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Abstract 

Background and objective Insomnia is one of the common problems encountered in the hemodialysis (HD) 
population, but the mechanisms remain unclear. we aimed to (1) detect the spontaneous brain activity pattern in HD 
patients with insomnia (HDWI) by using fractional fractional amplitude of low frequency fluctuation (fALFF) method 
and (2) further identify brain regions showing altered fALFF as neural markers to discriminate HDWI patients from 
those on hemodialysis but without insomnia (HDWoI) and healthy controls (HCs).

Method We compared fALFF differences among HDWI subjects (28), HDWoI subjects (28) and HCs (28), and 
extracted altered fALFF features for the subsequent discriminative analysis. Then, we constructed a support vector 
machine (SVM) classifier to identify distinct neuroimaging markers for HDWI.

Results Compared with HCs, both HDWI and HDWoI patients exhibited significantly decreased fALFF in the bilateral 
calcarine (CAL), right middle occipital gyrus (MOG), left precentral gyrus (PreCG), bilateral postcentral gyrus (PoCG) 
and bilateral temporal middle gyrus (TMG), whereas increased fALFF in the bilateral cerebellum and right insula. Con‑
versely, increased fALFF in the bilateral CAL/right MOG and decreased fALFF in the right cerebellum was observed in 
HDWI patients when compared with HDWoI patients. Moreover, the SVM classification achieved a good performance 
[accuracy = 82.14%, area under the curve (AUC) = 0.8202], and the consensus brain regions with the highest contribu‑
tions to classification were located in the right MOG and right cerebellum.

Conclusion Our result highlights that HDWI patients had abnormal neural activities in the right MOG and right cer‑
ebellum, which might be potential neural markers for distinguishing HDWI patients from non‑insomniacs, providing 
further support for the pathological mechanism of HDWI.
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Introduction
Patients receiving maintenance hemodialysis (HD) 
frequently report insomnia complaints, with a high 
prevalence ranging from 40 to 85% worldwide [1–3]. 
It has been shown that HD patients with insomnia 
(HDWI) present a variety of comorbidities such as 
irritability, immune suppression, anxiety, depres-
sion, cognitive impairment, etc., which may have a 
potentially great impact on their quality of life and 
even survival [4–6]. Despite the fact that the current 
management including medication, behavioral cogni-
tive therapy (CBT-i) and acupuncture has developed 
for HDWI, it is far from satisfactory and standardized 
clinical procedures regardless of individual differences 
may increase the subjects’ risk factors amongst HD 
patients [7–10], highlighting the urgent need to fully 
understand the pathophysiology of the disorder and 
help achieve advances in the prevention and treatment 
of the condition.

Resting-state functional magnetic resonance imag-
ing (rs-fMRI) is a non-invasive technique, which could 
detect the ongoing neuronal process at the “resting 
state” through measuring the spontaneous brain activ-
ity by low-frequency fluctuations in blood oxygen 
level-dependent (BOLD) signals, and consequently 
provide a new opportunity to investigate the func-
tional abnormalities on several neurological disorders 
[11–13]. In recent years, rs-fMRI studies have identi-
fied that the altered amplitude of low-frequency fluc-
tuations (ALFF) or fractional fractional amplitude of 
low frequency fluctuation (fALFF), which reflect the 
intensity of spontaneous neuronal activity in local 
brain regions, underlies insomnia [14]. Interestingly, 
accumulative rs-fMRI evidence has suggested that 
patients undergoing HD are associated with aber-
rant neuronal activities in widespread brain regions, 
including the sensorimotor network (SMN) regions, 
default mode network (DMN) regions, temporal lobe, 
amygdala, etc. [15–17]. However, despite a large body 
of empirical research in HD subject groups as has 
demonstrated, we noticed that results emphasizing on 
the specific research colony of HDWI cohort are still 
lacking. Furthermore, these previous studies mainly 
focused on the group-level investigations, calling for 
more studies to be performed to pinpoint the distinct 
brain features for HDWI, that could be translated 
into reliable individual-level diagnostic biomarkers 

and help us better understand the pathophysiological 
mechanisms of diseases.

