 29, 46, 47]. Accordingly, it seems possible that the
cross-correlations we identified in 4 countries also exist in
other countries.
Seasonally-fluctuating factors that could regulate these

temporal patterns are temperature and sunlight. Warm
temperatures attenuate risk for circulatory system-related
morbidity and mortality [28, 48–57] and warm tempera-
tures, especially abnormally warm temperatures during
cool months, increase risk, including short-term risk, for
suicide [58–70]. Sunlight similarly moderates circulatory
disease-related morbidity and mortality [29, 49, 71–73]
and suicide risk [44, 58, 74–79] and may contribute to the
temporal cross-correlations we detected. The between-
country cross-correlation differences we found thus could
result from different patterns of seasonal temperature and
sunlight changes in each country.
Since temperature and light exert opposite effects on

suicide and circulatory disease-related mortality in several

Table 2 Estimates of peak and nadir months, rate ratios, and temporal cross-correlation coefficients between mortality types

Circulatory disease-related Suicide

Country Peak Nadir RR (95% CI) Peak Nadir RR (95% CI) Correl. (95% CI)

Australia July Jan. 1.29 (1.26, 1.31) Dec. June 1.14 (1.11, 1.18) −0.32 (−0.44, −0.19)

Brazil July Jan. 1.16 (1.14, 1.18) Dec. June 1.12 (1.10, 1.15) −0.57 (− 0.71, − 0.38)

England & Wales Jan. July 1.29 (1.24, 1.33) April Oct. 1.08 (1.04, 1.12) 0.14 (−0.12, 0.38)

South Korea Jan. July 1.29 (1.26, 1.32) June Dec. 1.27 (1.21, 1.33) −0.32 (− 0.42, − 0.20)

United States Jan. July 1.22 (1.20, 1.23) July Jan. 1.13 (1.11, 1.14) −0.66 (− 0.75, − 0.56)

Legend: Jan. January, Oct. October, Dec. December; RR Rate ratio comparing the relative mortality rate at the peak month to the mortality rate at the nadir month;
Correl. Cross-correlation between monthly suicide and circulatory system disease-related mortality over time. Note: All analyses have been adjusted to account for
the uneven number of days in the month, so that monthly mortality rates have been scaled to an average month of length of 30-days
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countries, it is plausible that physiologically-adaptive
circulatory system responses to heat and light, such as
production and release of the bioactive gas nitric oxide
(NO), could mediate seasonal effects of heat and light on
suicide risk. NO is released as part of thermoregulation,
an adaptive process that tightly regulates body heat to pre-
vent heat stress, which can be fatal [80]. Sunlight and arti-
ficial light also increase systemic NO levels [72, 81–87]
while decreasing blood pressure and vascular resistance
[71, 72, 82, 85, 87]. Because high NO and NO-metabolite
levels are found in people with histories of suicide at-
tempts [88–90], heat and/or light-induced NO increases
could increase risk for suicide. Further, NO-related genes
are associated with risk for suicidal behavior [91–94] and
with phenotypes relevant to suicide including general
psychological distress [95] and depression induced by
economic or psychosocial stressors [96]. Additionally, Liu
et al. [72] modeled effects of seasonal differences in ultra-
violet A (UVA) light, which account for nearly 80% of
broadband light-induced NO release from skin, and
projected greater light-induced NO release after June-like
versus after December-like exposures. Moreover, nitric
oxide synthase gene expression fluctuates seasonally [97]
as do systemic NO metabolite levels, which are highest in
summer and lowest in winter months [98]. Thus, although
it is speculative at this point to suggest that NO changes
play a role in moderating the effects of season on suicide,
evidence from several different sources support this
possibility.
Better access to air conditioning and heating systems

could blunt some of the seasonal temperature extremes
that help drive both mortality types, which could con-
tribute to general declines in these mortality types over
time [1, 4]. Psychological stressors including socioeco-
nomic stress, which can increase risk for suicide [99]
also increase exhaled NO and blood NO-metabolite
levels [100–108]. These findings lend further support to
the possibility that high NO levels contribute to suicide
risk. It is plausible that socioeconomic and other psycho-
logical stressors could combine with seasonal heat and
light-induced NO increases to more substantially in-
crease NO levels and suicide risk.

Limitations
We caution that the estimated peak months, as well as
the peak-nadir rate ratio estimates, may be sensitive to
the cosinor model assumptions. However, we note that
the cosinor model was not adopted for estimation of the
temporal cross-correlations. Further, the time-series
approach used in this study identified temporal associa-
tions but does not provide any information on causal
paths. Future studies are required to determine whether
the temporal cross-correlations we identified can be
found in other regions and can be attributed to NO

fluctuations. As noted above, demographic data includ-
ing socioeconomic, medical, and psychiatric status of de-
cedents are not available in the death registries we
sampled and thus these potentially-relevant factors were
not considered in this study. Also, our method of analyz-
ing data by month and by country, while revealing clear
temporal patterns, likely obscures some temporal effects
and regional differences that might otherwise emerge
with more granular temporal or geographic analyses
(e.g., [38]). Yet, the temporal cross-correlations we
revealed are based on hundreds of thousands of cases
and while it is possible that the findings may ultimately
be found to be artefactual, currently available data from
this and other studies suggest that this is unlikely.

Conclusions
We report negative temporal cross-correlations between
mortality resulting from circulatory system-related dis-
eases and from suicide in four of five countries studied,
supporting the possibility that seasonal factors that
protect against circulatory system-related mortality may
increase risk for suicide in some, but not all, countries.
The field of suicide prevention urgently needs to identify
predictors of suicide risk as current methods are consid-
ered to be of little prognostic value [109–111]. Accord-
ingly, although a number of other biological factors likely
are involved in this complex disorder [94], we propose
that physiologically-adaptive circulatory system responses
to heat and light, such as NO production, may increase
risk for suicide and should be studied to determine its role
in suicide risk.
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