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Abstract 

Background: Previous studies using EEG (electroencephalography) as biomarker for dementia have attempted to 
research, but results have been inconsistent. Most of the studies have extremely small number of samples (average 
N = 15) and studies with large number of data do not have control group. We identified EEG features that may be 
biomarkers for dementia with 120 subjects (dementia 10, MCI 33, against control 77).

Methods: We recorded EEG from 120 patients with dementia as they stayed in relaxed state using a single-channel 
EEG device while conducting real-time noise reduction and compared them to healthy subjects. Differences in EEG 
between patients and controls, as well as differences in patients’ severity, were examined using the ratio of power 
spectrum at each frequency.

Results: In comparing healthy controls and dementia patients, significant power spectrum differences were 
observed at 3 Hz, 4 Hz, and 10 Hz and higher frequencies. In patient group, differences in the power spectrum were 
observed between asymptomatic patients and healthy individuals, and between patients of each respective severity 
level and healthy individuals.

Conclusions: A study with a larger sample size should be conducted to gauge reproducibility, but the results implied 
the effectiveness of EEG in clinical practice as a biomarker of MCI (mild cognitive impairment) and/or dementia.
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Background
The objective of this study was to propose a novel demen-
tia diagnosis system and biomarkers for early MCI (mild 
cognitive impairment) detection and dementia by utiliz-
ing a simple electroencephalography (EEG) device.

Dementia has become a public issue in Japan. It is 
said that one in seven elderly people of 65  years old or 
more is affected with dementia, and it was predicted that 
the total dementia patients in Japan will reach around 
6.5 million to 7 million people in 2025 [1]. Dementia is 

different from other illness in that it requires both public 
and family care. In total, the cost for the dementia care is 
estimated to be approximately 14.5 trillion Japanese Yen 
(JPY) per year and it is very taxing for the Japanese soci-
ety. As a comparison, cancer is estimated to cost around 
9.7 trillion JPY per year [2].

Recently, research projects are focused on prevention 
and early detection of dementia. These are especially 
important because there is no cure or treatment for 
dementia yet. Popular methodologies for early demen-
tia detection utilize neuroimaging techniques such as 
Magnetic Resonance Imaging (MRI) and Positron Emis-
sion Tomography (PET). Although they are accurate, 
neuroimaging techniques are both expensive and time 
consuming. Additionally, conventional neuroimag-
ing techniques can only detect dementia when it has 
been sufficiently developed – i.e., the patient’s brain has 
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suffered irreversible structural damage. As a result, the 
usage of EEG as simpler, cheaper, and easier alternative to 
neuroimaging is starting to become popular.

EEG features has been successfully used to detect Hun-
tington disease and epilepsy, proving their reliability. 
Moreover, as EEG reflects functional changes in the cer-
ebral cortex, detecting dementia before permanent struc-
tural damage in brain might be possible using EEG [3]. In 
addition to dementia, Mild Cognitive Impairment (MCI) 
detection is also an important task. MCI is said to be 
the early stages of dementia, and MCI-afflicted patients 
are more likely to progress into dementia, compared to 
healthy people.

Most of conventional studies that utilized EEG for 
dementia diagnosis system used multi-channel EEG 
devices and did not consider the diagnosis of MCI [4]. 
Additionally, previous studies related to EEG biomarkers 
suffered from low number of samples of lack of control 
groups. Moreover, one of the conventional studies that 
utilize EEG to assess MCI and AD is from Meghdadi 
et al. [5], which successfully built a machine learning for 
dementia / MCI diagnosis system using multi-channel 
EEG setup; unfortunately, multichannel EEG device is 
hard to wear and burdensome to patients. Here, this 
study aims to propose a novel dementia-MCI diagno-
sis system and the possibility of utilizing a comfortable, 
single-channel EEG device as biomarkers for clinical 
screening.

As the proposed system utilized a single-channel EEG 
device, it required less preparation time and also less bur-
densome to the experimental subjects; it can be said that 
the proposed system was an improvement from the con-
ventional systems. Another objective of this research was 
to verify the validity of the dementia diagnosis system 
using the simple measurement by evaluating the feature 
values using statistical analysis and machine learning.

Methods
Participants
The participants of this study were 120 people (67% 
female) aged 40  years old up to 91  years old. The study 
was conducted from year 2016 to 2019. The mean age of 
the participants was 67.0 ± 9.19 years old. EEG, MRI (in 
particular, FA-BHQ and GM-BHQ values were obtained), 
and cognitive screening tests were conducted to screen 
the participants. However only MMSE is utilized in this 
study as variable. This study was approved by the ethics 
committees of Keio University and performed in accord-
ance with the Declaration of Helsinki. Written informed 
consent was obtained from all participants or their legal 
guardian. This study is a case–control study and is obser-
vational in nature; all obtained data were made avail-
able to the caregiver and / or the participant. The study 

protocol was approved by the Keio University Ethics 
Review Board with approval no.: 28–20, 28–59, 29–33, 
30–96, 31–56.

