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Abstract 

Background: Exposure‑based therapy is an effective first‑line treatment for anxiety‑, obsessive–compulsive, and 
trauma‑ and stressor‑related disorders; however, many patients do not improve, resulting in prolonged suffering and 
poorly used resources. Basic research on fear extinction may inform the development of a biomarker for the selection 
of exposure‑based therapy. Growing evidence links orexin system activity to deficits in fear extinction and we have 
demonstrated that reactivity to an inhaled carbon dioxide  (CO2) challenge—a safe, affordable, and easy‑to‑implement 
procedure—can serve as a proxy for orexin system activity and predicts fear extinction deficits in rodents. Building 
upon this basic research, the goal for the proposed study is to validate  CO2 reactivity as a biomarker of exposure‑
based therapy non‑response.

Methods: We will assess  CO2 reactivity in 600 adults meeting criteria for one or more fear‑ or anxiety‑related dis‑
orders prior to providing open exposure‑based therapy. By incorporating  CO2 reactivity into a multivariate model 
predicting treatment non‑response that also includes reactivity to hyperventilation as well as a number of related 
predictor variables, we will establish the mechanistic specificity and the additive predictive utility of the potential  CO2 
reactivity biomarker. By developing models independently within two study sites (University of Texas at Austin and 
Boston University) and predicting the other site’s data, we will validate that the results are likely to generalize to future 
clinical samples.

Discussion: Representing a necessary stage in translating basic research, this investigation addresses an important 
public health issue by testing an accessible clinical assessment strategy that may lead to a more effective treatment 
selection (personalized medicine) for patients with anxiety‑ and fear‑related disorders, and enhanced understanding 
of the mechanisms governing exposure‑based therapy.

Trial registration: ClinicalTrials.gov Identifier: NCT05467683 (20/07/2022).

Keywords: Panic disorder, Social anxiety disorder, Obsessive–compulsive disorder, Generalized anxiety disorder, 
Posttraumatic stress disorder, Exposure therapy, Biomarker, Orexin, CO2 challenge, Clinical trial

Background
Anxiety-, obsessive–compulsive and trauma- and stressor-
related disorders are prevalent and costly mental health 
disorders [1–4]. Exposure-based therapy (EBT) has dem-
onstrated efficacy [5] and is a recommended first-line 
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treatment for these disorders [6–10]. As the utilization of 
EBT has strengthened [11], it becomes more important to 
identify biomarkers of EBT non-response [12]—an out-
come observed in a significant subset of patients [13–17]. 
Indeed, making available easy-to-implement screening 
tools to aid clinicians and patients in deciding whether to 
initiate EBT can reduce “unnecessary” prolonged suffering 
and treatment burden/costs, as well as increase the avail-
ability of EBT therapists for patients most likely to respond 
to this treatment.

Although there have been efforts to identify predictors 
of EBT non-response, these have been largely post-hoc 
or based on the secondary analyses of efficacy studies 
[18–30], and consequently they have been handicapped 
by low statistical power and replication failure. As we 
detail next, a fruitful approach to identifying “clinically 
meaningful” biomarkers of EBT non-response is to (1) 
focus on variables that are (theoretically) related to core 
mechanisms of action of EBT, especially when such vari-
ables can be readily assessed in clinical practice; and (2) 
employ a methodological approach that facilitates the 
goal of reproducibility.

Theory‑informed biomarkers
EBT was derived from models of extinction learning [31]. 
The focus on developing safety memories/fear extinction 
is at the heart of EBT for anxiety-, obsessive–compul-
sive and trauma- and stressor-related disorders [31, 32]. 
Through guided experiences involving the presentation 
of feared cues, clinicians help patients undo the maladap-
tive anxiogenic beliefs, vigilance to harm, and avoidance 
that characterize these disorders. Importantly, consistent 
with the hypothesis that fear extinction is a core mech-
anism of EBT [31, 33, 34], a growing body of literature 
links subjective and neural indices of fear extinction to 
EBT outcomes [35–40]. Hence, identifying variables that 
predict fear extinction can aid clinical decision-making 
with respect to the selection of EBT [41].

Orexins are neuropeptides produced by neurons local-
ized exclusively in the hypothalamus [42, 43]. Orexin-
expressing neurons have extensive projections within the 
CNS and, as such, orexins play a role in several important 
functions, including sleep, feeding, and anxiety [44–46]. 
Experimental evidence suggests an important role of the 
orexin system in fear extinction [47–51]. Indeed, greater 
activation of orexin neurons in the medial hypothalamus 
is associated with poor fear extinction [52], blocking the 
(orexin/)hypocretin-1 (Hcrtr-1) receptor with the antag-
onist SB334867 facilitates fear extinction [48, 50], and 
administering Hcrtr-1 impairs fear extinction [48]. Fur-
thermore, antagonism of orexin receptors increases the 
recruitment of basolateral amygdala (BLA) neurons that 
project to the infralimbic cortex (IL) during extinction 

[50]. Those very same neurons (the IL-projecting BLA 
neurons) are found to be active during fear extinction 
[53], underscoring the observation that orexin activation 
in the lateral hypothalamus (LH) accounts for individual 
differences in fear extinction [47]. Translation of these 
rodent findings to the clinic is aided by a study involving 
patients with panic disorder that has linked the Hcrtr-1 
rs2271933 genotype to poor response to EBT, implicating 
orexin activity as a marker of EBT non-response [54].

