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Abstract 

Background: Depression is a common symptom of Alzheimer’s disease (AD), but the underlying neural mechanism 
is unknown. The aim of this study was to explore the topological properties of AD patients with depressive symptoms 
(D-AD) using graph theoretical analysis.

Methods: We obtained 3-Tesla rsfMRI data from 24 D-AD patients, 20 non-depressed AD patients (nD-AD), and 20 
normal controls (NC). Resting state networks were identified using graph theory analysis. ANOVA with a two-sample 
t-test post hoc analysis in GRETNA was used to assess the topological measurements.

Results: Our results demonstrate that the three groups show characteristic properties of a small-world network. 
NCs showed significantly larger global and local efficiency than D-AD and nD-AD patients. Compared with nD-AD 
patients, D-AD patients showed decreased nodal centrality in the pallidum, putamen, and right superior temporal 
gyrus. They also showed increased nodal centrality in the right superior parietal gyrus, the medial orbital portion of 
the right superior frontal gyrus, and the orbital portion of the right superior frontal gyrus. Compared with nD-AD 
patients, NC showed decreased nodal betweenness in the right superior temporal gyrus, and increased nodal 
betweenness in medial orbital part of the right superior frontal gyrus.

Conclusions: These results indicate that D-AD is associated with alterations of topological structure. Our study pro-
vides new insights into the brain mechanisms underlying D-AD.
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Introduction
Depression is one of the major psychobehavioral symp-
toms in Alzheimer’s disease (AD). It increases the dif-
ficulty of interventions and may lead to death [1]. 
Understanding the pathogenesis of depression associated 
with AD will be helpful in discovering effective therapies 
and early interventions.

A few studies of functional magnetic resonance imag-
ing (fMRI) have shown that changes of brain function 
in multiple brain regions are involved in the pathogen-
esis of depression in AD. These studies adopted several 
analysis methods, including amplitude of low frequency 
fluctuations (ALFF) [2, 3], functional connectivity 
(FC) [4, 5], and degree centrality (DC) [6]. Mu et al. [2] 
reported lower ALFF in the bilateral superior fron-
tal gyrus, left middle frontal gyrus, and the left inferior 
frontal gyrus, in depressed AD patients (D-AD) com-
pared with non-depressed AD patients (nD-AD). Our 
previous studies also showed that D-AD patients had 
increased FC between amygdala and orbitofrontal cortex, 
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and decreased FC among amygdala, medial prefrontal 
cortex, and inferior frontal gyrus [4]. Furthermore, we 
reported lower DC in the right middle frontal, precen-
tral, and postcentral gyrus [6]. The above studies show 
that depression in AD is associated with dysfunctional 
neural activity in multiple brain regions. Several stud-
ies have also shown that neuronal connections undergo 
functional changes in D-AD patients. Using diffusion 
tensor imaging, Yatawara et al. [7] reported reduced tract 
integrity of right hemisphere subcortical and the corpus 
callosum geniculate in depressed patients with mild AD. 
When compared with nD-AD patients, D-AD patients 
showed significantly increased mean diffusivity and radial 
diffusivity in the bilateral cingulum bundle (CB) and 
right uncinate fasciculus (UF). These results suggest that 
myelin injury in the bilateral CB and right UF might con-
tribute to the pathophysiology of depressive symptoms 
in AD [8]. The aforementioned studies strongly suggest 
that the regulation of depression in AD patients involves 
several brain circuits, including the emotional circuit [9], 
the default mode network [10], and the sensorimotor 
network [11]. However, the methodological approaches 
adopted by previous studies did not assess the complex-
ity of regional interactions at the level of the entire brain 
network. To overcome this limitation and gain a more 
comprehensive understanding of the neural mechanisms 
associated with depression in AD, we explore the topo-
logical organization of intrinsic brain networks on a large 
scale that encompasses the entire structure.