In the past several years, there has been a promising 
improvements of machine learning (ML) techniques in 
brain disease classification or prediction. The strength 
of ML algorithm is that it could detect hard-to-discern 
patterns from the large and complex data sets and is par-
ticularly well-suited to large fMRI data mining, especially 
in exploring neurological disease biomarkers for disease 
diagnosis and underlying mechanisms [18–20]. There 
are two types of ML algorithm at present—supervised 
and unsupervised learning. As one of supervised ML 
techniques that builds a model by learning from known 
classes, As one of ML techniques, the support vector 
machine (SVM) has the potential to capture the voxel 
covariance patterns of BOLD responses to fMRI with a 
least absolute shrinkage and selection operator (LASSO) 
and to construct a cross-validated model for group clas-
sification [21, 22]. It has been demonstrated that when 
applying SVM classifier to characterize neurological dis-
orders using diverse features from rs-fMRI data, an excel-
lent performance could be obtained [23–25]. Moreover, 
rs-fMRI studies have identified that altered amplitude 
of low-frequency fluctuations (ALFF) or fractional frac-
tional amplitude of low frequency fluctuation (fALFF), 
which reflect the intensity of spontaneous neuronal activ-
ity in local brain regions, underlies insomnia [24, 25]. 
Investigating the ALFF may advance our understanding 
of the spontaneous neural activities of the brain in HDWI 
patients at group-level, while the combination with ML 
algorithm may provide multi-level information for dis-
ease classification, and may give better understanding of 
the mechanisms of HDWI than single-level study.

Therefore, in this study, we attempted to employ SVM 
method to explore the discriminative neuroimaging bio-
markers for HDWI. Specifically, we first compared the 
fALFF differences among HDWI subjects, HDWoI sub-
jects and HCs, and investigated the correlation of the 
altered fALFF value with clinical measures. Then, based 
on the extracted fALFF features across groups, we con-
structed a SVM classifier to identify the most promising 
brain regions that could distinguish the HDWI patients 
from those non-insomniacs.

Materials and methods
Subjects
28 HD subjects comorbid with insomnia (HDWI), 28 
HD subjects without insomnia (HDWoI), and 28 sex-, 
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age-, education-matched healthy controls (HCs) were 
recruited between April 2021 and July 2022 from the 
Department of hemodialysis center, The Second Affili-
ated Hospital of Guangzhou University of Chinese 
Medicine (Guangdong Provincial Hospital of Chinese 
Medicine). This study was approved by the Institutional 
Review Board of the Second Affiliation Hospital, Guang-
zhou University of Chinese Medicine. Informed consent 
was also obtained from all participants.

Inclusion &exclusion criteria
HDWI subjects meeting the following criteria were 
included: (1) aged between 18–80 years old; (2) patients 
receiving regular hemodialysis (two or three ses-
sions every week, 4 h each session, total weekly dialysis 
period ≥ 10  h) and more than 3  months; (3) insomnia 
diagnosed according to The Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition(DSM-5) [26]; 
(4) baseline global Pittsburgh Sleep Quality Index (PSQI) 
score ≥ 7, Self-Rating Anxiety Scale (SAS) score ≤ 59, and 
Self-Rating Depression Scale (SDS) score ≤ 59. (5) vol-
untary participants and informed consent signed. The 
exclusion criteria included: (1) patients with a history of 
cancer, congestive heart failure, connective tissue disease 
and hematological diseases and other serious comorbidi-
ties; (2) inadequately dialyzed, indicated by urea clear-
ance index (KT/V) < 1.20; (3) contraindications to MRI 
scanning and inability to complete the neuropsychologi-
cal test; and (4) translational motion greater than 2.5 mm, 
rotation greater than2.5◦.

Neuropsychological assessment
Neuropsychological assessments were performed in 
all subjects before the MR scan on the day before HD 
treatment. The Pittsburgh sleep quality index(PSQI) 
was employed to evaluate the subjects’ sleep function 
[27]. It includes seven items: sleep quality, sleep latency, 
sleep duration, sleep efficiency, sleep disturbance, hyp-
notic use and daytime dysfunction. It should be noted 
that the patients recruited in this study were asked 
to stop using hypnotic medication during the whole 
study, thus the sub-component of hypnotic use was not 
regarded as outcome measurement. According to the 
Diagnostic and Statistical Manual of Mental Disorders, 
Fifth Edition(DSM-5), insomnia were defined as PSQI 
score ≥ 7. The 20-item Self-Rating Anxiety Scale (SAS) 
and 20-item self-rating depression scale (SDS) were used 
to assess the subjects’ anxiety and depression status, 
respectively [28]. In addition, the short form 36 health 
survey questionnaire (SF-36) was also be used as the sec-
ondary outcome measure to assess the patients’ quality of 
life from 8 sections including physical functioning, role 

physical, bodily pain, general health, vitality, social func-
tioning, role emotional, mental health [29].

