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Abstract
Background  The function of the insula has been increasingly mentioned in neurocircuitry models of obsessive-
compulsive disorder (OCD) for its role in affective processing and regulating anxiety and its wide interactions with the 
classic cortico-striato-thalamo-cortical circuit. However, the insular resting-state functional connectivity patterns in 
OCD remain unclear. Therefore, we aimed to investigate characteristic intrinsic connectivity alterations of the insula in 
OCD and their associations with clinical features.

Methods  We obtained resting-state functional magnetic resonance imaging data from 85 drug-free OCD patients 
and 85 age- and sex-matched healthy controls (HCs). We performed a general linear model to compare the whole-
brain intrinsic functional connectivity maps of the bilateral insula between the OCD and HC groups. In addition, we 
further explored the relationship between the intrinsic functional connectivity alterations of the insula and clinical 
features using Pearson or Spearman correlation analysis.

Results  Compared with HCs, patients with OCD exhibited increased intrinsic connectivity between the bilateral 
insula and bilateral precuneus gyrus extending to the inferior parietal lobule and supplementary motor area. 
Decreased intrinsic connectivity was only found between the right insula and bilateral lingual gyrus in OCD patients 
relative to HC subjects, which was negatively correlated with the severity of depression symptoms in the OCD group.

Conclusion  In the current study, we identified impaired insular intrinsic connectivity in OCD patients and the 
dysconnectivity of the right insula and bilateral lingual gyrus associated with the depressive severity of OCD patients. 
These findings provide neuroimaging evidence for the involvement of the insula in OCD and suggest its potential role 
in the depressive symptoms of OCD.
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Introduction
Obsessive-compulsive disorder (OCD) is a severe and 
disabling mental disorder characterized by the obsession 
of recurrent, unwanted and intrusive thoughts, images 
or urges (obsessions) and excessively repetitive ritualistic 
behaviors or mental acts that individuals feel compelled 
to perform in response to obsessions according to rigid 
rules or to achieve a sense of completeness (compulsions) 
[1, 2]. The intolerance of uncertainty has been recognized 
as a central psychological mechanism of OCD, especially 
related to checking and repeating compulsions [3]. It 
affects 2.4% of the general population in China and leads 
to a major health-economic burden for affected individu-
als, families and society as a whole [4, 5].

In addition to the classical frontal-striatal circuit, lim-
bic or affective processing regions such as the amygdala, 
insula, and hippocampus and their functional network 
with the classical circuit have been added to the neuro-
imaging model of OCD [6–8]. Compared to other emo-
tion-related brain regions, neuroimaging studies of the 
insula in patients with OCD are lacking even though the 
insula may be closely associated with aversive or uncom-
fortable sensations [9], excessive risk aversion [10] and 
intolerance of uncertainty [11, 12] in OCD patients. Pre-
vious studies have pointed out that the impaired affective 
processing and disrupted emotional regulation of OCD is 
related to dysfunction of the insula, which has been con-
firmed by the overactivation of the insula during affec-
tive tasks or emotional provocation paradigms in OCD 
patients compared to healthy controls [13, 14]. Another 
meta-analysis of fMRI studies from patients with OCD 
showed that this kind of overactivation of the insula dur-
ing emotional processing was more pronounced in OCD 
patients with greater anxiety or with mood comorbidities 
[15]. Furthermore, in a recent study, Fridgeirsson et al. 
[16] explored the functional network changes in the brain 
after deep brain stimulation (DBS) in patients with OCD, 
and they found that the improvement in mood and anxi-
ety symptoms of OCD following DBS was associated with 
reduced amygdala-insular functional connectivity, which 
for the first time elucidated the role of the insula in the 
mechanisms of OCD from an interventional perspective.