Graph theory has become popular for describing 
the characteristics of brain neural networks. In this 
approach, networks are represented graphically via 
global network parameters and regional nodal param-
eters [12]. Using specific graph measures, it is possible to 
characterize functional specialization and integration of 
the brain as a network. Small-worldness is a metric that 
reflects the optimal balance between network separation 
and consolidation. Global efficiency is a scalar measure 
of information flow, defined as the inverse of all short-
est path lengths in a given network. Local efficiency and 
global efficiency are calculated similarly, but the former 
is computed at the level of individual nodes rather than 
the entire network. For a given node, nodal degree is the 
number of neighbors connected to it, which reflects the 
importance of the node within the network. Betweenness 
centrality indicates the ability to connect between differ-
ent nodes connected to a given node [12]. Using graph 
theory, some studies have concluded that human brain 
networks are organized according to special principles 
[13, 14]. Furthermore, disruption of network organiza-
tion is associated with several neuropsychiatric disorders, 
such as AD and major depressive disorder (MDD) [15–
19]. Graph theory has been used to expose disruption 

of large-scale brain network integrity in AD [15–17]. He 
et  al. [15] measured reduced overlap between network 
nodes in AD patients, which led to alterations of the 
small-world property. Sanz-Arigita et al. [16] also found 
slower information transmission in brain networks of 
AD patients, with values approaching those of theoreti-
cal random networks. With regard to nodal properties, 
AD patients had reduced overlap within the bilateral 
hippocampus compared with a healthy control popula-
tion [17]. Previous studies have shown that patients with 
MDD exhibit a small-world architecture like healthy 
individuals, which suggests the presence of a functional 
balance between segregation and integration of brain 
networks. Compared with normal controls (NC), MDD 
subjects present significant differences in local network 
measures for many brain regions, mainly located in the 
cognitive control network (CCN) and default mode 
network (DMN) [18, 19]. Furthermore, altered nodal 
centrality in basal ganglia correlated with both disease 
duration and severity of MDD [19]. Recently, Serra et al. 
[20] investigated the alterations of brain network topol-
ogy in AD patients with neuropsychiatric symptoms 
(NPS). They found that, compared with AD patients 
that had no NPS, those with NPS showed disconnec-
tion within a subnetwork involving mainly temporal and 
cerebellar nodes. However, their patient group included 
patients with amnestic cognitive impairment in addi-
tion to AD patients, and they did not separately analyze 
brain network topology in AD patients with depression 
symptoms.

In this study we utilize resting-state functional mag-
netic resonance imaging (rsfMRI), and we apply graph 
theory to investigate alterations in the topological struc-
ture of brain networks. We directly compare D-AD 
patients with nD-AD patients and with normal controls 
(NC). We used the automated anatomical labeling (AAL) 
template to divide the brain into 90 regions of interest, 
across which we explored the altered topological organi-
zation of intrinsic functional brain networks in D-AD 
patients [16–20].

Materials and methods
Patients
Our study involved 20 nD-AD patients, 24 D-AD 
patients, and 20 NC. Inclusion and exclusion crite-
ria for probable AD were similar to those of previous 
studies [3, 5].

The diagnosis of depression followed the fourth edi-
tion of the Diagnostic and Statistical Manual of Mental 
Disorders [21]. The severity of depression was rated using 
Hamilton Depression Rating Scale (HAMD) [22] and 
Neuropsychiatric Inventory (NPI) [23]. We defined inclu-
sion criteria as a HAMD score between 7 and 17 and a 
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D-NPI score ≥ 4, indicating clinically significant symp-
toms [24].

MRI scan
All subjects underwent a functional fMRI scan on a 
3-T Siemens scanner (Siemens Magnetom Verio; Sie-
mens Medical Systems, Erlangen, Germany). Scan-
ning parameters were similar to those adopted in 
our previous studies [3, 5].  T2*-weighted echo pla-
nar images were acquired with the following param-
eters: 33 axial slices, thickness/gap = 4.8/0 mm, matrix 
size = 64 × 64, TR/TE = 2000/30 ms, flip angle = 90°, 
and field of view (FOV) = 200 mm × 200 mm. Each 
functional imaging run consisted of 200 volumes. For 
registration purposes, a high-resolution T1-weighted 
structural image was acquired from each participant 
using the following parameters: inversion time/rep-
etition time/echo time (TI/TR/TE) = 900/1900/2.48 ms, 
flip angle = 9°, 128 slices, FOV = 256 mm × 256 mm, 
resolution = 1 mm × 1 mm × 1 mm.