fMRI data acquisition
fMRI scanning was performed on a 3.0-T Ingenia 
MR scanner (Philips, Amsterdam, Netherlands) with 
a 32-channel birdcage head coil. To minimize head 
movement and scanner noise, foam padding and ear-
plugs were applied. All subjects were required to 
remain motionless, and keep their eyes closed but be 
awake. All of them participated in the identical func-
tional MRI (fMRI) scanning sessions 24  h after the 
hemodialysis. The fMRI parameters were as follows: 
(1) T1- weighted structural images: repetition time 
(TR) = 1.0  ms, echo time (TE) = 4.7  ms, field of view 
(FOV) = 256 × 240 × 224  mm, matrix = 320 × 300 × 280 
slices, voxel size = 0.8 × 0.8 × 0.8  mm, flip 
angle =  9◦,dynamic scans = 240, slices = 280, slice 
gap = 0  mm, slice thickness = 1.0  mm. (2) Rest-
ing-state fMRI images: TR = 2,000  ms, TE = 30  ms, 
FOV = 240 × 240 × 142 mm, matrix = 64 × 61 × 38 slices, 
voxel size = 3.75 × 3.75 × 3.5 mm, flip angle =  9◦, dynamic 
scans = 240, slices = 38, slice gap = 0.25 mm.

fMRI preprocessing and fALFF analysis
The rs-fMRI data were preprocessed in Data Processing 
and Analysis for Brain Imaging 3.0 (DPABI 3.0) [30]. The 
details of scanning parameters preprocessing steps were 
Similar to our previous study [31]. In brief, the preproc-
essing procedures included the following steps: removal 
of the first 10 time points; slice timing and realign-
ment (subjects with head motion > 2.5 mm or > 2.5◦were 
excluded); standardization of the functional and struc-
tural images into Montreal Neurological Institute (MNI) 
space; spatial normalization and resampling(3 × 3 × 3 
 mm3); smooth with a 6-mm full-width-half-maximum 
Gaussian kernel; temporally filtering (0.01–0.08  Hz) 
to generate the ALFF value, and then, the fALFF map 
was obtained by dividing the total ALFF values from 
0.01 to 0.025  Hz; and transforming the fALFF map to 
the z-fALFF map with normal z transformation.

As for the fALFF statistical analyses, we employed 
a one-way analysis of covariance ( ANOVA) to cal-
culate the difference of fALFF (z value) among three 
groups, with age, sex, and head motion as covariates. 
A threshold of voxel-wise p < 0.001 uncorrected and 
cluster-level p < 0.05 after 3dFWHMx and 3dClust-
Sim [AFNI (https:// afni. nimh. nih. gov/) released in July 
2017] was applied for the fALFF analyses. The post-hoc 
tests were further used for pairwise comparison. Also, 
the person’s correlation coefficient was used to explore 

https://afni.nimh.nih.gov/
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the relationship between the changed fALFF value and 
neuropsychological assessments.

Machine learning analyses
Based on the selected features that showed as regions of 
interest (ROIs), we constructed a SVM classifier (SVM, 
provided by the LIBSVM toolkit) [32]. In this study, we 
took all meaningful voxels within ROIs with the high-
est ranks to calculate the accuracy, setting the step until 
incorporating all features. The.

First, based on the group-level ANOVA on fALFF 
values among three groups, significant differences for 
fALFF were retained as input features for the subse-
quent analyses to construct a SVM classifier (SVM, 
provided by the LIBSVM toolkit) [32]. Second, the 
leave-one-out cross-validation (LOOCV) method was 
used to reduce the risk of over-fitting, and the perfor-
mance of classifier was quantified by accuracy, area 
under the curve (AUC), sensitivity, and specificity. To 
assess the robustness of the model, a non-paramet-
ric permutation test (permutation times = 5000) was 
performed as well, and the significance threshold was 

set to p < 0.05 (two-tailed). Finally, after obtaining the 
best-performing model, we extracted all discrimina-
tive features of the model, and thus identified a spatial 
representation of the regions that contributed most to 
the group discrimination as robust neural markers. See 
Fig. 1 for the flow diagram of classification.

Statistical analysis for clinical variables
Clinical variables including gender, age, education, 
body mass index (BMI), hemodialysis duration and 
neuropsychological assessments were collected and 
analyzed using SPSS  22.0  software package (IBM 
Corp., Armonk, NY, USA). Continuous variables were 
assessed for normality by the Shapiro–Wilk test and 
visualization by histogram (not reported). If normally 
distributed, these continuous variables were calculated 
with a one-way analysis of variance (ANOVA) test and 
reported as mean ± standard deviation (mean ± SD). 
Otherwise, Kruskal–Wallis test was used and the 
median plus interquartile range were reported. Cat-
egorical measures were assessed using Chi-square 

Fig. 1 The flow diagram of classification. Study 1: fMRI preprocessing and fALFF analysis; Study 2: Machine learning analyses. HDWI = hemodialysis 
with insomnia; HDWoI = hemodialysis without insomnia; HC = healthy controls; fALFF = fractional fractional amplitude of low frequency fluctuation; 
CAL = calcarine; MOG = middle occipital gyrus; Bi = bilateral; R = right; LOOCV = leave‑one‑out cross‑validation; SVM = support vector machine
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test. The significance level of this study was set as 0.05, 
two-tailed, and post hoc tests (p < 0.05, Bonferroni cor-
rected) were further used for pairwise comparison.