In terms of neuroimaging studies, previous studies 
have revealed characteristic increased alterations in the 
structure and local function of the insula in patients with 
OCD [17, 18]. However, relatively few studies have spe-
cifically focused on the whole-brain intrinsic functional 
connectivity of the insula in OCD patients. Resting-state 
functional connectivity analysis is a fundamental method 
for delineating the temporal correlation of spontane-
ous blood oxygenation level-dependent (BOLD) signals 
among spatially distributed brain regions during the rest-
ing state and has been widely used in numerous mental 
or psychiatric disorders due to its relatively reliable and 

reproducible nature [19]. Given that our primary aim 
was to investigate the specific intrinsic functional con-
nectivity patterns of the insula in OCD according to 
the vital role of the insula in the pathophysiology of this 
mental disorder, we decided to perform the seed-based 
resting-state functional connectivity method in the pres-
ent research, which is a well-targeted method to test the 
whole-brain intrinsic connectivity of a specific a priori 
region [20]. In recent years, several studies involving the 
intrinsic functional connectivity of the insula in OCD 
patients yielded inconsistent results [21–25]. However, 
there were some drawbacks in the previous studies, such 
as relatively small sample sizes and more or less subject 
to confounding effects of medication or comorbidity.

Therefore, the objective of the current study was to dis-
cern the altered whole-brain intrinsic connectivity pat-
terns of the insula by recruiting a relatively large sample 
of drug-naïve patients with no comorbidities to exclude 
the confounding effects of medication and comorbidities. 
Based on the previous functional neuroimaging findings 
for the insula in patients with OCD, we hypothesized that 
the intrinsic functional connectivity patterns of the insula 
would be elevated in OCD patients relative to healthy 
controls, and there would be a correlation between the 
abnormal neuroimaging features and the clinical infor-
mation, especially the mood-related indicators.

Methods
Participants
We recruited 85 unmedicated and comorbid-free OCD 
patients from the Mental Health Center, West China 
Hospital, Sichuan University. Two experienced psychia-
trists diagnosed the OCD patients on the basis of the 
Structured Clinical Interview (SCID-I) for the Diagnostic 
and Statistical Manual of Axis I Mental Disorders, fourth 
edition (DSM-IV). The inclusion criteria were as follows: 
[1] age between 18 and 60 years; [2] meeting the DSM-IV 
criteria for OCD; [3] right-handed by the determination 
of Edinburgh Handedness Inventory; and [4] medication-
naïve or had a washout period of at least 4 weeks from 
any treatment before the imaging data were acquired. 
The exclusion criteria were as follows: [1] the existence 
of any other DSM-IV Axis I diagnosis or neurological 
diseases; [2] any history of cardiovascular diseases, meta-
bolic disorders, or other major physical illness; [3] sub-
stance abuse or dependence; [4] pregnancy; and [5] any 
contraindications to MRI scanning.

Of these 85 OCD patients, 71 patients were medica-
tion-naïve. The other 14 patients had received medica-
tion for the treatment of OCD (4 were on clomipramine 
hydrochloride; 3 were on paroxetine hydrochloride; 3 
were on fluoxetine hydrochloride; 3 were on sertraline; 
and 1 was on three types of drugs including clomip-
ramine hydrochloride, paroxetine hydrochloride and 
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quetiapine fumarate), and all of them were medication 
free for at least 4 weeks before the MR scanning. The 
Yale-Brown Obsession-Compulsive Scale (Y-BOCS) 
[26] was used to assess the severity of OCD symptoms. 
Depression and anxiety symptoms were measured by the 
17-item Hamilton Depression Rating Scale (HAMD) [27] 
and 14-item Hamilton Anxiety Rating Scale (HAMA) 
[28], respectively.

In addition, we enrolled 85 age- and sex-matched 
healthy controls (HCs) from the same sociodemographic 
circumstances via poster advertisements and examined 
them with the SCID nonpatient edition. The HC subjects 
and their first-degree relatives were free of any history or 
present neurological disorder or mental disorders.