Data processing
Data preprocessing was performed using SPM8 (http:// 
www. fil. ion. ucl. ac. uk/ spm) and Data Processing Assis-
tant for Resting State fMRI v2.3 (http:// www. restf mri. 
net). After removal of the first 10 volumes to allow for 
scanner equilibration effects, we carried out the fol-
lowing preprocessing steps: correction for slice-timing 
and head motion, spatial normalization to Montreal 
Neurological Institute (MNI) space with a resampled 
resolution of 3 mm × 3 mm × 3 mm using T1 Unified 
Segmentation, spatial smoothing with a 6-mm Gaussian 
kernel along all three directions, linear trend removal, 
and temporal bandpass filtering (0.01–0.08 Hz). Finally, 
we used T1 images from each subject to define cerebro-
spinal fluid and white matter in native space, in order to 
calculate interference regressors for white matter and 
cerebrospinal fluid as well as head motion parameters. 
Nuisance signals were further removed from the result-
ing images by regressing out head motion parameters of 
Friston 24, cerebral spinal fluid signal, and white-matter 
signal. With regard to motion correction, participants 
never exceeded a 2.5-mm displacement along any axis, 
and an angular motion of 2.5 for the entire duration of 
the rsfMRI scan [3, 5].

Head motion analysis
Head movement during scanning may impact the results. 
To take this factor into account, we calculated the mean 
relative root mean square and mean framewise displace-
ment power (FD) of head movement [25] and performed 
ANOVA on the head movement parameters of the three 
groups to compare differences across groups.

Brain network construction
We divided the whole brain into 90 regions of interest 
according to the AAL atlas, with each ROI representing 
a node. We utilized the residual images after data pre-
processing to calculate the cross-correlations between 
all possible pairs of 90 nodes, forming a 90 × 90 matrix of 
correlation coefficients for each subject [26].

We constructed functional brain networks over the 
whole range of costs (0.05–0.40) at an interval of 0.01 
using a weighted matrix. We calculated graph measures 
across this threshold range using functions implemented 
in the GRETNA software package [26]. We then meas-
ured the resulting regional nodal characteristics (nodal 
centrality) of the network, including nodal degree, nodal 
efficiency, and nodal betweenness centrality. We used 
small-worldness and network efficiency parameters (local 
efficiency and global efficiency) as global network meas-
ures [26].

Statistical analysis
We initially performed Jarque-Bera tests on demographic 
and clinical characteristics of the participants to assess 
normality of the underlying data distribution. We then 
assessed demographic and clinical characteristics of 
three groups using ANOVA and χ2 tests.

For all network measures (including small-worldness, 
local efficiency, global efficiency, nodal degree, nodal 
efficiency, and nodal betweenness centrality), we com-
puted separately the area under the curve (AUC) across 
the full range of sparsity thresholds. We then compared 
the AUC values across NC, nD-AD, and D-AD groups. 
First, we used ANCOVA to identify potential differences 
in topological measurements across the three groups. We 
then performed two-by-two post hoc analyses using two-
sample t-tests in GRETNA [26]. We used age, sex, and 
mean relative displacement of head motion as covariates 
in the statistical analysis, to reduce their possible effects 
on the data. We adopted a significance level of P < 0.05 
for all tests and applied Bonferroni correction for multi-
ple comparisons. We assessed the relationship between 
topological measurements and MMSE, NPI, and HAMD 
scores in both nD-AD and D-AD patients using Pearson’s 
correlation.