Exclusion criteria for patients were: 1) persons who 
have physical or psychiatric disorders that impede the 
use of EEG; 2) persons who have comorbid psychiat-
ric disorders other than dementia; 3) persons who have 
comorbidities that could interfere with EEG recordings, 
such as brain tumors, stroke, or epilepsy.

For the comparison, reference data for healthy individ-
uals that were obtained separately from this study were 
used. Inclusion criteria for healthy individuals were: 1) no 
history of mental illness; 2) legal adult defined by Japa-
nese law (age ≥ 20  years). The healthy volunteer’s age is 
matched as closely as possible to the dementia patients. 
It was also required that they do not meet the exclusion 
criteria for dementia patients listed above.

All participants were Japanese (Asian) and were divided 
into three groups: dementia (N = 10), MCI (N = 33), and 
control (N = 77). From all of the participants, 7 were 
diabetic, 7 were obese, 24 had hyperlipidemia, 4 were 
diagnosed as clinically depressed, 3 had history of neu-
rological diseases, 35 had hypertension, 2 had history 
of stroke, 1 had history of myocardial infarction, 14 had 
history of allergic rhinitis, 1 had history of COPD, 4 had 
asthma, 12 had skin condition, 9 had arthritis, 20 had low 
back pain, 54 had osteoporosis, 4 had history of kidney 
problem, and 2 had history of cancer. Dementia patients 
and MCI patients in this study were all Alzheimer-type.

EEG acquisition
A Participants were asked to wear a single channel EEG 
device (NeuroSky Single Channel EEG, Original noise 
reduction BMD version). EEG was taken during closed-
eye relaxed state for a total of 100 s. The location of the 
electrode was Fp1 according to the 10–20 international 
system (left prefrontal region) and the measurement 
device was MindWave Mobile II BMD II ver. with sam-
pling rate of 512  Hz. Mini-mental state examination 
(MMSE) was utilized as the cognitive screening test. 
MMSE is a 30-points question which is commonly used 
for assessing dementia. Subjects who scored 24 points or 
lower were labeled as dementia while patients with score 
of 25 – 27 is labeled as MCI. Subjects with score of 28 or 
higher is labelled as healthy.

Analysis
Data preprocessing
For the EEG device used in this study, independent veri-
fication has already demonstrated that the device can 
reliably remove environmental noise and unintended 
frequencies [6]. Signals acquired from Fp1 using a mon-
opole EEG were passed through a bandpass filter of 
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1–30 Hz to extract EEG components [7]. However, even 
if non-target frequencies can be removed, the acquired 
data come with noise caused by muscle movement or 
blinking. To remove these noises, a filter created for this 
purpose was used. This filter acquires the patterns of 
body movement and blinking in advance, and the thresh-
old value is automatically set according to the situation. 
We adopted conventional methods as noise reduction 
[6, 8, 9] This procedure reduces computation costs and 
removes blinks, body movements, and electrical noise in 
real time.

In order to account for individual differences in EEG 
amplitude, normalization was performed with an average 
of 0 and a dispersion of 1 for the filtered signal. Subse-
quently, a fast Fourier transform was performed to cal-
culate the power spectrum. Also, in order to clarify the 
difference between healthy individuals and each patient 
group with dementia and MCI, the average power spec-
trum of the comparison target group was set as 1; i.e., a 
relative power spectrum value was used.

The sampling interval of the EEG device was set to 
512 Hz. Therefore, the amount of data for each individual 
was 51,200 samples of 100 × 512. Each individual’s EEG 
data were translated to the frequency domain by Fourier 
transform per second.

Statistical analysis
First, all acquired data were divided into three groups 
according to their MMSE score: patients with demen-
tia, patients with MCI, and healthy controls. Descriptive 
statistics were used to describe the study participants. 
Distributions of all variables were inspected using his-
tograms, q-q plots, and Shapiro-Wilks tests before con-
ducting statistical analyses.  Statistical significance was 
set at two-tailed p < 0.05, and we used false discovery rate 
(FDR) to control for multiple comparisons. Demographic 
variables for patients with dementia, MCI, and healthy 
individuals were compared by two-sample t test and/or 
chi-square test. For the EEG comparisons, patients’ EEG 
power spectra are expressed as a ratio when the average 
of the power spectra of healthy individuals is 1, as men-
tioned above.

Signal processing
As a preprocessing, noise removal was performed to 
the obtained EEG data and then transformed to the fre-
quency-domain. The noise removal was performed using 
Summation of Derivatives within Windows (SDW) algo-
rithm and Ensemble Empirical Mode Decomposition 
(EEMD).

The SDW method detects noise by using the sum 
of first derivatives within a window [10]. The win-
dow selected in this study is 2  s, according to the 

conventional methods, shown in Table  1. The signal 
was then decomposed into several intrinsic mode func-
tions (IMFs) by applying EEMD in the interval detected 
by the SDW method.