This study was approved by the Ethics Committee of 
West China Hospital, Sichuan University and the study is 
done in the accordance with the Declaration of Helsinki. 
Each participant provided written informed consent to 
accomplish this study after a complete description of the 
protocol.

MRI data acquisition
All participants were scanned using a 3.0-Tesla GE Signa 
EXCITE scanner equipped with an 8-channel phased-
array head coil. Each subject was positioned comfort-
ably in the coil fitted with soft earplugs and foam pads 
and was instructed to keep his or her eyes closed, remain 
motionless and do not think of any specific topic.

For each individual, we acquired whole-brain rest-
ing-state functional magnetic resonance imaging (rs-
fMRI) data using a gradient-echo echo-planar imaging 
(GRE-EPI) sequence with the following parameters 
[29]: 30 axial slices and volumes in each run = 200, slice 
thickness = 5.0  mm with no slice gap, repetition time 
(TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90°, 
the phase encoding direction was anterior to poste-
rior, matrix size = 64 × 64, voxel size = 3.75 × 3.75 × 5 
mm3 and field of view (FOV) = 240 × 240 mm2. The rs-
fMRI scans in the current study did not use field maps. 
The total acquisition time of the GRE-EPI images was 
approximately 6.67  min (400  s). Additionally, high-
resolution T1-weighted 3D anatomical images were 
obtained with the following parameters: contiguous 
coronal slices = 156; slice thickness = 1.0  mm; TR = 8.5 
ms; TE = 3.4 ms; flip angle = 12°; matrix size = 256 × 256, 
voxel size = 0.94 × 0.94 × 1 mm3 and field of view 
(FOV) = 240 × 240 mm2.

Imaging preprocessing
The rs-fMRI data preprocessing was performed by the 
Data Processing and Analysis for Brain Imaging tool-
kit (DPABI, version 6.0, http://rfmri.org/dpabi) [30]. For 
each participant, the first 10 time points were discarded 
in consideration of signal equilibrium and adaptation to 

the scanning environment. The remaining images were 
corrected for acquisition time intervals between slices 
and for head motion between volumes. To control for 
the head motion, we performed the motion correction 
strategies using the mean framewise displacement (FD) 
approach proposed by previous studies [31, 32], which is 
a higher-level Friston-24 parameter model [33], includ-
ing 6 head motion parameters, the previous time point 
of 6 head motion parameters, and the 12 correspond-
ing squared items. The mean FD values were calculated 
from the translational and rotational scan-to-scan dis-
placements using three translational parameters and 
three rotational parameters obtained from realignment 
steps for each subject. Participants were only included 
when their rs-fMRI images met the criteria of < 1.5 mm 
of spatial movement and < 1.5 degrees of rotation in any 
direction and a mean FD value < 0.2  mm. After head 
movement correction and quality control, no participant 
was excluded in either the OCD group or the HC group. 
Then, these images were spatially normalized to the stan-
dard Montreal Neurological Institute (MNI) space, and 
each voxel was resampled to 3 × 3 × 3 mm3 using unified 
segmentation of individual T1 images[34]. The processed 
images were smoothed with a full width at half maximum 
(FWHM) Gaussian kernel of 6  mm. Additionally, we 
regressed out the head motion parameters, white matter 
and cerebrospinal fluid (CSF) signals to reduce the effects 
of nonneuronal BOLD fluctuations. Finally, temporal 
bandpass filtering (0.01–0.08 Hz) was utilized to decrease 
the impact of high-frequency physiological noise and 
very low-frequency drift.

Seed-based functional connectivity analysis
To explore the abnormal resting-state functional con-
nectivity of the insula to the voxels of the whole brain 
between the OCD and HC groups. We selected the bilat-
eral insula as the seed regions of interest (ROIs) using the 
AAL atlas (Fig. 1).