The relation between orexin cell activity and the afore-
mentioned processes has been well established, particu-
larly in non-human animals, where the cell activity can 
be directly quantified [49]. In humans, this relation has 
been extended to patients in which microdialysis could 
be performed [55]; however, most studies conducted in 
humans have quantified orexin either in plasma, saliva, 
or cerebrospinal fluid (CSF). Whereas orexin quantified 
from CSF appears to correlate with orexin sampled from 
the LH, orexin quantified from plasma or saliva does not 
correlate with orexin in the CSF, suggesting that modu-
lations occurring in line with the findings established in 
rodents are specific to the central nervous system (CNS). 
Fluctuations in plasma orexin A are also not differen-
tially modulated by orexin receptor gene polymorphisms 
[56]. Furthermore, orexin A is present in the blood in low 
amounts, and its levels do not follow autonomic or neu-
roendocrine circadian rhythms [57], suggesting that eval-
uations of orexin quantifications outside of CNS should 
be interpreted very cautiously.

Given these limitations, carbon dioxide  (CO2) reac-
tivity emerges as perhaps the best non-intrusive index 
of orexin activity. Indeed, prepro-orexin knockout mice 
evidence reduced respiratory reactivity to hypercarbic 
gas exposure  (CO2 challenge) and pre-CO2 challenge 
injection of the Hcrtr-1 receptor antagonist SB334867 
reduces respiratory reactivity in wild-type mice [58]. 
Similarly, blocking the Hcrtr-1 receptor with the admin-
istration of Hcrtr-1 receptor antagonists (e.g., SB334867, 
JNJ-61393215) reduces fear and anxious responding to 
 CO2 challenge both in rats and in humans [59, 60]. Col-
lectively, these findings show that the orexin system (and 
particularly the Hcrtr-1 receptor) mediates hypercapnia-
induced fear and sympathetic drive and, by extension, 
suggest that  CO2 reactivity can serve as a proxy to index 
orexin activity [51, 59, 60].

The  CO2 challenge is a safe and well-tolerated pro-
cedure that involves the inhalation of  CO2-enriched 
air at various concentrations (e.g., 5%, 7%, 15%, 20%, 
or 35%)[61]. Important for studies translating non-
human animal work is the observation that  CO2 chal-
lenge fear reactivity (i.e., behavior in rats, subjective 
ratings and avoidance in humans) as well as respiratory 
and cardiovascular reactivity are comparable across 
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species [62]. Stemming from physiological systems 
that are distinguishable from those subserving general 
trait anxiety and lie on a continuum with the extreme 
being panic [63], the  CO2-driven subjective and behav-
ioral responses in humans are dose-dependent [64] and 
elevated relative to healthy control subjects among indi-
viduals with panic disorder (PD) [65–67], social anxiety 
disorder (SAD) [68, 69], generalized anxiety disorder 
(GAD) [70, 71], obsessive–compulsive disorder (OCD) 
[72], and posttraumatic stress disorder (PTSD) [73, 74], 
while also demonstrating adequate intra-individual var-
iability within each of these diagnostic categories.

Optimizing the methodological approach to validating 
putative biomarkers
We conceptualize reactivity to hyperventilation as a con-
trol biomarker because voluntary hyperventilation (VH): 
(1) reliably induces affective reactivity in those with 
anxiety and related disorders [75–78]; (2) shares method 
variance with the  CO2 challenge (i.e., uses the respira-
tory system and an identical strategy for indexing sub-
jective reactivity); (3) reactivity is predicted (as is  CO2 
reactivity) by psychological variables relevant to fears 
of somatic sensations [76–78]; and (4) has the opposite 
effect to  CO2 challenge on pH and thus orexin cell fir-
ing in the LH: acidification (i.e., decrease in pH resulting 
from an increase in  CO2) increases intrinsic excitability, 
whereas alkalinization (i.e., increase in pH resulting from 
a decrease in  CO2) depresses it [79–81], and thus is not 
considered a marker of orexin activity. Hence, VH allows 
for disentanglement of reactivity due to fears of respira-
tory somatic sensations and to reactivity more directly 
reflecting orexin activity (via  CO2 challenge).

We utilize converging self-report, behavioral, and 
physiologic methods to index  CO2 reactivity, including: 
(1) self-reported peak anxiety reactivity and habituation/
sensitization in anxiety, (2) behavioral latency between 
inhalations (avoidance/escape), and (3) physiologic reac-
tivity during recovery (end-tidal  CO2). All three indices 
are available from a single-session  CO2 challenge; hence, 
we retain the efficiency of our procedures while providing 
a comprehensive set of subjective and objective indices.

CO2 reactivity can also be influenced by a number of 
psychological factors. We have selected control variables 
relevant to  CO2 reactivity that are not related to orexin 
activity, including: (1) anxiety sensitivity (AS; the ten-
dency to perceive that anxiety-related symptoms and 
sensations have catastrophic consequences [82]), which 
operates as a transdiagnostic risk factor for the main-
tenance of anxiety pathology [83] and a reliable predic-
tor of reactivity to interoceptive challenges, including 
 CO2  [84, 85] and VH [78, 86]; (2) distress intolerance 
(DI); notably, although AS can be conceptualized as a 

measure of distress intolerance (DI), there is variability 
in prediction and reactivity with alternative measures 
of DI [87–89]); (3) experiential avoidance (EA) [90]; (4) 
Intolerance of uncertainty (IU) [91, 92], a putative trans-
diagnostic risk factor for the maintenance of anxiety 
and related disorders and EBT non-response [93–99]; 
and finally, (5) a behavioral index of subtle avoidance 
behaviors that may interfere with extinction [100]. In 
sum, AS, DI, EA,  IU, and related avoidance tendencies 
all share variance with  CO2 and VH reactivity, but like 
VH, should be a poor marker of orexin activity. Finally, 
to demonstrate that the  CO2 derived biomarker offers 
incremental predictive utility, we will also include stand-
ard, albeit unreliable, clinical and demographic predic-
tors of EBT non-response [18–30].