Results
General clinical data
The three groups did not differ significantly with 
regard to age (F = 1.720, P = 0.188), sex distribution 
(χ2 = 6.000, P = 0.199), or years of education (t = 1.070, 
P = 0.348). D-AD and nD-AD groups did not differ with 
regard to duration of disease (t = 0.164, P = 0.9699). 
However, we found significant differences across 
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groups with regard to MMSE, HAMD, and NPI scores 
(F = 101.8, P < 0.001; F  = 190.0, P  < 0.001; F  = 238.0, 
P  < 0.001, respectively). D-AD and nD-AD groups did 
not differ with regard to MMSE (t = 0.774, P = 0.446), 
however they showed significant differences in HAMD 
and NPI scores (t = − 13.044, P < 0.001; t = − 17.701, 
P < 0.001, respectively). D-AD and NC groups did 
not differ with regard to HAMD and NPI (t = 0.200, 
P = 0.295; t = 0.222, P = 0.189). ANOVA analysis did 
not return any significant difference in mean motion 
among the three groups. The F and p values for the rel-
ative root mean square were 0.300 and 0.745, respec-
tively. For the mean FD, values were t = 0.77 and 
p = 0.467. Table 1 lists relevant details.

Data represent mean ± SD. Data were analyzed using 
independent-samples t-tests. AD = Alzheimer’s disease; 
D-AD = AD with depression; nD-AD = non-depressed 
AD patients. M = Male; F = Female; MMSE = Mini-
Mental State Examination; D-NPI = depression domain 
on Neuropsychiatric Inventory; HAMD = Hamilton 
Depression Rating Scale; RMS, root mean square.

Global properties
D-AD and nD-AD groups show significantly lower 
global and local efficiency than the NC group (Table 2, 
Fig. 1).
D-AD, AD with depression; nD-AD, non-depressed AD 

patients; MNI, Montreal Neurological Institute.

Local properties
Compared with nD-AD patients, D-AD patients showed 
decreased nodal centrality in the pallidum, putamen, 
and right superior temporal gyrus. They also showed 
increased nodal centrality in the right superior parietal 
gyrus, right superior frontal gyrus, medial orbital part of 
the right superior frontal gyrus, and orbital part of the 
right superior frontal gyrus (Table 3, Fig. 2). We used the 
AAL template and REST (www. restf mri. net) to deter-
mine coordinates and size of the affected brain regions.
D-AD, AD with depression; AD, non-depressed AD 

patients; MNI, Montreal Neurological Institute. Pcorr, 
Bonferroni correction.

Compared with nD-AD patients, NC showed decreased 
nodal betweenness in the right superior temporal gyrus 
and increased nodal betweenness in the medial orbital 
region of the right superior frontal gyrus (Table 4, Fig. 3).
nD-AD, non-depressed AD patients; NC, normal con-

trols; MNI, Montreal Neurological Institute. Pcorr, Bon-
ferroni correction.

Relationship between network parameters and clinical 
variables
We did not find any significant correlation between net-
work parameters and clinical variables for any of the 
three groups.

Discussion
In the current study, we examined alterations in the 
topological organization of functional brain networks 
in D-AD patients, nD-AD patients, and NC. D-AD and 
nD-AD groups show significantly reduced global and 
local efficiency compared with the NC group, in line with 
previous studies [27–29]. Li et  al. reported that the NC 
group differed from pathological groups (early/late mild 
cognitive impairment and AD) with respect to global 
network properties, including transitivity, efficiency, and 
small world attribute. Efficiency was similar across AD 
and mild cognitive impairment (MCI) groups, but it dif-
fered between these groups and the NC group [29]. These 
results contribute useful insight into the neuropathologi-
cal mechanisms underlying alterations of brain networks 
in AD patients, such as reduced information transfer effi-
ciency, and resistance to random or targeted attacks [30].

We found no difference in the small-world attribute 
between D-AD/nD-AD patients and NC. We charac-
terized small-world metrics using the speed of infor-
mation transmission in the brain network and the 
degree of overlap between network nodes. We found 
inconsistent results for these metrics in AD. A study 
using 21 normal controls and 18 AD patients reported 
a reduction in the speed of information transmission 
for the AD group, but the degree of overlap between 