Seed-based resting-state functional connectivity analy-
sis was performed using the Resting-State fMRI Data 
Analysis Toolkit software package (RESTplus, version 
1.24, http://resting-fmri.sourceforge.net. sourceforge.
net). First, the regional time series averaged across all 
voxels within each seed were extracted. Then, Pearson’s 
correlation analysis of the time series was performed 
between the seed reference and the whole brain in a 
voxel-wise manner to obtain the intrinsic functional con-
nectivity maps of each seed region for all participants. 
Finally, the subject-level correlation maps were z scored 
using Fisher r-to-z transformation before taking the aver-
age across subjects for further group-level analysis.

http://rfmri.org/dpabi
http://resting-fmri.sourceforge.net
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Statistical analysis
Group comparisons
General linear model (GLM) was carried out to identify 
the distinct resting-state functional connectivity patterns 
of insula between OCD and HC groups, with the age, sex, 
and head motion as the covariates in SPM12 (https://
www.fil.ion.ucl.ac.uk/spm/). The significance threshold 
was set as P < 0.005 (uncorrected) at the voxel level and 
a familywise error (FWE) corrected P < 0.025 (0.05/2) at 
the cluster level [35, 36], since between-group compari-
sons of functional connectivity maps were separately per-
formed with two seed ROIs on the left and right insula. 
Furthermore, to explore the possible effects of previ-
ous drug exposure on the functional connectivity of the 
insula, we excluded 14 patients who had a history of pre-
vious medication and performed a secondary group com-
parison between medication-naïve OCD patients and the 
HC group using the same method. In addition, statistical 
analysis of sociodemographic and clinical data was per-
formed using SPSS 24 (SPSS, Inc., Chicago, IL). A two-
sample t test was used for continuous variables, and the 
chi-square test was used for categorical variables when 
comparing the group differences in sociodemographic 
data between the two groups (P < 0.05).

Correlation analysis
The exploratory correlation analysis of the intrinsic func-
tional connectivity strength extracted from the regions 
showing significant group differences with the duration 
of illness, age of onset, symptom severity measured by 
Y-BOCS (including obsession and compulsion subscale), 
as well as HAMD and HAMA scores in the OCD group 
were performed to determine whether the insular rsFC 
abnormalities were correlated with the clinical charac-
teristics. After the linear correlation conditional tests, 
including the Kolmogorov‒Smirnova normal distribution 
test, for variables that met the normal distribution and 
linear condition, we used the Pearson correlation, and 
those that did not meet the conditions we used the Spear-
man correlation. An FDR q value < 0.05 was considered 

statistically significant for multiple comparisons in this 
correlation analysis. (P < 0.05, corrected with FDR).

Results
The sociodemographic and clinical characteristics of the 
OCD and HC groups are provided in Table 1. There were 
no significant differences in age (t = 0.670, P = 0.504), sex 
(χ2=-0.156, P = 0.876) or head motion (t=-1.407, P = 0.161) 
between the two groups.

The results of two-sample t test analyses comparing the 
seed-based resting-state functional connectivity of insula 
between OCD and HC groups and the exploratory cor-
relation analysis with clinical characteristics were as fol-
lows (Fig. 2; Table 2).

Group comparison
Left insular intrinsic functional connectivity
Compared to the HC group, patients with OCD showed 
significantly increased positive intrinsic functional con-
nectivity of the left insula and a large cluster including 
the bilateral precuneus gyrus extending to the inferior 

Table 1  Demographic Characteristics
Characteristic Group, mean ± SD Statistics

OCD (N = 85) HC (N = 85) t/χ2 P 
value

Age (years) 29.18 ± 8.71 28.16 ± 10.85 0.670 0.504

Sex (M/F) 52/33 51/34 -0.156 0.876

Head motion (mm) 0.047 ± 0.028 0.052 ± 0.021 -1.407 0.161

Age of onset (years) 22.08 ± 7.18 - - -

Illness of duration 
(years)