Adopting a stage model approach for biomarker research
The identification of biomarkers for psychosocial treat-
ment response has been marked by difficulties in rep-
lication. For this reason, we believe that establishing 
reliability for a biomarker is more important than estab-
lishing the treatment specificity of that marker in the 
first stage of biomarker validation. This is analogous to 
the stage approach to treatment development; we are 
starting with a Stage 1 (open) evaluation of biomarker 
adequacy. Accordingly, our design maximizes reliability 
by including a replication sample in the design to ensure 
consistency of prediction for the putative biomarker. 
Consistent with a Stage 1 approach [101], our design 
does not include a test to ensure that the non-response 
predicted by the biomarker is specific to EBT vs. some 
alternative treatment. Indeed, the selection of which 
treatment should serve as an alternative treatment is a 
premature decision for two reasons: (1) we have not yet 
determined the level at which  CO2 reactivity becomes 
predictive of non-response (hence, it is unclear what cut-
off can be used to stratify based on biomarker status [+ 
or -]); and (2) it is unclear at this time what intervention 
can be used effectively either because it does not rely on 
orexin function or because it can manipulate the orexin 
system.

Sample size and data analytic approach
Simulation work has shown that large sample sizes are 
required to develop accurate predictive models of treat-
ment response [102, 103]. Our own statistical simula-
tion shows that given the two-site, split-half validation 
design, we require 300 participants per site—at least 300 
to develop the model and another 300 to adequately val-
idate it in this Stage 1 model. The reality is that under-
powered studies likely detect only the largest effects, 
and multivariate models based on them yield unstable 
predictions that overfit the sample data and perform 
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poorly out-of-sample [104, 105]. As pointed out by Kes-
sler and colleagues, “The inevitable conclusion is that 
samples much larger than those in existing mental dis-
order randomized clinical trials are required to develop 
useful personalized treatment recommendations” [106]. 
The overarching message of the statistical learning lit-
erature and our own simulations used to develop this 
proposal is “go big or go home”.

Our primary objective is to build a model predicting 
EBT non-response using a multivariate combination of 
candidate predictors. One set of predictors constitutes 
what we consider our “control” model; these include “tra-
ditional” prognostic factors and psychological variables 
(see Table 1). The addition of a second set of predictors, 
corresponding to our proposed measures of reactivity 
to  CO2 and VH, constitutes our “experimental” model. 
We have two key hypotheses that we aim to test: (1) the 
experimental model will outperform the control model 

when predicting never-before-seen data, establishing the 
additive predictive value of assessing reactivity measures 
prior to initiating treatment; and (2) when predicting 
never-before-seen data, a model that excludes VH reac-
tivity measures will outperform a model that excludes 
 CO2 reactivity measures, establishing that the additive 
predictive value is specific to  CO2 reactivity.

Importantly, cross-validation is used during model 
development to prevent overfitting, and all statistical 
tests of model predictions will be performed using data 
collected from a completely independent site located in 
a different geographic region of the country. This ensures 
that our findings will not just be “statistically significant” 
in the sense of being improbable under a null hypothe-
sis, but will demonstrate real-world predictive utility in 
two respects: (1) the biomarkers must out-perform other 
measures and (2) they must predict new data, show-
ing that predictions based on one clinical sample will 

Table 1 Schedule of assessments

a For these measures patients will only complete the scale thatassesses symptom severity regarding their primary DSM-5 disorder (all participants will complete the 
PHQ-9)
b Only administered after the first treatment session

PD Panic disorder, SAD Social anxiety disorder, GAD Generalized anxiety disorder, OCD Obsessive–compulsive disorder, PTSD Posttraumatic stress disorder, SPIN 
Social Phobia Inventory, DOCS Dimensional Obsessive Compulsive Scale, PCL-5 PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition, 
PDSS-SR Panic Disorder Severity Scale-Self Report Version, OASIS Overall Anxiety Severity and Impairment Scale, CGI Clinical Global Impressions, CGI-I Clinical Global 
Impressions—Improvement, CGI-S Clinical Global Impressions—Severity, SCID-5 Structured Clinical Interview for DSM-5, C-SSRS Columbia-Suicide Severity Rating 
Scale, ASI-3 The Anxiety Sensitivity Index, DTI The Distress Tolerance Index, IUQ The Intolerance of Uncertainty Questionnaire, BEAQ The Brief Experiential Avoidance 
Questionnaire, SBAF The Safety Behavior Assessment Form, CEQ Credibility/Expectancy Questionnaire

Measurement Domain Screen Biomarker
Visit

Treatment
(Weeks 1–12)

Follow‑up
(Weeks 13, 24)

Primary Outcome Measures
 Clinician Rated: CGI‑S/CGI‑I X X

 Patient Rated: OASIS X X X

Secondary Outcome Measures
 Patient Rated:a X X

 PD—PDSS‑SR

 SAD—SPIN

 GAD—GAD‑7

 OCD—DOCS

 PTSD—PCL‑5

 Depression—PHQ‑9

Screening
 Internet prescreen, Demographics, SCID‑5, CSSR‑S X

CO2 and VH Reactivity Measures
 Peak anxiety, Habituation/Sensitization, Latency, End tidal  CO2 X

Theoretically-Relevant Competing
Predictor Variables

 ASI‑3, DTI, BEAQ, IUS, SBAF X

Control Predictor Variables
 Sex assigned at birth, Gender identity, Diagnosis, Comorbidity symp‑
tom severity

X X

Treatment Integrity and Acceptance
  CEQb, Attendance X
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generalize to another. We have powered our proposed 
study to meet this higher standard. If we are successful, 
it is our further objective to translate our model predic-
tions into a set of decision rules to facilitate their imple-
mentation in clinical practice.

Methods/design
Design
We aim to recruit a transdiagnostic sample (N = 300 at 
each of two collaborating sites  [The University of Texas 
at Austin (UT) and Boston University (BU)]) present-
ing with one or more DSM-5 anxiety disorders, OCD, or 
PTSD. Eligible participants will complete 20%  CO2 and 
VH challenges, as well as a comprehensive set of clini-
cian-rated and patient-rated measures prior to starting 
open, transdiagnostic, EBT. Assessment of non-response 
will occur weekly during treatment, at 1-week posttreat-
ment (i.e., primary endpoint), and at 3-month follow-
up. This study has been registered with ClinicalTrials.
gov (NCT05467683; 20/07/2022). The UT Institutional 
Review Board has approved the study protocol for both 
participating sites (STUDY00001631).

