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Abstract 

Schizophrenia (SCZ) is a severe mental illness mainly characterized by a number of psychiatric symptoms. Obses-
sive–compulsive disorder (OCD) is a long-lasting and devastating mental disorder. SCZ has high co-occurrence with 
OCD resulting in the emergence of a concept entitled “schizo-obsessive disorder” as a new specific clinical entity with 
more severe psychiatric symptoms. Many studies have been done on SCZ and OCD, but the common pathogenesis 
between them is not clear yet. Therefore, this study aimed to identify shared genetic basis, potential biomarkers and 
therapeutic targets between these two disorders. Gene sets were extracted from the Geneweaver and Harmonizome 
databases for each disorder. Interestingly, the combination of both sets revealed 89 common genes between SCZ and 
OCD, the most important of which were BDNF, SLC6A4, GAD1, HTR2A, GRIN2B, DRD2, SLC6A3, COMT, TH and DLG4. Then, 
we conducted a comprehensive bioinformatics analysis of the common genes. Receptor activity as the molecular 
functions, neuron projection and synapse as the cellular components as well as serotonergic synapse, dopaminergic 
synapse and alcoholism as the pathways were the most significant commonalities in enrichment analyses. In addi-
tion, transcription factor (TFs) analysis predicted significant TFs such as HMGA1, MAPK14, HINFP and TEAD2. Hsa-miR-
3121-3p and hsa-miR-495-3p were the most important microRNAs (miRNAs) associated with both disorders. Finally, 
our study predicted 19 existing drugs (importantly, Haloperidol, Fluoxetine and Melatonin) that may have a potential 
influence on this co-occurrence. To summarize, this study may help us to better understand and handle the co-occur-
rence of SCZ and OCD by identifying potential biomarkers and therapeutic targets.
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Introduction
Schizophrenia (SCZ) is a complex and severe mental ill-
ness mainly characterized by a combination of positive 
symptoms (delusions and hallucinations), negative symp-
toms (social withdrawal, paucity of spontaneous speech 
and amotivation) and debilitating cognitive deficits [1]. 
Overall, the prevalence of SCZ in both sexes is approxi-
mately equal, but with earlier onset and greater severity 
in males than in females [2]. Environmental and social 
factors such as childhood trauma and social isolation 
predispose individuals to SCZ [3, 4]. However, it is highly 
heritable (~ 80%) with complex polygenic architecture 
which both common and rare genetic variants contribute 
to its etiology [5]. Emerging evidence has suggested that 
SCZ has a common molecular etiology with other psy-
chiatric disorders such as obsessive–compulsive disorder 
(OCD), autism spectrum disorders (ASD) and bipolar 
disorder (BD), despite their unique clinical characteris-
tics [6].

OCD, with the prevalence of about 1–3% in the gen-
eral population, is a long-lasting and devastating men-
tal disorder characterized by recurrent, persistent and 
unwanted thoughts, images or impulses called obsessions 
and repetitive behaviors called compulsions [7]. The 
World Health Organization has ranked it as one of the 
most debilitating disorders worldwide as it results in poor 
quality of life and can substantially impair the patient’s 
occupational, marital, emotional and social functioning 
[8, 9]. Moreover, plenty of epidemiological studies dem-
onstrated that co-occurrence rates in OCD are generally 
higher than rates of other comorbid disorders [10–12].

In the past years, the categorizing of psychiatric dis-
orders has been rearranged through the increasing a lot 
of studies that emphasize co-occurring and/or comorbid 
disorders [13]. Relating to SCZ, the specific co-occur-
rence of obsessive–compulsive symptoms (OCS) and 
SCZ has been revealed for more than a century (in 1878) 
[14]. A meta-analysis study indicated that nearly 38.3% of 
SCZ patients experience anxiety disorders during their 
illnesses. Also, the prevalence of OCD in these patients 
was reported at 12.1% [15]. In the same way, another 
meta-analysis reported that the prevalence of OCS and 
OCD in SCZ patients is 30.3% and 12.3%, respectively 
[16]. These results along with abundant research that 
focus on the presence of OCD and OCS among the SCZ 
patients emerged the concept of “schizo-obsessive disor-
der” as a new specific clinical entity [17–19]. Meanwhile, 
the accurate examination of these patients manifested 
that they have more severe psychotic and depressive 
symptoms, lower social functioning and higher suicidal-
ity [13]. Although the major psychiatric disorders are 
very debilitating, early diagnosis and treatment can sub-
stantially reduce the unfavorable outcomes of them [7]. 