Results
Demographic and clinical measurements
The demographic and clinical characteristics of all the 
subjects are summarized in Table 1. There were no signif-
icant differences in age, sex, and education among three 
groups( p > 0.05). The PSQI total score, PSQI subscore, 
SDS score, SAS score and SF-36 score in HDWI subjects 
were significantly higher than HDWoI subjects and HCs, 
respectively (p < 0.001,). Furthermore, there were no sig-
nificant difference in hemodialysis duration between 
HDWI group and HDWoI group.

fALFF analysis
Analysis of ANOVA among the three groups revealed 
significant fALFF difference in multiple regions includ-
ing the bilateral calcarine (CAL),bilateral middle occipi-
tal gyrus (MOG), bilateral precentral gyrus (PreCG), 
bilateral postcentral gyrus (PoCG), right lingual gyrus 
(LING), bilateral inferior inferior parietal lobule (IPL), 
left superior parietal (SPL), bilateral cerebellum, and 
right insula ( voxel-wise p < 0.001 uncorrected and clus-
ter-level p < 0.05 after 3dFWHMx and 3dClustSim) (see 
Fig. 2 and Table 2).

Compared with HCs, HDWI subjects exhibited sig-
nificant decreased fALFF value in the bilateral CLA/
TMG, right MOG/PoCG/IPL/LING and left PoCG/
PreCG while increased fALFF in the bilateral CAL and 
right insular (voxel-wise p < 0.001 uncorrected and 
cluster-level p < 0.05 after 3dFWHMx and 3dClustSim) 
(see Fig. 2 and Table 3).

Compared with HCs, HDWoI subjects exhibited sig-
nificant decreased fALFF value in the bilateral CLA/
MOG/PoCG/PreCG/TMG and left SPL while increased 
fALFF in the bilateral CAL and right insular ( voxel-
wise p < 0.001 uncorrected and cluster-level p < 0.05 
after 3dFWHMx and 3dClustSim) (see Fig. 2 and Sup-
plementary Table 1).

However, when compared with HDWoI subjects, an 
opposite pattern of increased fALFF in the bilateral 
CAL/right MOG and decreased ALFF in the right cer-
ebellum was observed in HDWI subjects ( voxel-wise 
p < 0.001 uncorrected and cluster-level p < 0.05 after 
3dFWHMx and 3dClustSim) (see Fig. 2 and Table 4).

Correlation analysis
Correlation analyses showed significant positive cor-
relations of the fALFF values in the bilateral calcarine 
and the sleep efficiency subscore of PSQI ( r = 0.460, 
p = 0.014) in HDWI subjects. We also observed 

Table 1 Subjects’ demographic and clinical characteristics

HCs healthy controls, HD hemodialysis, HDWI hemodialysis with insomnia, HDWI hemodialysis without insomnia, BMI body Mass Index, PSQI Pittsburgh sleep quality 
index, SDS self-rating depression, SAS self-rating anxiety scale, SF 36 the short form 36 health survey questionnaire
#  AVOVA; * Kruskal–Wallis test; & Pearson’s chi-square test

p1 = HDWI vs HCs; p2 = HDWI vs HDWoI; p3 = HDoWI vs HCs

Continuous values are expressed as mean ± standard deviation or median [interquartile range (IQR)]

Variables HDWI HDWoI HCs Post-hoc

p p1 p2 p3

Gender(male)& 13 15 13 0.827 ‑ ‑ ‑

Age(year)# 56.86 ± 11.10 55.11 ± 13.76 51.96 ± 14.45 0.376 ‑ ‑ ‑

Education& (≤ Junior/Senior/ ≥ College) 9/15/14 12/9/7 10/7/11 0.248 ‑ ‑ ‑

BMI(kg/m2)* 20.56 (19.36, 22.59) 22.41 (19.88, 24.26) 21.54 (20.27, 22.78) 0.182 ‑ ‑ ‑

HD duration(year)* 7.00 (3.25, 12.75) 2.75 (1.00, 6.00) ‑ 0.000 0.000 0.000 0.138

PSQI(score)* 17.00 (15.25, 18.75) 3.00 (2.00, 4.75) 4.00 (2.00, 4.75) 0.000 0.000 0.000 1.000

Sleep quality(score)* 3.00 (2.00, 3.00) 0.00 (0.00, 0.00) 1.00 (0.00, 1.00) 0.000 0.000 0.000 0.098

Sleep latency(score)* 3.00 (3.00, 3.00) 0.00 (1.00, 1.00) 0.00 (1.00, 1.00) 0.000 0.000 0.000 1.000

Sleep duration(score)* 3.00 (2.25, 3.00) 0.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.000 0.000 0.000 1.000

Sleep efficiency(score)* 3.00 (3.00, 3.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.000 0.000 0.000 1.000