Participants
The transdiagnostic sample will consist of 600 partici-
pants. Inclusion criteria include: (1) a primary DSM-5 
diagnosis of PD (with or without agoraphobia), SAD, 
GAD, OCD or PTSD; (2) a score of 8 or greater on the 
Overall Anxiety Severity and Impairment Scale (OASIS) 
[107]; (3) ages 18–70; (4) willingness and ability to pro-
vide informed consent and comply with the requirements 
of the study protocol; and (5) proficiency in English 
(because many assessment instruments have only been 
validated in English). Exclusion criteria include: (1) a 
lifetime history of bipolar or psychotic disorders; sub-
stance use disorders (other than nicotine) or eating dis-
order in the past 6 months; serious cognitive impairment; 
(2) active suicidal ideation with at least some intent to 
act with or without a specific plan (i.e., a rating of 4 for 
suicidal ideation on the Columbia-Suicide Severity Rat-
ing Scale; CSSRS) [108] or suicidal behaviors (actual 
attempt, interrupted attempt, aborted or self-inter-
rupted attempt, or preparatory acts or behavior) within 
the past 6  months; (3) medical conditions contraindi-
cating  CO2 inhalation or VH (e.g., cardiac arrhythmia, 
cardiac failure, asthma, lung fibrosis, stage 2 high blood 
pressure, epilepsy, or stroke); (4) pregnancy or lactation; 
(5) ongoing psychotherapy directed toward the pri-
mary disorder; or (6) pharmacological treatment started 
within 8 weeks prior to the screen (participants “stable” 
on their medication regimen will be included and 
their medication status will be included as a variable in 
the model).

Recruitment
Participants will be recruited from our outpatient clin-
ics specializing in the treatment of fear- and anxiety-
related disorders, which helps ensure adequate flow for 
the proposed study. To complement the natural flow, we 
will advertise through numerous community organiza-
tions, social media platforms, and other internet-based 
referral sources.

Retention
We include an incentive-based approach that includes; 
(1) obtaining multiple methods for contacting partici-
pants; (2) offering flexibility in scheduling appointments; 
(3) personalized connections around scheduling; (4) pro-
viding reminders of appointments; and (5) weekly moni-
toring of recruitment and retention and quality control 
across sites. Also, assessment adherence and study com-
pletion will be aided by study compensation. Compensa-
tion is based on one biomarker assessment session, one 
baseline session, 12 weekly assessment sessions, 1 post-
treatment and 1 follow-up assessment at the following 
levels: $70 for the biomarker assessment session, $30 for 
the baseline assessment, $10 for each weekly assessment 
($120), and $30 for posttreatment and follow-up ($60), 
plus a reward of $20 for completing all assessments, for a 
total of $300 per participant.

Procedures
Screening
An internet prescreen will be conducted for all potential 
participants. Persons who appear eligible will be invited 
to complete diagnostic screening. Participants will 
receive an informed consent form explaining the details 
of the study, potential benefits and risks of participation, 
and the procedures they will undergo if they choose to 
participate. If the individual provides informed con-
sent, they will begin the psychiatric evaluation process, 
which will be conducted during an in-person visit with 
a clinician.

Biomarker visit
Prior to the first treatment visit, participants will com-
plete two distinct respiratory challenges to assess the 
putative biomarker and relevant control variables.

CO2 challenge The  CO2 challenge comprises two 
20-min trials: the  1st trial involves 3 vital capacity 
(VC) breaths from a bag of compressed air and the  2nd 
trial involves 3 VC breaths from a bag containing 20% 
 CO2-enriched air (participants will be blind to the con-
tent of the inhalation mixture in the bag). Participants 
will first view a video recording that provides informa-
tion about  CO2 inhalation and modeling of the  CO2 
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challenge procedures. The integrated system built 
by Hans Rudolph, Inc. and customized for this study 
includes a pulse oximeter (to assess heart rate and blood 
oxygen saturation; exploratory measures), a breathing 
mask with sensors (to measure tidal volume, respira-
tory rate, minute ventilation, end-tidal  O2, and end-tidal 
 CO2), a dial (for continuous ratings of anxiety) and a 
button to initiate inhalation. Prior to the first trial, par-
ticipants will practice VC inhalation (exhaling completely 
and inhaling to maximum lung capacity). Participants 
will then be allotted 20 min to complete 3 VC inhalations 
at their own pace by using the button to initiate each 
inhalation. They will be asked to rate how much anxiety 
they feel, moment by moment, using the rating dial. The 
two trials—involving VC breaths of room air followed 
by 20%  CO2-enriched air—are each preceded by a 2-min 
baseline period and followed by a 2-min recovery period.

VH challenge The VH challenge will be administered 
within 30 min following the  CO2 challenge. It comprises 
one 20-min trial involving 3 two-minute VH provoca-
tions (matching the  CO2 challenge procedures). Con-
sistent with recommendations for standardization [109], 
participants will view a video recording that explains 
hyperventilation and the challenge procedures and mod-
els proper VH (i.e., breathing in pace with pacing tones 
signaling inspiration and expiration to guide the rate of 
18–24 breaths per minute) [109] and then complete a 
15-s practice trial supervised by staff. Participants will 
be fitted with the same pulse oximeter (to assess heart 
rate) and breathing mask which will allow assessment 
and monitoring of tidal volume, respiratory rate, minute 
ventilation, end-tidal  O2, and end-tidal  CO2, and pro-
vide the staff with the necessary feedback to potentially 
modify breathing rate to ensure that the participant stays 
at the target end-tidal  CO2 level (i.e., 20 mmHG) for 
2 min [109]. They will rate anxiety using the dial continu-
ously, and will be told that they have 20 min to complete 
three VH provocations at their own pace with a button 
press to initiate each trial, mirroring the  CO2 challenge 
procedures.