7.09 ± 5.38 - - -

Y-BOCS-Total score 21.54 ± 5.47 - - -

Y-BOCS-Obsession 
score

13.06 ± 5.27 - - -

Y-BOCS-Compulsion 
score

8.48 ± 5.34 - - -

HAMD-17 9.32 ± 4.76 - - -

HAMA-14 9.32 ± 5.32 - - -
Abbreviations: OCD: obsessive-compulsive disorder; HC: healthy control; SD: 
standard deviation; HAMD-17: 17-item Hamilton Depression Rating Scale; 
HAMA-14: 14-item Hamilton Anxiety Rating Scale; Y-BOCS: Yale-Brown 
Obsessive Compulsive Scale

Fig. 1  The seed region of the insula per hemisphere in the Anatomical Automatic Labeling (AAL) atlas

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
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parietal lobule. Additionally, we found another signifi-
cantly enhanced positive intrinsic functional connectivity 
of the left insula and right supplementary motor area in 
OCD patients relative to HCs.

Right insular intrinsic functional connectivity
In patients with OCD, we observed a significant increase 
in the positive resting-state functional connectivity 

between the right insula and the bilateral precuneus/
inferior parietal lobule and supplementary motor area. 
Furthermore, the OCD patients displayed significantly 
reduced positive intrinsic functional connectivity of the 
right insula and bilateral lingual gyrus compared to HCs.

Table 2  Two-sample t-test results of the whole-brain intrinsic functional connectivity of bilateral insula between the OCD and HC 
groups
Seed Region Area BA L/R Voxels MNI T peak-values Puncorrected PFWE−corrected

X Y Z
Left insula

OCD > HC Precuneus/Inferior Parietal Lobule 31/7 L&R 982 -15 -54 42 5.83 0.000 0.000*

Supplementary motor area 6 R 242 15 -6 57 3.84 0.001 0.019*

Right insula

OCD > HC Precuneus/Inferior Parietal Lobule 31/7 L&R 970 -15 -54 42 5.35 0.000 0.000*

Supplementary motor area 6 L&R 439 -15 -15 54 5.45 0.000 0.000*

OCD < HC Lingual Gyrus 30/19 L&R 346 36 -42 3 4.04 0.000 0.002*
Abbreviations: OCD: obsessive-compulsive disorder; HC: healthy control; BA: Brodmann areas; MNI: Montreal Neurological Institute; R: right; L: left; FWE: familywise 
error correction 

* P < 0.025 with FWE correction.

Fig. 2  (A). Significantly group-specific regions in intrinsic FC with the insula between the OCD and HC groups. Regions with increased intrinsic FC are 
shown in red, and those with decreased intrinsic FC are shown in blue. (B) The violin plot represents the intrinsic FC of the insula with each significant 
region in the OCD and HC groups. (*PFWE−corrected < 0.05, ** PFWE−corrected < 0.01) (Abbreviations: PCUN: precuneus; SMA: supplementary motor area; LING: 
lingual gyrus; rsFC: resting-state functional connectivity; OCD: obsessive-compulsive disorder; HC: healthy control; FWE: family-wise error.)
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Secondary analysis of medication-naïve OCD patients
After excluding 14 OCD patients with a history of pre-
vious medication, the results of the group comparisons 
between medication-naïve OCD patients (N = 71) and 
HC subjects (N = 85) were similar to the primary results 
from the whole OCD patient group (Supplementary Fig-
ure S1).

Correlation analysis
Via correlation analysis, we revealed that OCD patients 
demonstrated a trend of correlation between the 
decreased intrinsic functional connectivity of the right 
insula and bilateral lingual gyrus and the increased 
HAMD scores (r=-0.219, P = 0.044, uncorrected) (Fig. 3).