The components with a mean cross-correlation func-
tion between IMFs greater than 0.5 were defined as 
noise and removed. Remaining components were then 
summed up to reconstruct the clean signal. For fre-
quency transformation, the short-time Fourier trans-
form (STFT) was used. The frequency features were 
the frequency bins 1-45  Hz, averaged between the 
windows, and then normalized. The average of the 
power spectra for each EEG band was also calculated 
and used as the frequency features. The specification 
of EEG bands were as follows: Delta (δ): 1–4 Hz, Theta 
(θ) 4–8  Hz, Alpha (α) 8–13  Hz, Alpha-1 (α1) 8–9  Hz, 
Alpha-2 (α2) 9–11 Hz, Alpha-3 (α3) 11–13 Hz, Beta (β) 
13–30 Hz, Beta-1 (β1) 13–20 Hz, Beta-2 (β2) 20–30 Hz, 
and Gamma (γ) 30–45 Hz.

Next, the subjects were labelled according to their 
MMSE score: dementia, MCI, and healthy. As there was 
imbalance in the number of samples, Synthetic Minor-
ity Over-sampling Technique (SMOTE) algorithm was 
applied to artificially create new samples [30].

In order to verify whether the frequency features 
used were effective in discriminating between classes, 
a significant difference test between classes was con-
ducted. First, a nonparametric test, Kruska-wallis test 
was performed. Then, multiple comparison with Bon-
ferroni correction was performed. The significance 
level was set as 5%.

Next, the statistically significant features were uti-
lized as predictors for Support Vector Machines (SVM) 
to solve the classification problem. Although SVM 
is known to be able to handle linearly separable data, 
by utilizing kernel trick and computing the maximum 
margin, it can sufficiently handle nonlinear data.

In this study, SVM with radial basis function kernel 
was utilized as the classifier. In order to evaluate the 
classification performance, tenfold cross-validation was 
performed.

Table 1 Conventional EEG studies using 2 s window

Reason Papers

Unspecified [11–18]

Utilized several power spectra with different window lengths [19]

Artifact removal [20–24]

LORETA analysis [25–27]

The duration of EEG is 2 to 4 s [28, 29]



Page 4 of 6Mitsukura et al. BMC Psychiatry          (2022) 22:289 

Results
Feature selection results
The power spectra comparison for each band was shown 
in Fig.  1a. The significance testing for the three groups 
showed significantly increased delta band for the healthy 
group compared to dementia group and MCI group, 
as shown in Fig.  1b, and significantly increased alpha-1 
band for the dementia group compared to MCI group 
and healthy group as shown in Fig. 1c.

Results of accuracies
The classification results for the three classes of demen-
tia group, MCI group, and healthy group are shown in 
Table  2. The classification accuracy rate, sensitivity, and 
specificity for the training data were all 100%, while the 

accuracy rate, sensitivity, and specificity for the training 
data were 86.32%, 78.91%, and 85.36%, respectively.

Discussion
Feature selection results
The findings were in line with conventional studies of 
higher power in low-frequencies range for healthy sub-
jects and higher power in high-frequencies range for 
dementia and MCI patients [31]. Many of frequency bins 

Fig. 1 a Comparison of the power spectra of each EEG band; b c Comparison of power spectra in δ and α1 EEG bands which have significant 
differences, respectively

Table 2 Classification results

Training Testing

Accuracy (%) 100.0 86.32

Sensitivity (%) 100.0 78.91

Specificity (%) 100.0 85.36
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also showed significant differences between the classes 
and were chosen as predictors. These predictors might 
also be utilized as EEG biomarkers for dementia and MCI 
in clinical scene.

The statistical analysis result showed that the power 
in the low-frequency region of the dementia and MCI 
patients was higher than that of the healthy subjects, and 
that the power in the high-frequency region was lower, 
similar to conventional studies which utilized multi-
channel EEG device.

Results of accuracies
It was confirmed that the power spectra of the frequency 
bands and frequency bins selected as features were suf-
ficient to discriminate among the three classes of demen-
tia, MCI, and normal. These results were comparable in 
accuracy to previous studies using multichannel EEG 
device with accuracy of 88.89% [32]. From these results, 
it was shown that it is possible to obtain a new biomarker 
for dementia and early MCI by using a simple EEG device 
that acquires only single channel.

Conclusion
The objective of this study was to develop a system for 
diagnosing dementia and early detection of dementia 
using only EEG. The experimental subjects were divided 
into three classes according to their MMSE scores: demen-
tia group, MCI group, and healthy group. Feature extrac-
tion was performed, and the validity of the features were 
verified by constructing a machine learning model that can 
differentiate and label the subjects into the three classes.

The statistical analysis result showed that the power 
in the low-frequency region of the dementia and MCI 
patients was higher than that of the healthy subjects, and 
that the power in the high-frequency region was lower, 
similar to conventional studies which utilized multi-
channel EEG device.

Features other than EEG frequencies and different clas-
sifiers might be considered as a future work to improve 
the classification accuracy.
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