Open exposure-based therapy
Transdiagnostic EBT will be delivered by experienced, 
license-eligible clinicians. To aid generalization to EBT 
delivered in clinical practice, the study clinician will 
develop a personalized assessment and treatment plan 
for each participant. Assessment algorithms will (1) guide 
the case formulation, which emphasizes threat apprais-
als as maintaining factors to be targeted during treat-
ment; and (2) provide the data for tracking success and 
progress. The case formulation guides the clinician in the 

development of personalized exposure exercises, while 
tracking success and progress allows for updating of the 
case formulation and fine-tuning of the treatment plan. 
Consistent with contemporary models of EBT [31, 110], 
exposure practice aims to help patients relearn a sense 
of safety around feared cues. Hence, exposure exercises 
are planned to ensure violation of threat expectancies. In 
addition to ensuring sufficient activation of the “fear net-
work” and a focus on repetition to provide disconfirma-
tory evidence, exposure practice will be planned and 
delivered keeping in mind that fear extinction tends to 
be context specific. Specifically, practice will occur across 
relevant contexts both within and outside the session 
(i.e., homework) and clinicians will guide participants in 
processing their exposure practice to facilitate consolida-
tion of safety learning.

To achieve these ends, study clinicians will use a man-
ual that describes these procedures for treatment plan-
ning and delivery. The manual “Personalized Exposure 
Therapy: A Person-Centered Transdiagnostic Approach 
[32]” includes clear guidance on the conceptual model 
of EBT, assessment planning and strategies, and separate 
chapters on the planning and delivery of in vivo, imagi-
nal and interoceptive exposure practice, respectively. The 
treatment dose will be set at 12 one-hour sessions, deliv-
ered over the course of 12 weeks. The quality assurance 
protocol for treatment implementation involves requir-
ing all clinicians to (1) complete a 6-h training workshop; 
and (2) attend weekly supervision meetings.

Assessment
Table  1 provides an overview of assessment targets and 
measures by study phase.

Screening
The online questionnaire first asks potential partici-
pants to provide standard demographic information 
and to indicate whether they have experienced or been 
diagnosed with any of the psychiatric or medical exclu-
sion criteria. Participants who do not endorse exclu-
sion criteria will then be asked to complete the OASIS 
[107]. Participants who endorse experiencing anxiety-
related symptoms and impairment will then complete 
the DSM-5-TR Self-Rated Level 1 Cross-Cutting Symp-
tom Measure [111]. Based on their responses to this 
measure, participants will also complete relevant Level 
2 or diagnosis-specific measures, which for the current 
study include the Severity Measure for Panic Disorder 
[112], Mobility Inventory (MI; alone) [113], Social Phobia 
Inventory (SPIN) [114], PROMIS Emotional Distress—
Anxiety—Short Form [115], Dimensional Obsessive 
Compulsive Scale [DOCS; OCD] [116], and the PTSD 
Checklist for Diagnostic and Statistical Manual of Mental 
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Disorders-Fifth Edition (PCL-5) [117] as well as measures 
of constructs that aid the case formulation (e.g., anxiety/
fear cues, core threat appraisals, and safety behaviors). 
Participants that do not meet any exclusion criteria after 
this screening will be given the option to schedule an in-
person screening visit.

The clinician assigned to the participant will complete 
the in-person screen visit, which includes administration 
of the Structured Clinical Interview for DSM-5 (SCID-
5) [118] and the Columbia Suicide Severity Rating Scale 
(C-SSRS) [108].

Biomarker measures
For each VC inhalation, mean and peak reactivity will 
be assessed across different epochs (i.e., baseline, antici-
pation, peak response, and recovery). For the subjec-
tive anxiety index, difference scores will be calculated 
between the  1st trial (bag of compressed air) and  2nd trial 
(bag of  CO2). The primary subjective measure of  CO2 
peak anxiety reactivity will be the participant’s peak real-
time ratings of subjective anxiety (reported throughout 
the trials using the rating dial). The primary measure 
of the degree of habituation vs. sensitization will be the 
change in peak subjective anxiety from the  1st to the  3rd 
of the  CO2 provocations. The primary behavioral meas-
ure will be avoidance responses (latency in seconds 
between inhalations 1–2, and 2–3). The primary physi-
ological measure will be the difference in end-tidal  CO2 
during the resting baseline vs. recovery phase.

For each of the three VH provocations, mean and peak 
reactivity will also be assessed across epochs (i.e., base-
line, anticipation, peak response, and recovery). For the 
subjective index, difference scores will be calculated 
between VH baseline (at rest) ratings and the trial (VH) 
ratings. The primary subjective measure of VH peak 
anxiety reactivity will be the participant’s peak real-time 
ratings of subjective anxiety (reported throughout the 
trials using the rating dial). The primary measure of the 
degree of habituation vs. sensitization will be the change 
in peak subjective anxiety from the  1st to the  3rd of the 
VH provocations. The primary behavioral measure will 
be avoidance responses (latency in seconds between VH 
provocations 1–2, and 2–3). The primary physiological 
index of VH reactivity will be the mean difference in end-
tidal  CO2 during the resting baseline vs recovery phase.

Theoretically-relevant and general competing predictor 
variables
Participants will complete the following self-report 
measures of constructs related to  CO2 reactivity and/or 
expected to be predictive of EBT non-response: ASI-3 
[119], Distress Tolerance Index (DTI) [88], Brief Expe-
riential Avoidance Questionnaire (BEAQ) [120], IUS 

[91],  and Safety Behavior Assessment Form (SBAF) 
[121]. Additional control predictor variables include sex 
assigned at birth, gender identity, number of diagnoses 
(s measured by the SCID-5), and comorbidity symptom 
severity (as measured by the DSM-5-TR Self-Rated Level 
1 Cross-Cutting Symptom Measure).