Discussion
In the current study, using the seed-based resting-state 
functional connectivity method, we revealed distinct pat-
terns of intrinsic insular functional connectivity altera-
tions in OCD. There were two main findings in this study. 
First, compared to the HC group, patients with OCD 
showed significantly increased intrinsic functional con-
nectivity between the bilateral insula with a large cluster 
including the bilateral precuneus gyrus extending to the 
inferior parietal lobule and another cluster supplemen-
tary motor area. Significantly decreased intrinsic func-
tional connectivity was found only between the right 
insula and bilateral lingual gyrus in OCD patients rela-
tive to HC, which was negatively correlated with HAMD 
scores rather than YBCOS scores in the OCD group. Our 
findings indicated the involvement of aberrant insular 
intrinsic connectivity in OCD patients, and more impor-
tantly, the dysconnectivity of insula may be related to the 

depressive symptoms rather than the obsession or com-
pulsory manifestation in OCD.

Hyperconnectivity of the bilateral insula and precuneus
Relative to the HC group, the OCD patients showed 
increased intrinsic functional connectivity between the 
bilateral insula and bilateral precuneus extending to 
the inferior parietal lobule. The precuneus and inferior 
parietal lobule are both important core regions of the 
default mode network for integrating and processing 
self-referential information [37, 38]. Because the symp-
toms of OCD are triggered mostly by internal intrusive 
thoughts or images rather than external stimuli [39], 
OCD patients have been reported to have difficulties 
with the deactivation of the DMN at rest [40]. In addi-
tion, a previous study of static spontaneous brain activity 
also revealed increased amplitudes of low frequency fluc-
tuation (ALFF) in the insula and precuneus [41]. Greater 
intrinsic connectivity between the insula and the precu-
neus or inferior parietal lobule in OCD patients has been 
reported in several fMRI studies [25, 42, 43], which was 
consistent with our results.

Hyperconnectivity of the bilateral insula and 
supplementary motor area
Patients with OCD demonstrated enhanced intrinsic 
connectivity of the bilateral insula and supplementary 
motor area compared with HC subjects. The supple-
mentary motor area, which may be associated with the 
deficient inhibitory control of compulsory or obses-
sive behavior, has been found to be hyperactive in OCD 
patients according to prior studies [44, 45]. In a previous 
structural study, researchers found a thicker cortex in the 

Fig. 3  The correlation analysis results of the mean FC values between the right insula and bilateral lingual gyrus and clinical variables in the OCD group. 
Higher scores of the HAMD-17 (P = 0.044, r=-0.219) were correlated with lower intrinsic rsFC of right insula and bilateral lingual gyrus. The shaded area sur-
rounding the line represents the 95% confidence interval. (Abbreviations: OCD: obsessive-compulsive disorder; HAMD-17: 17-item Hamilton Depression 
Rating Scale; rsFC: resting-state functional connectivity.)
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presupplementary motor area and right anterior insula in 
OCD patients [46]. In addition, several prior task-fMRI 
studies demonstrated that OCD patients exhibited lon-
ger inhibitory control reactive time and more inhibitory 
control errors than healthy controls and overactivation 
in the supplementary motor area, presupplementary 
motor area and anterior insula/frontal operculum during 
error processing, as well as deactivation of the anterior 
insula/frontal operculum and supplementary motor area 
regions during inhibitory control tasks, which may be an 
underlying neuroimaging mechanism of impaired inhibi-
tory control performance in OCD [47, 48]. Combined 
with the previous findings, our result of higher intrinsic 
functional connectivity of the insula and SMA might be 
speculatively associated with the deficits of inhibitory 
control to OCD-related behaviors. However, one recent 
study performed by the OCD consortium including 
large samples of patients reported a hypoconnectivity 
between the insula and the SMA [49]. This inconsistency 
to our findings may be due to the differences of sample 
characteristics. The OCD consortium performed mega-
analysis by collecting independent samples from different 
research institutes, and the included patients were varied 
in clinical characteristic including age range, medica-
tion and various severity of symptoms. In contrast, the 
participants in our study were the comorbidity-free and 
unmedicated adult patients with relatively mild OCD 
symptoms (YBOCS = 21.54 < = 25), thus the results of our 
current may represent the functional brain mechanism 
underlying the pathophysiology of such OCD patients.