Sleep disturbances(score)* 2.00 (2.00, 2.00) 1.00 (0.25, 1.00) 1.00 (1.00, 1.00) 0.000 0.000 0.000 1.000

Day time dysfunction(score)* 3.00 (2.00, 3.00) 1.00 (0.00, 1.00) 1.00 (0.00, 1.00) 0.000 0.000 0.000 1.000

SDS(score)* 54.38 (46.25, 58.44) 38.13 (31.25, 43.13) 30.63 (26.25, 35.00) 0.000 0.000 0.000 0.086

SAS(score)* 44.38 (37.81, 50.94) 32.50 (29.06, 36.25) 31.88 (28.75, 37.50) 0.000 0.000 0.000 1.000

SF‑36(score)* 447.75 (381.88, 623.88) 709.00 (626.38, 752.25) 774.75 (696.25, 791.75) 0.000 0.000 0.000 0.137
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significant negative correlation between the right cere-
belum and the sleep quality subscore of PSQI in HDWI 
subjects (r = 0.421, p = 0.026) (See Fig. 3).

Machine learning results
As shown in Fig.  4 and Table  5, two clusters includ-
ing the right MOG and right cerebellum were defined 
as meaningful classifying features that discriminate 
the HDWI subjects with noninsomniacs with high 
accuracy. Using the fALFF values voxels in these two 
clusters as input features to construct the SVR model 
and we found that the top 78 meaningful features sig-
nificantly contributed to the classifier with the best 

discriminative ability (accuracy = 82.14%, sensitiv-
ity = 85.7%, specificity = 78.6% and AUC = 0.8202, 
respectively). The permutation analysis conducted 
5,000 times showed that the classifier with 78 mean-
ingful features was superior to the random classifiers 
( p < 0.0002) (See Fig. 5).

Discussion
In the current study, we systematically investigated the 
fALFF pattern of HDWI and further identified reli-
able discriminative neural markers for classification by 
using a SVM model. Herein, three findings should be 

Fig. 2 fALFF difference among and between groups (A-D). A) AVOVA analysis showed significant increased fALFF in the right MOG/ cerebellum 
and bilateral CAL among the three groups; B) Compared with HDWoI, HDWI subjects showed significant increased fALFF value in the right MOG 
and bilateral CAL whereas decreased fALFF value in the right cerebellum. C) Compared with HCs, HDWI subjects showed significant decreased 
fALFF value in the right MOG and bilateral CAL whereas increased fALFF value in the right cerebellum. D) Compared with HCs, HDoWI subjects 
showed significant decreased fALFF value in the right MOG and bilateral CAL whereas increased fALFF value in the right cerebellum. Abbreviation: 
Bi = bilateral; R = Right; CAL = calcarine; MOG = middle occipital gyrus; * = a threshold of voxel‑wise p < 0.001 uncorrected and cluster‑level p < 0.05; 
ANOVA: analysis of variance; yellow represents a significant increase and green represents a significant decrease
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noted. First, when compared to HCs, patients in both 
groups (HDWI & HDWoI) exhibited reduced fALFF 
value in the bilateral CAL/MTG/PoCG, right IPL/
MOG/LING, and left PreCG while increased ALFF in 

the bilateral cerebellum and right insular. However, an 
opposite cerebral activity pattern of increased fALFF in 
the bilateral CAL/right MOG and decreased fALFF in 
the right cerebellum was observed in HDWI subjects 

Table 2 The fALFF differences among groups ( HDWI, HDWoI and HC, F test)

Abbreviation: Bi bilateral, L Left, R Right, CAL calcarine, MOG middle occipital cortex, PoCG postcentral gyrus, PreCG precentral gyrus, LING Ligual gyrus, TMG middle 
temporal gyrus, IPL inferior parietal lobule. * = a threshold of voxel-wise p < 0.001 uncorrected and cluster-level p < 0.05 after 3dFWHMx and 3dClustSim [AFNI (https:// 
afni. nimh. nih. gov/) released in July 2017] was applied to correct for multiple comparisons

Region MNI coordinates X Y Z Peak z value F value Cluster size

CAL_Bi 3 -69 18 5.65 23.98 639

MOG_L ‑33 ‑84 0 4.98 18.25 385

MOG_R 28 ‑87 8 6.56 33.90 228

PoCG/PreCG_L ‑42 ‑15 59 5.17 19.78 243

PoCG/PreCG_R 63 ‑9 36 4.03 20.35 269

LING_R 12 ‑87 ‑3 6.56 30.12 285

TMG_L ‑57 ‑54 18 5.00 18.42 158

TMG_R 48 ‑60 ‑3 5.13 19.42 244

SPL/IPL_L ‑15 ‑75 45 4.10 12.43 56

IPL_R 30 ‑54 45 4.93 17.91 28

Cerebelum_R 33 ‑3 ‑43 4.30 13.65 48

Cerebelum_L ‑24 ‑48 ‑44 5.40 21.69 246

Insula/Putamen_R 30 15 ‑12 4.39 14.16 37

Table 3 The fALFF differences between groups the HDWI group and HCs (two sample t test)