Symptom severity
Prior to each treatment visit (Weeks 1–12), at post-
treatment (Week 13) and at follow-up (week 24), an 
independent evaluator (IE; telehealth) will administer 
the Clinical Global Impressions (CGI) scales [122]. Par-
ticipants will also complete the OASIS and the Patient 
Health Questionnaire (PHQ-9) as well as the symptom 
severity measure corresponding to their primary diag-
nosis (Panic Disorder Severity Scale-Self Report Version 
[PDSS-SR; PD] [123], SPIN [SAD] [114], GAD-7 [GAD] 
[124], DOCS [OCD] [116], or PCL-5 [PTSD] [117]) prior 
to the meeting with the IE. Every 3  weeks participants 
will also be asked to complete several treatment process 
measures that are not related to the primary study aim. 
IE training will involve completion of a 3-h workshop and 
reliable rating (> = 80%) of interviews with test subjects. 
IE’s will also complete quarterly ratings of test cases to 
prevent rater drift.

Definition of non‑response Participants will be classi-
fied as non-responders if their CGI—Improvement (CGI-
I) score is 3 or above OR if their OASIS score has not 
improved by at least 4 points.

Treatment integrity and acceptance
Participants will complete the Credibility/Expectancy 
Questionnaire (CEQ) [125] which is a widely used 6-item 
measure that assesses treatment credibility and expec-
tancy, after the first treatment session. Participant adher-
ence to each intervention will be assessed as the number 
of total sessions attended.

Data analysis
Rationale for statistical learning approach
Our primary goal of identifying mechanistic non-
response indicators that can be readily assessed in clini-
cal practice requires a machine learning approach that 
has (as its end product) a single model that any clinician 
can easily understand and adopt. Whereas there is evi-
dence supporting the potential relevance of all our can-
didate predictors for individual bivariate relationships 
with non-response, we do not yet know how to optimally 
combine them into a single model to maximize predic-
tion accuracy. This is especially true for the  CO2/VH 
reactivity measures, which are multimodal, including 



Page 8 of 15Smits et al. BMC Psychiatry          (2022) 22:831 

physiology, behavior, and self-report. It is unlikely that all 
of these measures will provide a unique predictive signal; 
it is very likely that some may be redundant, and others 
may constitute noise. We therefore require a data-driven 
method of variable selection that reveals the best subset 
of predictors. A traditional approach would be to use a 
generalized linear model (GLM) and a stepwise selection 
algorithm, in which model terms are iteratively added or 
deleted and the model is repeatedly refit until some infor-
mation criterion settles into a local optimum. Numerous 
weaknesses of such stepwise selection have been noted 
[126] including model selection bias, which can exagger-
ate the apparent strengths of relationships [127, 128].

The essential problem is that, with or without variable 
selection, an ordinary logistic regression is very likely to 
overfit the data [129] (meaning the model is trained to 
predict sample noise, which leads to inflated estimates 
of how well the model predicts the sample it was trained 
on, at the expense of generalizability when predicting 
other samples). Thus, a statistical learning technique is 
required that can handle the potential for highly corre-
lated covariates and discourage overfitting. In develop-
ing a statistical learning approach for our objectives, we 
are mindful of the tradeoff between prediction accuracy 
and model interpretability that exists within the large 
umbrella of machine learning approaches. Generally 
speaking, the approaches with the best prediction per-
formance (e.g., stacked ensembles that blend a diversity 
of machine learners) are the most successful in revealing 
comprehensible mechanisms. This has led us to select 
regularized regression, using the elastic net penalty, as 
our primary approach.

The chief advantage of the elastic net [130] is that 
it is still a GLM, and therefore its model output is as 
easy to understand and interpret as any GLM. Impor-
tantly, elastic net regression functions just as a GLM 
would in terms of handling covariates. For instance, 
if  CO2 reactivity is entered into the model alongside 
other predictors, its estimated regression coefficient 
will reflect its incremental contribution to the pre-
diction, controlling for all other covariates. The only 
difference is that the optimization procedure that fits 
the model, in addition to maximizing the likelihood of 
the observed data, works to minimize the size of the 
model coefficients, which is variously referred to in 
the literature as penalizing, regularizing, or shrinking 
the coefficients. The elastic net penalty is a mixture 
of “lasso” (L1) and “ridge” (L2) penalties. The lasso 
component favors sparsity by allowing the coefficients 
of the least influential covariates to be shrunk to 0, 
effectively selecting them out of the model entirely, 
while the ridge component favors inclusivity by ena-
bling highly correlated variables to be shrunk together 

instead of arbitrarily picking one and discarding the 
rest. Importantly, in contrast to stepwise selection, 
variable selection is a by-product of coefficient shrink-
age and the models are fit using all of the predictors. 
Cross-validation (tenfold) is used to tune the optimal 
combination and magnitude of penalties for a “just 
right” fit—flexible enough to capture real complexity, 
but constrained enough to avoid capturing noise—by 
choosing the amount of regularization that maximizes 
out-of-sample generalization instead of in-sample fit.

A potential disadvantage of the elastic net is that it does 
not provide an automatic search for potential nonlinear 
relationships or higher-order interactions among predic-
tors, which other machine learning algorithms (e.g., ran-
dom forests) would supply. However, in our publications 
and experience building machine learning ensembles 
to predict mental health outcomes [131], the elastic net 
has been the major workhorse of these ensembles, and 
the gains from adding other machine learners have been 
minimal at best (likely because the accurate capture of 
nonlinear, high-order interactions will require enormous 
sample sizes much larger than the ones we have worked 
with to date [132]). However, to assess how much loss of 
predictive accuracy an elastic-net may entail relative to 
more black-box approaches, we will also use superlearn-
ing/stacked ensembles, which have been touted as an 
optimal way to discover treatment rules that maximize 
response outcomes [133].