Hypoconnectivity of the right insula and lingual gyrus
Significantly decreased intrinsic connectivity of the right 
insula and bilateral lingual gyrus was observed in OCD 
patients compared to HCs. The lingual gyrus is located 
in the visual cortex region and may contribute to emo-
tional perception during visual stimulation and the fur-
ther processing of complex visual information [50, 51]. In 
addition to involving deficits in cognitive and behavioral 
inhibitory control, OCD is also recognized to be associ-
ated with visual processing impairments [52], which may 
be related to abnormalities in the lingual gyrus. Altera-
tions in the brain structures of the lingual gyrus have 
been reported in several studies, such as a thinner cor-
tex and a smaller surface area of the lingual gyrus [53, 
54]. Another morphological meta-analysis revealed that 
the gray matter volume changes in the lingual gyrus and 
motor regions were more specific to OCD than to schizo-
phrenia- and autism-spectrum disorders [55]. In previous 
rs-fMRI studies, researchers observed a lower centrality 
degree of the lingual gyrus [56, 57], and the ALFF val-
ues were found to be increased in the insular cortex but 
decreased in the lingual gyrus of OCD patients, which 
was associated with symptom severity [41, 58]. These 

abnormal local activity patterns could be normalized by 
coping through cognitive therapy [59].

Interestingly, we further observed that there was a 
trend of correlation between the reduced intrinsic con-
nectivity of the right insula and lingual gyrus and the 
enhanced severity of depressive symptoms rather than 
OCD-related symptoms in the OCD group. Previous 
studies have reported reduced insular volume in OCD 
patients with comorbid depression [60], and the activity 
of the lingual gyrus could distinguish OCD patients from 
controls during multi-emotion analysis [61]. This find-
ing suggested that we should not neglect the role of the 
insula and lingual gyrus in the depressive symptoms of 
OCD in future studies. However, the association of right 
insula-lingual gyrus connectivity and depressive symp-
toms in OCD group did not survive multiple comparison 
correction and should be interpreted with caution.

Limitations
The current study has several features that merit con-
sideration in the interpretation of the results. First, our 
study had a cross-sectional design and was unable to 
investigate the long-term changes in insular connectiv-
ity patterns and the effects before and after treatments 
in OCD patients. In the future, longitudinal studies need 
to be performed to explore the functional connectivity of 
the same ROIs at baseline and after first-line treatments 
for OCD and verify the engagement of these regions in 
pharmacological and behavioral treatments. Second, 
our current results were derived from a single study, 
and future studies in unmedicated OCD samples with 
no comorbidities or comorbidities limited to depressive 
disorders are needed to replicate and validate our find-
ings. Third, the correlation between the altered intrinsic 
connectivity of the insula and clinical features should 
be treated with caution, as they did not survive FDR 
correction for multiple comparisons. Note that these 
results still provide valuable insights that there is a trend 
for depressive symptoms in OCD to be associated with 
dysconnectivity of the insula, which could guide future 
research. Finally, this study used the entire insula region 
as the seed. However, several studies have implicated the 
distinct functions of different insular subregions [62]. In 
future studies, the intrinsic connectivity patterns of finer-
grained insular subfields should be further explored in 
OCD to extend our study.

Conclusion
Using the seed-based resting-state connectivity approach, 
our present research identified alterations in the intrin-
sic connectivity patterns of the insula in OCD patients 
compared to healthy controls. We found that increased 
insular intrinsic functional connectivity mainly located in 
the bilateral precuneus gyrus and supplementary motor 
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area, and decreased intrinsic connectivity only between 
the right insula and bilateral lingual gyrus, which was 
associated with the severity of depressive symptoms in 
OCD patients. Our findings provide the neuroimaging 
evidence for a pathophysiological role of the insula in 
OCD and suggest that future studies focusing on depres-
sive manifestation in patients with OCD should consider 
the role of the insula in this regard.
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