Therefore, identifying more possible biomarkers and 
effective drugs can be essential for reducing the severity 
of these disorders.

There are two hypotheses for the co-occurrence of OCS 
during the course of SCZ. One assumes that second-
generation antipsychotics, especially clozapine, might 
exacerbate or generate second-onset OCS. The second is 
an important role of genetic risk factors that dispose of 
patients with SCZ to develop OCS [20]. In the past dec-
ade, studies using both gene data and genome-wide asso-
ciation study (GWAS) have debated that some genes may 
be responsible for the co-occurrence of SCZ and OCS/
OCD. [20–22]. However, as far as we know, there has 
been no bioinformatic study performed with a special 
focus on the common genes between these disorders. In a 
recent study, O’Connell et al. displayed common genetic 
etiology for SCZ, BD, ASD and OCD. They proposed that 
more research on shared components of these disorders 
is needed to obtain actionable and translatable results in 
order to combat psychiatric disorders [6].

Although there have been many studies done on SCZ 
and OCD, the common pathogenesis of them is not been 
well identified at the molecular level until now. Based 
on this point, we assume that the co-occurrence of SCZ 
and OCD is rooted in the genetic similarities and it may 
reveal the shared genetic basis, potential biomarkers and 
therapeutic targets between the two disorders. In this 
regard, we conducted a comprehensive bioinformatics 
analysis to identify common genes, molecular functions, 
cellular components and biological pathways along with 
predicting transcription factors (TFs) and posttran-
scriptional regulator microRNAs (miRNAs) as well as to 
repurpose candidate drugs for both SCZ and OCD.

Material and Methods
Finding related genes and construction of genetic network
At the beginning of conducting the study, the existing data 
were used in this way that all genes related to SCZ and 
OCD were extracted from GeneWeaver (https://​www.​
genew​eaver.​org/) and Harmonizome (https://​maaya​nlab.​
cloud/​Harmo​nizome/) databases [23, 24]. GeneWeaver 
is an available web-based tool for conducting integrative 
functional genomics on our target genes in combination 
with large gene sets from different databases [25]. Harmo-
nizome is a collection of processed datasets that provides 
comprehensive information about genes and proteins 
concerning diseases [26] and contained 71,597,788 asso-
ciations between 295,485 attributes and 56,720 genes from 
112 datasets provided by 65 resources. Extracted gene 
sets were taken from genome-wide association studies 
(GWAS) and other genetic association studies in Harmo-
nizome. After that, each separated gene set was pasted into 
an excel file and then their common genes were saved for 

https://www.geneweaver.org/
https://www.geneweaver.org/
https://maayanlab.cloud/Harmonizome/
https://maayanlab.cloud/Harmonizome/
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bioinformatics analyses. All shared genes were uploaded 
into the STRING (https://​string-​db.​org/) to obtain gene–
gene interactions file [27]. Finally, we used windows version 
of Cytoscape 3.7.0 to visualize and interpret gene–gene 
interactions and reconstruct the genetic network for shared 
genes between SCZ and OCD [28]. Besides, Network Ana-
lyzer Tool was applied to calculate and identify network 
parameters such as degree and betweenness centrality. In 
all conducted analyses P-value < 0.05 or false discovery rate 
(FDR) < 0.05 were considered as significantly level.

Gene Ontology and pathway enrichment analysis
In order to investigate the possible mechanisms of OCD 
in SCZ, we conducted a gene enrichment analysis through 
ToppGene (https://​toppg​ene.​cchmc.​org/). To achieve 
this goal, we uploaded common genes into the ToppGene 
through ToppFun section and then selected Gene Ontol-
ogy (GO) to proceed the enrichment analysis for Molecu-
lar Function and Cellular Component of target genes. Also, 
our target genes were submitted into the KEEG pathway 
section of ToppGene database to investigate the pos-
sible disrupted pathways in both SCZ and OCD [29, 30]. 
Statistical significance (p < 0.05) was considered by a like-
lihood-ratio test with correction for FDR using Benjamini–
Hochberg method to show multiple comparison.