Abbreviation: Bi bilateral, L Left, R Right, CAL calcarine, MOG middle occipital cortex, PoCG postcentral gyrus, PreCG precentral gyrus, LING Ligual gyrus, TMG middle 
temporal gyrus, IPL inferior parietal lobule. * = a threshold of voxel-wise p < 0.001 uncorrected and cluster-level p < 0.05 after 3dFWHMx and 3dClustSim [AFNI (https:// 
afni. nimh. nih. gov/) released in July 2017] was applied to correct for multiple comparisons

Condition Region MNI coordinates X Y Z Peak T value Z value Cluster size

HS < HC CAL_Bi 3 ‑66 18 ‑4.72 ‑4.27 157

MOG_R 33 ‑87 ‑3 ‑3.94 ‑3.66 28

PoCG/PreCG_L ‑42 ‑15 60 ‑5.05 ‑4.52 142

PoCG_R 63 ‑9 36 ‑5.33 ‑4.72 112

LING_R 12 ‑87 ‑6 ‑5.61 ‑4.92 113

TMG_L ‑60 ‑15 ‑9 ‑5.58 ‑4.90 62

TMG_R 51 ‑66 18 ‑4.75 ‑4.29 56

IPL_R 33 ‑51 42 ‑4.67 ‑4.23 43

HS > HC Cerebelum_R* 33 ‑36 ‑35 3.69 3.45 13

Cerebelum_L ‑18 ‑51 ‑48 5.96 5.16 186

Insula_R* 33 15 ‑11 4.60 4.18 15

Table 4 The fALFF differences between the HDWI group and HDWoI group (two sample t test)

Abbreviation: Bi bilateral, R Right, CAL calcarine, MOG middle occipital gyrus; * = a threshold of voxel-wise p < 0.001 uncorrected and cluster-level p < 0.05 after 
3dFWHMx and 3dClustSim [AFNI (https:// afni. nimh. nih. gov/) released in July 2017] was applied to correct for multiple comparisons

Condition Region MNI coordinates X Y Z Peak T value Z value Cluster size

HS > HNS CAL_Bi 0 ‑78 6 4.22 3.88 49

MOG_R 33 ‑87 3 4.46 4.07 94

HS < HNS Cerebelum_R* 36 ‑42 ‑48 ‑4.03 ‑3.73 15

https://afni.nimh.nih.gov/
https://afni.nimh.nih.gov/
https://afni.nimh.nih.gov/
https://afni.nimh.nih.gov/
https://afni.nimh.nih.gov/
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when compared with HDWoI subjects. Second, com-
bined with selected fALFF features based on the inter-
group comparisons, the SVM model achieved a good 
performance [accuracy = 82.14%, area under the curve 
(AUC) = 0.8202], and the consensus brain regions with 
the highest contributions to classification were located 

in the right MOG and right cerebellum. Third, corre-
lation analyses showed significant positive correlation 
of the fALFF value in the bilateral calcarine with the 
sleep efficiency subscore of PSQI as well as the negative 
correlation between the right cerebellum and the sleep 
quality subscore of PSQI in HDWI subjects.

Fig. 3 The correlation analyses between the ALFF features and clinical measurements in HDWI patients (A‑B). A) Positive Correlation between the 
bilateral calcarine and the sleep efficiency subscore of PSQI( r = 0.460, p = 0.014); B) Negative correlation between the right cerebelum and the 
sleep quality subscore of PSQI( r = 0.421, p = 0.026)

Fig. 4 Discriminative brain regions. The discriminative regions included the right cerebelum and the right middle occipital gyrus. The color bar 
value represents the absolute value of the weight value of the brain regions. Yellow means positive weight and blue means negative weight

Table 5 The weight of features to discriminate HDWI from HDWoI

Abbreviation: R Right, MOG middle occipital gyrus

Weight Region MNI coordinates X Y Z Peak T value Cluster size

Positive Weight MOG_R 0 ‑78 6 1.06 63

Negative Weight Cerebelum_R 37 ‑41 ‑46 ‑1.01 15
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Brain changes at the global level
In the study, we found lower fALFF in the CAL, MOG, 
PreCG, PoCG, LING, IPL and IPL in both HD groups 
(HDWI & HDWoI) compared with HCs. Our findings 
provide more data in support of previous evidence that 
the whole-brain structural and functional impairment 
among subjects undergoing hemodialysis [33–36]. Mul-
tiple factors secondary to renal dysfunction, including 
anemia, elevated C-reactive protein level, inflammation, 
electrolytes disturbances and accumulation of uremic 
toxins contribute to the damage of cerebral microvessels, 
and direct neuronal toxicity. In addition, conventional 
hemodialysis itself poses endothelial stress and injury 
on the already compromised vasculature system, con-
sequently resulting in the declines of the brain function 
in HD subjects [37–39]. A large body of neuroimaging 
research in patients on HD [16, 40, 41] have discovered 
the reduced neural activity, changed cerebral perfusion 
in widespread brain regions, and related psychological 