Table 1 Demographics and neuropsychological data

D-AD nD-AD NC F/χ2 p

Gender, n (M/F) 24(17/7) 20(10/10) 20(11/9) 6.000 0.199

Age, years 71.2 ± 5.3 74.2 ± 5.5 70.8 ± 3.3 1.720 0.188

Duration (m) 15.7 ± 10.2 14.8 ± 7.4 – 121.0 0.000

Education, years 9.7 ± 2.5 9.0 ± 2.2 8.7 ± 2.1 1.070 0.348

MMSE 20.5 ± 2.9 20.0 ± 2.5 29.1 ± 0.8 101.8 0.000

HAMD 12.7 ± 2.5 3.35 ± 1.9 1.30 ± 0.9 190.0 0.000

D-NPI 5.82 ± 1.5 1.21 ± 0.51 0.60 ± 0.6 238.0 0.000

RMS of head 
motion

0.08 ± 0.06 0.08 ± 0.08 0.06 ± 0.03 0.30 0.745

FD of head motion 0.29 ± 0.18 0.28 ± 0.15 0.24 ± 0.12 0.77 0.467

Table 2 Brain regions with significantly different global 
centralities in the D-AD group compared with the nD-AD and NC 
groups as identified via ANOVA analysis

D-AD nD-AD NC p

Global Efficiency 0.12 ± 0.01 0.12 ± 0.01 0.16 ± 0.02 < 0.001

Local Efficiency 0.17 ± 0.02 0.17 ± 0.02 0.24 ± 0.04 < 0.001

http://www.restfmri.net
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network nodes was not significantly different [17]. 
Another study using wavelets as a connectivity measure 
reported a reduction in the degree of overlap between 
network nodes for left and right hippocampus of AD 
patients, but the speed of information transmission was 
not significantly different [18]. Compared with controls, 
depressed adolescents present lower speed of informa-
tion transmission and higher global efficiency [31], but 
no significant difference in the degree of overlap and 
local efficiency [32]. This result may be attributed to the 
fact that differences in these attributes reached signifi-
cant levels across the three groups.

Compared with NC, nD-AD patients showed 
increased nodal centrality in the right superior tempo-
ral gyrus and decreased nodal centrality in the medial 
orbital portion of the right superior frontal gyrus. Com-
pared with nD-AD, D-AD patients showed decreased 
nodal centrality in the pallidum, putamen, and right 
superior temporal gyrus (STG), and increased nodal 
centrality in the right superior parietal gyrus (SPG), /
medial orbital portion of the right superior frontal 
gyrus (ORBsupmed), and right superior frontal gyrus 
(SFG). Our results suggest that alterations in the prop-
erties of the hub nodes may be characteristic network 

Fig. 1 Global network properties of D-AD and nD-AD patients for different sparsity thresholds. (A) Small-worldness; (B) network global efficiency; 
(C) network local efficiency. The three groups (D-AD, nD-AD, and NC) show properties that are typical of small-world networks. Global network 
properties are similar between AD patients with depression and those without depression. The NC groups presents significantly larger global and 
local efficiency than D-AD and nD-AD groups. nD-AD, non-depressed AD patients; D-AD, depressed AD patients; NC, normal controls
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features of AD patients with depression. Pallidum and 
putamen are important structures of the basal gan-
glia [33]. Dysfunction of the basal ganglia is associated 
with inability to regulate reward behavior in depression 
and may be a potent precursor of MDD [34, 35]. Mel-
ancholic depressed participants present a smaller left 
putamen than non-melancholic depressed participants, 
and anhedonia has been associated with a smaller 
putamen [36]. Moreover, the severity of anhedonia 
has been associated with the FC of ventral caudate, 
cuneus, and middle temporal gyrus (MTG), suggesting 
the involvement of ventral caudate-cortical connectiv-
ity in anhedonia of MDD [29]. The reduced activity of 
caudate nucleus and STG also play a role in the neural 
mechanisms underlying decision-making in MDD [37]. 
Atrophy was evident in the ventral striatum, orbito-
frontal cortex, and medial temporal lobe structures of 
MCI-AD and AD patients. Furthermore, the degree of 
atrophy in mesocorticolimbic regions positively corre-
lated with the severity of depression, anxiety, and apa-
thy in these patients [38]. Our results show decreased 
nodal centrality in pallidum, putamen, and right STG of 
D-AD. On the basis of these findings, we speculate that 

alterations in the connectivity of basal ganglia and tem-
poral lobe may be related to depression in AD.