Model development and validation strategy
We will maintain the data collected at each site (UT and 
BU) as independent data sets. Two sets of models will be 
developed, one trained to each site’s data, which will then 
be used to predict the other site’s data. All statistical tests 
of model predictions will be performed using data from 
a completely independent sample. This ensures that find-
ings are not merely “statistically significant” in the sense 
of being improbable under a null hypothesis, but also 
demonstrates real-world predictive utility by directly show-
ing that predictions based on one clinical sample are likely 
to generalize to other clinical samples of the same popu-
lation. We refer to the site used to fit models as the “train 
site” and the site used to validate models as the “test site”.

Hypothesis testing will be based on a series of model 
comparisons. All models will be fit to the train site and 
used to predict the probability of treatment response 
at the test site. These probabilities will be used to gen-
erate an ROC curve for each model’s ability to dis-
criminate treatment responders from non-responders. 
Significant differences between curves will be evaluated 
using DeLong’s test for two correlated ROC curves as 
implemented by the R package “pROC”. The following 
model comparisons will be performed:
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1. All candidate predictors vs. excluding  CO2/VH reac-
tivity measures. This comparison addresses the ques-
tion: do the novel measures of  CO2/VH reactivity add 
predictive value beyond traditional—and easier to 
collect—measures like diagnosis or symptom sever-
ity? We hypothesize that the addition of the reactiv-
ity measures will significantly improve model perfor-
mance. If  CO2 reactivity is completely confounded 
with these competing predictors, then adding it to 
the model will not result in any predictive gains;  CO2 
reactivity can only improve model predictions if it 
provides unique information that is not captured by 
“confounders”.

2. CO2 vs. VH reactivity. Finally, if the above model 
demonstrates the value of collecting  CO2 reactiv-
ity measures, we will next assess does  CO2 reactiv-
ity specifically predict treatment non-response (by 
revealing something about the underlying biology), 
or is it merely heightened sensitivity to the physi-
ological sensations that are common to both  CO2 
inhalation and hyperventilation? Qualitatively, if 
VH reactivity has no predictive utility, then the sta-
tistical learning algorithm will have penalized these 
measures out of the model entirely by this point. 
However, the hypothesis of mechanistic specificity 
will be more formally tested by comparing a model 
that includes just  CO2 reactivity measures to one 
that includes just VH reactivity measures. Note 
that the ability to perform a head-to-head compari-
son like this is one of the advantages of comparing 
ROC curves in an independent test set; the models 
do not need to be nested as they would when per-
forming likelihood ratio tests on model fits.

Two strengths of this validation strategy should be 
emphasized. First, the significance of the biomarkers 
will be determined by their ability to outperform self-
report measures, not just that their coefficients are 
significantly different from zero. The former speaks 
to their real-world utility; the latter does not. Second, 
the biomarkers are being compared on their ability to 
predict new data, not just their ability to fit the same 
data. This design/analytic feature helps ensure that we 
do not propagate failure-to-replicate issues. If we do 
not replicate a simplified model across sites and our 
hypotheses are not supported by the data (and there 
is not support for an alternative model with adequate 
sensitivity and specificity), we will recommend to the 
field that reactivity to  CO2 and/or VH challenge (and 
the confounder variables we assessed) should not be 
used for determining patients’ suitability for EBT. Our 
use of a replicated assessment and a large sample helps 
instill confidence in these recommendations.

Translating anticipated ROC gains into clinical impact
The comparison of the ROC model curves is a frame-
work for hypothesis testing, but the model will ultimately 
need to be couched in other terms besides an improve-
ment in the ROC to convince clinicians of its practical 
utility, which depends not only on the improved perfor-
mance of the model, but also clinical judgment about the 
optimal tradeoff between sensitivity and specificity: one 
can always boost the gain in the correct number of non-
responders at the cost of increasing the number of falsely 
identified non-responders, and individual clinicians and 
patient circumstances may dictate different cut points. 
Thus, a metric like ROC that captures the overall trade-
off between specificity and sensitivity across all possible 
decision thresholds is the best way to frame our mini-
mal objective, keeping in mind that this is a conservative 
expectation; larger predictive gains are possible.

However, assuming the minimal gains in ROC perfor-
mance that we used to determine sample size require-
ments, we can offer a working example for one potential 
cutoff: if we were to require greater than an 80% pre-
dicted probability of non-response to forego a trial of 
EBT, then, out of 5000 patients entering treatment, the 
standard baseline model would only identify 4 true non-
responders and falsely identify 1 responder as a likely 
non-responder. In contrast, the addition of  CO2 reactivity 
measures would identify 262 true non-responders while 
misidentifying 26 responders as non-responders. This 
would spare > 10% of non-responders from an unsuccess-
ful trial of EBT vs. < 0.2% under the baseline model, while 
incorrectly excluding only 1% of would-be responders. 
The biomarker assessment burden in our protocol is a 
single session, balanced against 12 one-hour sessions 
of treatment. The ability to spare 1/10 non-respond-
ing patients from the burden of unsuccessful treat-
ment, while only negatively impacting 1/100 responding 
patients, justifies the burden of a single assessment ses-
sion, in our opinion.

Deriving treatment recommendation heuristics
The final data product is to translate the above models 
into algorithmic recommendations to determine whether 
a patient is very unlikely (e.g., < 30% chance) to respond to 
EBT, which could support the recommendation of inter-
ventions that do not rely on fear extinction (e.g., other 
psychosocial interventions, pharmacological interven-
tions). Although we chose a statistical learning algorithm 
that avoids “black box” predictions, obtaining a probabil-
ity of non-response will still require inputting a number 
of measurements into something like a web-based cal-
culator, which we will disseminate if the models demon-
strate good predictive value. But clinicians might be more 
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likely to adopt a treatment recommendation for a patient 
if they are able to derive it from decision rules (e.g., if a 
patient maintains a latency less than 90-s between  CO2 
inhalations) based on the measurements that are easiest 
to acquire. We will attempt to derive such decision rules 
by applying a recursive partitioning algorithm to the data 
(similar to the approach used to assist hospital pharmacy 
staff in identifying patients at risk of medication errors)
[134] using only easy-to-obtain measures. We will then 
use the same model comparison strategy outlined above 
to compare the predictive performance of the decision 
rules to both a no-information model and the best mod-
els derived from elastic-net regression. If the simplified 
heuristic model offers significant gains over no informa-
tion and is not significantly worse than the best models, 
then this will provide the ideal mechanism for translating 
the knowledge gained from this study to clinical practice.