impairment in HD patients. Particularly, a most recent 
multimodal fMRI study employed fMRI technique com-
bined with arterial spin labeling (ASL) technique—a 
MRI method for evaluating the cerebral blood flow- to 
investigate the neurovascular coupling (NVC) mecha-
nism of patients undergoing hemodialysis, and found sig-
nificantly decreased ALFF-CBF values in several brain 
regions compared with the HCs [41]. Therefore, given 
the previous evidence of the abnormal brain activities 
and structural impairment in widely distributed regions, 
together with our findings of decreased fALFF in multi-
ple regions, we believed that our study further confirmed 
the fact that the hemodialysis may have a negative effect 
on the global cerebral function on HD population includ-
ing HDWI group to some extent.

MOG/CAL involvement
We also observed greater fALFF values in HDWI sub-
jects in the right MOG and bilateral CAL compared with 

Fig. 5 Classification performance of SVR model. A) The accuracy of classification with the increased number of features; when including 78 
discriminative features, the highest accuracy of the classification model is 82.14%. B) Area under the curve of the classification model (AUC = 0.8202) 
with the highest accuracy. C) The result of the permutation test with the highest accuracy ( p < 0.0002)
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HDWoI subjects, despite a significant decreased fALFF 
in such regions detected when compared with HCs. The 
increased neuronal activity, in other words, reduced 
deactivation in MOG/CAL was theorized to reflect an 
hyperactivited state of these regions in HDWI population 
in the context of the overall declines of brain function in 
HD subjects. These findings support a multicausal theo-
retical account of sensory over-activated hyperarousal of 
insomnia, which believes that a hypersensitivity to exter-
nal stimuli during sleep might be driven by an overactiv-
ity of the somatic and cognitive cortical regions as visual 
network (MOG/CAL), sensory motor network (SMN) 
or other sensory -related regions. Mounting evidence 
has revealed distinct visual network activation including 
MOG and CAL in response to sleep-related visual pro-
cessing in the chronic insomnia subjects and in cases of 
sleep deprivation [42–44]. For example, Zhou FQ, et, 
al. [45] used ALFF method to examine the local intrin-
sic activity in chronic primary patients and observed 
increased ALFF values for neuronal activity in the second 
visual cortex (MOG) and CAL, suggesting their involve-
ments in insomnia. Similarly, another rsfMRI study [14] 
reported that chronic insomnia patients with difficulty 
in initiating or maintaining sleep showed disrupted brain 
network topology of SMN with visual networks. Moreo-
ver, the MOG has been reported to participate in spatial 
processing of auditory and tactile stimuli, and category-
selective, attention-modulated unconscious processing, 
which might link the daytime impairments reported in 
HDWI patients, like spatial memory decline and dis-
traction [46]. Thus, the modification of MOG might also 
reflect the psychological conditions following insomnia 
such as memory or cognitive deficits. Overall, given the 
various functions of the CAL/MOG, it is difficult to dis-
tinguish whether it is responsible for sleep itself or sleep-
loss conditions, but it is clear that the CAL/MOG indeed 
play a vital role in the HDWI modulation system. Impor-
tantly, this hypothesis yielded a consistent association 
with our other findings, that features in the right MOG 
ranked highly in the SVM classifier, and the increased 
fALFF in the bilateral CAL was also positively associated 
with clinical measurements (sleep efficiency subscore of 
PSQI).

Cerebellum involvement
Another highly ranked feature in the classification model 
was the decreased fALFF in the Cerebellum, which is an 
important finding in light of accumulative evidence for 
cerebellar involvement in its non-motor function includ-
ing cognitive, emotion and sleep over the past decades 
[47–49]. This is actually surprising given that, until quite 
recently, this brain structure was thought to contribute 
primarily to the planning and execution of movements. 