Prediction of transcription factors and microRNAs 
besides drug repurposing
We used Enrichr (https://​maaya​nlab.​cloud/​Enric​hr/) to 
predict some significant TFs for common genes between 
SCZ and OCD. This goal was achieved through TRANS-
FAC and JASPAR PWMs panel of Enrichr [31]. In addition, 
miRDB database (http://​mirdb.​org/​index.​html) was used 
to predict main target miRNAs that represented both SCZ 
and OCD [32]. miRDB database uses constructive machine 
learning procedures to find target prediction score between 
50–100 throughout datasets. Higher target prediction 
score represented more validated miRNA. All human miR-
NAs with target score of more than 95, were selected and 
uploaded to Cytoscape software to visualize gene-miRNAs 
network.

Finally, drug repurposing was conducted through Stitch 
and CTD section of ToppGene database. Cytoscape was 
used to visualize gene-pathways, gene-miRNAs, gene-drug 
interaction networks and determine the degree parameter 
in each network.

Results
Identification of SCZ‑OCD shared genes and finding hub 
genes from reconstructed genetic network
At first, with the exploration of existing data in 
Geneweaver and Harmonizome, we identified 914 and 
197 genes in association with SCZ and OCD respectively 

(Supplementary Tables  1 and 2). Interestingly, the com-
bination of both gene sets revealed that 89 genes were 
shared between these two disorders (Fig.  1 and Sup-
plementary Table  3). The following analyzing of com-
mon genetic network manifested that ten genes such as 
brain-derived neurotrophic factor (BDNF; Degree:63; 
Betweenness centrality:0.104), sodium-dependent sero-
tonin transporter and solute carrier family 6 member 
4 (SLC6A4; D:46; B:0.050), glutamate decarboxylase 1 
(GAD1; D:46; B:0.026), 5-hydroxytryptamine receptor 2A 
(HTR2A; D:45; B:0.059), glutamate ionotropic receptor 
NMDA type subunit 2B (GRIN2B; D:45; B:0.027), dopa-
mine receptor D2 (DRD2; D:44; B:0.024), solute carrier 
family 6 member 3 (SLC6A3; D:43; B:0.020), catechol-
O-methyltransferase (COMT; D:40; B;0.032), tyrosine 
hydroxylase (TH; D:40; B:0.022) and discs large MAGUK 
scaffold protein 4 (DLG4; D:38; B:0.033) were the most 
significant genes (hub genes) according to their network 
parameters (Fig. 1). To note, all subsequent bioinformatic 
analyses were conducted on the common genes between 
SCZ and OCD.

Gene Ontology and pathway analysis for common genes
GO enrichment analyses revealed some significant 
molecular functions such as neurotransmitter receptor 
activity, transmitter-gated ion channel activity, signaling 
receptor activity, molecular transducer activity, postsyn-
aptic neurotransmitter receptor, transmembrane signal-
ing receptor activity, glutamate binding, ligand-gated ion 
channel activity and dopamine binding that may involve 
in both SCZ and OCD (Table.1). These analyses also 
resulted that neuron projection, synapse, somatoden-
dritic compartment, neuronal cell body, dendritic tree, 
intrinsic component of synaptic membrane, synapse, 
neuron spine and distal axon were the most disrupted 
cellular components in these two disorders (Table.1). In 
addition, KEGG pathway analysis indicated that some 
pathways such as serotonergic synapse, cocaine addic-
tion, dopaminergic synapse, amphetamine addiction, 
alcoholism, taste transduction, glutamatergic synapse, 
tyrosine metabolism and estrogen signaling pathway may 
contribute to the co-occurrence of OCD in SCZ patients. 
Reconstructed pathway-gene interaction network indi-
cated that serotonergic synapse (D:18), dopaminergic 
synapse (D:16), alcoholism (D:14) and cocaine addiction 
were more connected nodes (Fig. 2).