Statistical power
We ran 5,000 computer simulations of our study design 
under a wide range of total sample sizes. In brief, a dif-
ferent multivariate distribution was defined for each of 
the following five diagnostic categories: (1) PD(with 
or without agoraphobia), (2) SAD, (3) GAD, (4) OCD, 
and (5) PTSD. Data were simulated to match the dis-
order-specific response rates (PD = 0.53,  SAD = 0.45, 
GAD = 0.47, OCD = 0.43, PTSD = 0.59) reported in a 
meta-analysis of 87 studies [135]. The specified N for a 
given simulation was divided equally across the 2 sites 
and 5 disorder groupings within sites, and random sam-
ples of size N/10 were drawn for each disorder group for 
each site, one of which was arbitrarily labeled “train” and 
the other “test”. Just as we specified in our analytic plan, 
elastic-net logistic regression models were fit to the train 
site, and the optimal penalty mix (parameter alpha) and 
magnitude (parameter lambda) were selected using the 
average of 10 repeats of a tenfold cross-validation pro-
cedure. We then used this model to predict the response 
at the test site. These predictions (which are individual 
probabilities of response) and the actual response values 
were then used to generate ROC curves for the differ-
ent models to be compared. The control model, which 
includes only “traditional” self-report measures, was 
assumed to have a true AUC of 0.63, and the experimen-
tal model, which adds  CO2 and hyperventilation reactiv-
ity measures, was simulated to have a true AUC of 0.73. 
These values and their differences correspond to our 
minimal effect size of interest.

Then, for each of the simulated data sets, area under 
the ROC curve (AUC) was compared using DeLong’s test 
for two correlated ROC curves, as implemented by the 
`roc.test` function in the “pROC” package in R, with the 
directional hypothesis that the experimental model has 

a greater AUC than the control model. At a total sample 
size of 600 (300 train site/300 test site), 92.2% of simu-
lations found a significant (p < 0.05) difference in model 
performance. Applying the same approach to the com-
parison of models with only  CO2 reactivity (no hyperven-
tilation measures) vs. models with only hyperventilation 
reactivity (no  CO2 measures), 82.7% of simulations found 
a significant (p < 0.05) superiority of  CO2 over hyperven-
tilation. The likely reason for this ~ 10% drop in power 
is that we modeled  CO2 and hyperventilation reactivity 
measures as likely to be correlated (r = 0.03—0.25) such 
that hyperventilation would have a smaller, spurious rela-
tionship with treatment outcome by proxy. While this 
makes the mechanistic specificity of  CO2 reactivity more 
difficult to detect than if we had assumed independ-
ence between  CO2 and hyperventilation reactivity, these 
simulations show that we are reasonably well powered 
to detect the mechanistically specific predictive value of 
 CO2 even under this noisy condition. Power curves for 
these model comparisons at all simulated sample sizes 
are shown in Fig. 1.

Discussion
Anxiety-, obsessive–compulsive, and trauma- and 
stressor-related disorders reflect a significant public 
health problem. This study is designed to evaluate the 
predictive power of a novel biomarker based on a  CO2 
challenge, thus addressing the central question “can 
this easy-to-administer assay aid clinicians in deciding 
whether or not to initiate exposure-based therapy?”.

Fig. 1 Power curve
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We hypothesize that the subjective and behavioral 
indices of  CO2 reactivity will be the dominant predic-
tors of EBT non-response. We do, however, include 
a set of competing predictors in our model. Hence, if 
our hypotheses are not supported and/or psychophysi-
ological measures emerge as important predictors, we 
will still be able to deliver to the field an accounting of 
the variables/model that best predicts treatment fail-
ure. In essence, while our preliminary data provided 
a good basis to move forward, the work proposed in 
this application would comprehensively address pos-
sible confounders in a novel way. Ultimately, the final 
application of our work will be to recommend a spe-
cific assessment procedure and a specific go/no go 
assessment to guide clinical decisions for initiating 
exposure-based treatment vs. pursuing a different 
alternative.

Support for the study hypothesis that patients with 
elevated  CO2 reactivity will not do well with EBT 
would justify the consideration to move away from 
this treatment modality altogether and instead select 
an alternative (e.g., psychosocial or pharmacological) 
modality for these patients, if indeed the biomarker 
is specific to EBT vs. an alternative treatment. As dis-
cussed, we have adopted a stage model approach to 
biomarker validation; targeting reliability of predic-
tion in this study, with treatment specificity of predic-
tion relegated to future investigations (i.e., we do not 
believe it is a cost-effective strategy to do both in the 
same initial trial). Moreover, we have considered a 
number of comparison conditions for a future study 
in the context of a randomized trial of two or more 
treatment arms, evaluating both alternative treatments 
and rescue strategies (i.e., a strategy that effectively 
recalibrates the mechanism that underlies the bio-
marker − EBT non-response relation), but all of these 
design decisions would be clearly informed by the 
results of the investigation proposed here (e.g., iden-
tification of the pre-randomization stratification point 
for  CO2 reactivity). Finally, should the findings from 
the proposed study be consistent with the hypotheses, 
we will work with Hans Rudolph Inc. to develop acces-
sible technology for assessing the relevant  CO2 reac-
tivity parameters thus aiding dissemination efforts.
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