The cerebellum is proposed to interconnect an exten-
sive network with cortical and subcortical areas to form 
a feedback loop in facilitating a series of motor-related 
behaviors [50, 51]. Evidence from fMRI [52, 53] showed 
anatomical projections from the cerebellum to the tha-
lamic, limbic, striatal, and cerebrocortical regions. Such 
anatomical connections may provide an important sub-
strates for cerebellar involvement in cognition and emo-
tion. Functionally, Early in 1988, Petersen and colleagues 
[54] conducted a pioneering PET study to measure brain 
function while people viewed words and engaged in pro-
gressively more elaborate task. They initially concluded 
that “The different response locale from cerebellar motor 
activation and the presence of the activation to the gener-
ate use subtractions argue for a ‘cognitive’, rather than a 
sensory or motor computation being related to this acti-
vation”. Since then a mountain of compelling evidence 
has been generated that the human cerebellar responds 
to multiple domains of cognitive tasks and emotions 
[55, 56]. Particularly, many meta-analytic results [57, 58] 
provide further comprehensive insights into cerebellar 
involvement and elucidate its role in higher cognition. 
Most importantly, a recent fMRI study detected abnor-
mal spontaneous regional brain activity in the  bilateral 
cerebellum posterior lobes in primary insomnia, sug-
gesting its involvement in insomnia disorders [14]. Taken 
together, these results not only provide sufficient evi-
dence to solidify the concept of the cerebellum’s contri-
bution to non-motor functions, but also imply that the 
altered activity in cerebellum underlie the impairment in 
insomnia involving cognitive and emotional dysfunction.

As a special group, individuals on hemodialysis were 
more dissatisfied with their physical and mental condi-
tions compared to the healthy controls, resulting in nega-
tive mood, anxiety, and depression [5, 59]. Actually, such 
conditions also can be seen in our study with higher SAS/
SDS scores and lower SF-36 scores compared with the 
non-insomniacs (p < 0.05). These negative emotional fac-
tors may contribute to the development of insomnia as 
independent factors, while sleep disturbance would in 
turn lead to daytime sleepiness, fatigue, social isolation, 
increasing depressive/anxious disorders and cognitive 
impairment [60, 61]. Also, as mentioned above, other 
end-stage renal disease (ESRD)—and HD- related factors 
are demonstrated to be closely associated with compro-
mised cognitive function as well. The increased fALFF 
value detected in HDWI patients in our study thus sug-
gested that the disturbed nocturnal sleep in patients on 
hemodialysis may have a harmful effect on the cerebel-
lum. What’s more, we also observed negative correlation 
of altered fALFF values with the sleep quality subscore 
of PSQI, and that altered fALFF has a high classification 
rank in SVR model, reflecting the discriminative capacity 
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of cerebellum for HDWI. However, it is worth noting that 
although the crucial role of cerebellum involved in the 
emotional and cognitive processing has been confirmed, 
its involvement in HDWI is still novel. This is the first we 
noted such brain region, and our team provides a initial 
exploration on highlighting its influence on HDWI and—
possibly—emotional and cognitive conditions.

SVM classifier performance
This is the first we constructed a SVM classifier to find 
a promising model for HDWI classification. Although 
previous studies have offered insights into brain func-
tional and structural abnormalities of neurological 
diseases including primary insomnia using traditional 
group-level fMRI analysis, they could not translated 
into diagnostic or predictive neural markers for such 
neurological diseases, especially in HD cohort. Our 
study just filled the gap in such cohort by construct-
ing a highly discriminative SVM classifier, which was 
efficient to provide preliminary support to develop 
the individualized therapeutic aid for HDWI. In fact, 
The ability to advise clinicians and patients accu-
rately regarding the chances of proper therapy is of 
great importance, particularly as improper therapy is 
an occupation of medical resource waste and may has 
some side reactions. Our findings not only confirmed 
that functional neuroimaging data has the potential 
to serve as discriminative markers for HDWI, but also 
provided further evidence that rsfMRI in conjunction 
with SVM model could help support a classification of 
diseases, which may be important to elucidate the neu-
ral mechanisms of HDWI and pave the way towards 
more personalized interventions.

There are still some limitations to be noted in this study. 
Firstly, the sample size was relatively small ( HDWI = 28, 
HDWoI = 28), and a larger sample size will be supple-
mented to increase data reliability. Secondly, all the sub-
jects came from the same center, and we will continue to 
perform a multicenter study to validate our results. Third, 
the rs-fMRI datasets were collected from the subjects in 
the relatively old age group (average 59.86, 55.11, 51.96 
age, respectively). To generalize analysis results, other 
datasets collected from more younger or wide range of 
age subjects were needed. Thus, in the future, we will 
carry on further investigations to address these issues.

Conclusions
To conclude, besides describing the global aberrant 
intrinsic activity pattern of individuals on HD, our 
study for the first time revealed that the HDWI patients 
exhibited abnormal fALFF in the right MOG, bilateral 
CAL and the right cerebellum compared to HDWoI. 

Moreover, the fALFF features in the right MOG and 
right cerebellum contributed most to the group dis-
crimination in the machine learning classifier, suggest-
ing that these features could be identified as reliable 
markers in discriminating the insomniacs on hemodi-
alysis from those non-insomniacs.
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