We also showed increased nodal centrality in the 
right SPG, left IFG, right SFG, right PCG, and right 
calcarine gyrus of D-AD patients. These brain regions 
are closely related to the parietal-limbic networks, 
frontoparietal network (FPN), and default-mode net-
work (DMN), which play an important role in emo-
tional regulation and cognitive appraisal. The parietal 
lobe and cingulate gyrus are involved in attentional, 
motivational, and emotional processes [39]. Therefore, 
abnormal connectivity may result in attentional bias 
and emotional restriction of MDD. Activity in the left 
anterior hippocampus/amygdala, subgenual cingulate, 
and medial prefrontal cortex decreased after psycho-
therapy in MDD patients, with associated improvement 
of depressive symptoms [40]. The global connectivity of 
FPN is also related to depressive symptoms [41]. Poor 
efficiency of FPN and DMN is associated not only with 
abnormal cognitive and executive functions, but also 
with characteristic depressive symptoms [42]. Emotion 
regulation, including expressive suppression and cogni-
tive reappraisal, was closely related to the efficiency of 

Table 3 Brain regions with significantly different nodal centrality in the D-AD group compared with the nD-AD group, identified via 
post hoc analysis

Brain regions Voxels MNI coordinates pcorr value

x y z

Nodal Efficiency

 Right superior parietal gyrus 647 26 − 59 62 0.0245

 Left putamen 306 −23 4 2 0.0223

Nodal Betweenness

 Right superior frontal gyrus/medial orbital 256 8 51 −7 0.0389

 Right superior temporal gyrus 963 58 −21 7 0.0272

Nodal Degree

 Right superior frontal gyrus/orbital part 311 18 48 −14 0.0368

 Right superior parietal gyrus 647 26 −59 62 0.0241

 Left putamen 306 −23 4 2 0.0066

 Right putamen 322 28 5 2 0.0484

 Left pallidum 81 −18 0 0 0.0166

 Right pallidum 76 21 0 0 0.0258

Fig. 2 Brain areas showing significant group differences in nodal centrality. Red/blue represent higher/lower values of regional nodal centrality in 
D-AD patients for nodal efficiency (A), nodal betweenness (B), and nodal degree (C). In comparison with nD-AD patients, D-AD patients showed 
decreased nodal centrality in the pallidum, putamen, and right superior temporal gyrus. They also showed increased nodal centrality in the right 
superior parietal gyrus, right superior frontal gyrus, the medial orbital part of the right superior central gyrus, and the orbital part of the right 
superior frontal gyrus. PCG.R, right posterior cingulate gyrus; CAL.R, right calcarine gyrus; SPG.R, right superior parietal gyrus; STG.R, right superior 
temporal gyrus; ORBsupmed.R, medial orbital part of the right superior frontal gyrus; ORBsup.R, orbital part of the right superior frontal gyrus; PUT.L, 
left putamen; PUT.R, right putamen; nD-AD, non-depressed AD patients; D-AD, depressed AD patients

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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FPN and DMN [43]. Furthermore, altered connectiv-
ity within these two networks may lead to emotional 
restriction caused by perception bias to negative emo-
tions [44].

Our study presents some limitations. First, we found 
no correlation between network properties and clini-
cal variables. This may be due to small sample sizes 
and inadequate clinical scales. Secondly, this study is 
a cross-sectional study, longitudinal was needed to 
observe changes in the topological properties of the 
AD network. Thirdly, diffusion tensor imaging has been 
used to study the structural network topological prop-
erties of AD. In the future, these properties should be 
studied using multimodal fMRI data [45–47]. Finally, 
we were not in a position to collect amyloid, Tau, or 
APOE information for this study. The absence of these 
indicators may affect the accuracy of patient enrolment.

Conclusions
Our current study used a graph theory approach and 
rsfMRI to examine the topological organization of func-
tional brain networks in D-AD and nD-AD patients. D-AD 
and nD-AD patients showed significantly lower global and 
local efficiency than NC. Some local brain regions were 
profoundly affected by D-AD. In particular, brain regions 
showing decreased node centrality were mostly located 
within the basal ganglia, while brain regions showing 
increased node centrality were mostly within the FPN. 
These findings may provide further insight into the neu-
ropathophysiology underlying depression in AD.
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