Predicted transcription factors and microRNAs for target 
genes
As regards gene expression patterns strongly regulate at 
transcriptional and posttranscriptional levels, the impor-
tance of the next steps becomes apparent. TF analysis 
predicted 15 significant TFs, namely HMGA1, MAPK14, 

https://string-db.org/
https://toppgene.cchmc.org/
https://maayanlab.cloud/Enrichr/
http://mirdb.org/index.html
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HINFP, TEAD2, JUND, NFIA, SAMD9L, NFKB1, REL, 
PRDM1, HOXA5, GATA1, NKX3-1, VDR and STAT3 
(Table.2). We also predicted 121 miRNAs with target score 
of more than 95 through miRDB database for our target 
genes (Fig. 3). Reconstructed gene-miRNAs interaction net-
work showed that two miRNAs hsa-miR-3121-3p and hsa-
miR-495-3p represented three interactions with their target 
genes meanwhile hsa-miR-369-3p, hsa-miR-186-5p, hsa-
miR-218-5p, hsa-miR-22-3p, hsa-miR-330-3p, hsa-miR-543, 
hsa-miR-1271-5p, hsa-miR-96-5p, hsa-miR-148b-3p, hsa-
miR-152-3p, hsa-miR-148a-3p, hsa-miR-19b-3p and hsa-
miR-19a-3p interacted with two different targeted genes 
(Fig.  3). Furthermore, hsa-miR-144-3p, hsa-miR-22-3p, 

hsa-miR-221-3p, hsa-miR-3121-3p, hsa-miR-19a-3p, hsa-miR-
200c-3p, hsa-miR-429, hsa-miR-381-3p, hsa-miR-126-5p, 
hsa-miR-200b-3p, hsa-miR-222-3p, and hsa-miR-488-3p 
had target prediction scores more than 99.

Repurposed drug and gene‑drug interaction network 
for SCZ‑OCD associated genes
Based on results from ToppGene database, we repurposed 
19 potential significant drugs, namely Haloperidol, Clozap-
ine, Desipramine, Fluoxetine, Nicorette, Pseudococaine, 
Amitriptyline, Amphetamine, Risperidone, Clomipramine, 
Reboxetine, Imipramine, Reserpine, Citalopram, Levo-
dopa, Pargyline, Melatonin, Olanzapine and Buspirone for 

Fig. 1  The genetic network of common genes between SCZ and OCD. (A) a Venn diagram displaying the number of genes over both SCZ and 
OCD. (B) Genetic network of SCZ-OCD associated genes consists of 89 nodes that size and color adjusted according to degree and betweenness 
centrality respectively to specify hub genes. Larger nodes have a higher degree and Red nodes have a higher betweenness centrality. Eight nodes 
with higher degree are located in the outer sides. The main features of the network are included: clustering coefficient:0.584; network diameter:5; 
network radius:3; network centralization: 0.478; network density:0.249
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Table 1  Result of molecular function and cellular component enrichment analysis for SCZ-OCD common genes

Name q-value FDR B&H Involved Genes

GO: Molecular Functions
Neurotransmitter receptor activity 8.42E-27 GABRG2,DRD1,DRD2,DRD3,HTR1A,DRD4,HTR1B,HTR2A,HTR3A,HT

R7,HTR3E,
GRIA2,GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GRIN2B,HTR3B,GRM5,GA
BBR1,GABRA1

Transmitter-gated ion channel activity 6.02E-15 GABRG2,HTR3A,HTR3E,GRIA2,GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GR
IN2B,HTR3B,GABRA1

Signaling receptor activity 6.02E-15 GABRG2,DRD1,DRD2,DRD3,HTR1A,DRD4,HTR1B,NRXN3,HTR2A,O
XTR,
HTR3A,NRXN1,HTR7,NTRK1,NTRK2,ESR1,HLA-
DRB1,NTRK3,ESR2,NPSR1,
HTR3E,GRIA2,GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GRIN2B,HTR3B,NR
3C1,GRM5,
FAS,NPY,GABBR1,GABRA1,OPRM1

Molecular transducer activity 6.02E-15 GABRG2,DRD1,DRD2,DRD3,HTR1A,DRD4,HTR1B,NRXN3,HTR2A,O
XTR,
HTR3A,NRXN1,HTR7,NTRK1,NTRK2,ESR1,HLA-
DRB1,NTRK3,ESR2,NPSR1,HTR3E,
GRIA2,GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GRIN2B,HTR3B,NR3C1,
GRM5,FAS,NPY,GABBR1,GABRA1,OPRM1

Postsynaptic neurotransmitter receptor activity 6.02E-15 GABRG2,DRD1,DRD2,DRD3,DRD4,GRIA2,GRIA3,GRIK2,GRIK3,GRI
N2B,
GRM5,GABBR1,GABRA1

Transmembrane signaling receptor activity 8.26E-14 GABRG2,DRD1,DRD2,DRD3,HTR1A,DRD4,HTR1B,HTR2A,OXTR,HT
R3A,
NRXN1,HTR7,NTRK1,NTRK2,HLA-DRB1,NTRK3,NPSR1,HTR3E,GRIA2,
GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GRIN2B,HTR3B,GRM5,
FAS,NPY,GABBR1,GABRA1,OPRM1

Glutamate binding 2.09E-12 GAD1,GAD2,GRIA2,GRIA3,GRIK2,GRIK3,GRIN2B,GRM5,SLC1A1

Ligand-gated ion channel activity 6.77E-12 GABRG2,HTR3A,KCNH2,HTR3E,GRIA2,GRIA3,HTR3C,HTR3D,GRIK2,
GRIK3,
GRIN2B,HTR3B,GABRA1

Dopamine binding 8.19E-12 SLC6A3,TH,DRD1,DRD2,DRD3,DRD4

Transmembrane transporter activity 8.19E-12 SLC6A3,SLC6A4,GABRG2,DRD4,HTR1B,NRXN3,HTR3A,NRXN1,SLC18
A1,SLC18A2,KCNH2,UCP2,
HTR3E,GRIA2,GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GRIN2B,HTR3B,SLC
1A1,SLC1A2,NPY,GABRA1,
ABCB1,OPRM1,KCNH5

Passive transmembrane transporter activity 8.19E-12 GABRG2,DRD4,HTR1B,NRXN3,HTR3A,NRXN1,KCNH2,HTR3E,GRIA2,
GRIA3,HTR3C,HTR3D,
GRIK2,GRIK3,GRIN2B,HTR3B,SLC1A1,NPY,GABRA1,OPRM1,KCNH5

Serotonin-gated cation-selective channel activity 5.90E-11 HTR3A,HTR3E,HTR3C,HTR3D,HTR3B

Inorganic molecular entity transmembrane transporter activity 6.33E-11 SLC6A3,SLC6A4,GABRG2,DRD4,HTR1B,HTR3A,SLC18A1,SLC18A2,KC
NH2,HTR3E,GRIA2,GRIA3,HTR3C,
HTR3D,GRIK2,GRIK3,GRIN2B,HTR3B,SLC1A1,SLC1A2,GABRA1,ABCB
1,OPRM1,KCNH5

Ligand-gated cation channel activity 1.04E-10 HTR3A,KCNH2,HTR3E,GRIA2,GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GRI
N2B,HTR3B

Monooxygenase activity 1.09E-10 TH,CYP2C19,CYP2D6,CYP2E1,CYP3A4,CYP3A5,ESR1,TPH2,AKT1,D
BH,TPH1

serotonin binding 1.18E-10 SLC6A4,HTR1A,DRD4,HTR1B,HTR2A,HTR3A,MAOA,HTR7

Amine binding 1.71E-10 SLC6A4,HTR1A,DRD4,HTR1B,HTR2A,HTR3A,MAOA,HTR7

Cation transmembrane transporter activity 1.74E-10 SLC6A3,SLC6A4,DRD4,HTR1B,HTR3A,SLC18A1,SLC18A2,KCNH2,HT
R3E,GRIA2,
GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GRIN2B,HTR3B,SLC1A1,SLC1A2,
OPRM1,KCNH5

Amino acid binding 2.37E-10 GAD1,GAD2,TH,GRIA2,GRIA3,GRIK2,GRIK3,GRIN2B,GRM5,SLC1A1
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Table 1  (continued)

Name q-value FDR B&H Involved Genes

Ion channel activity 3.41E-10 GABRG2,DRD4,HTR1B,HTR3A,KCNH2,HTR3E,GRIA2,GRIA3,HTR3C,H
TR3D,GRIK2,GRIK3,
GRIN2B,HTR3B,SLC1A1,GABRA1,OPRM1,KCNH5

Catecholamine binding 4.35E-10 SLC6A3,TH,DRD1,DRD2,DRD3,DRD4

Ion transmembrane Transporter activity 4.95E-10 SLC6A3,SLC6A4,GABRG2,DRD4,HTR1B,HTR3A,SLC18A1,SLC18A2,KC
NH2,HTR3E,GRIA2,
GRIA3,HTR3C,HTR3D,GRIK2,GRIK3,GRIN2B,HTR3B,SLC1A1,SLC1A2,G
ABRA1,ABCB1,OPRM1,KCNH5

Neurotransmitter receptor activity involved in regulation of 
postsynaptic membrane potential

2.58E-09 GABRG2,GRIA2,GRIA3,GRIK2,GRIK3,GRIN2B,GABBR1,GABRA1

Cation channel activity 9.12E-09 DRD4,HTR1B,HTR3A,KCNH2,HTR3E,GRIA2,GRIA3,HTR3C,HTR3D,GRI
K2,GRIK3,GRIN2B,HTR3B,OPRM1,KCNH5

Oxidoreductase activity, acting on paired donors, with incor-
poration or reduction of molecular oxygen

9.29E-09 TH,CYP2C19,CYP2D6,CYP2E1,CYP3A4,CYP3A5,ESR1,TPH2,AKT1,D
BH,TPH1

Dopamine neurotransmitter receptor activity 3.34E-08 DRD1,DRD2,DRD3,DRD4

Glutamate receptor activity 3.39E-08 GRIA2,GRIA3,GRIK2,GRIK3,GRIN2B,GRM5

GO: Cellular Components
Neuron projection 1.89E-38 SLC6A3,SLC6A4,GABRG2,GAD1,GAD2,TH,DRD1,DRD2,HTR1A,DRD

4,HTR1B,HTR2A,HTR3A,COMT,NRCAM,NRXN1, HTR7,MAP2,SLC18A
1,MTOR,SLC18A2,NTRK1,NTRK2,ESR1,NTRK3,ESR2,HTR3E,TPH2,CNT
NAP2,ARC,SYP,
GRIA2, GRIA3,DLG4,HTR3C,HTR3D,GRIK2,GRIK3,DBH,GRIN2B,HTR3B,
CTNNB1,NR3C1,GRM5,FAS,CREB1,
SLC1A1, SLC1A2, AR,HOMER1,CRH,BDNF,NPY,GABBR1,SOD1,GABR
A1,OPRM1,TPH1

Synapse 6.03E-35 SLC6A3,SLC6A4,GABRG2,GAD1,GAD2,TH,DRD1,DRD2,DRD3,HTR1A
,DRD4,HTR1B,NRXN3,HTR2A,HTR3A,
COMT,NRCAM,NRXN1,HTR7,MAP2,SLC18A1,MTOR,SLC18A2,NTRK2,
ESR1,NTRK3,HTR3E,CNTNAP2,
ARC,SYP,GRIA2,GRIA3,DLG4,HTR3C,HTR3D,AKT1,GRIK2,GRIK3,DBH,G
RIN2B,HTR3B,CTNNB1,NR3C1,GRM5,
SLC1A1,SLC1A2,HOMER1,CRH,BDNF,NPY,GABBR1,NOS1AP,GABRA
1,OPRM1

Somatodendritic compartment 1.10E-30 SLC6A3,GABRG2,TH,DRD1,DRD2,HTR1A,DRD4,HTR1B,HTR2A, 
HTR3A,COMT,NRXN1,HTR7,MAP2,
MTOR,SLC18A2,NTRK1, NTRK2,ESR1,ESR2,CNTNAP2,ARC,GRIA2,GRI
A3,DLG4,GRIK2,
GRIK3,DBH,GRIN2B,HTR3B,CTNNB1,NR3C1,GRM5,FAS,SLC1A1,SLC1
A2,AR,HOMER1,CRH,BDNF,NPY,
GABBR1,SOD1,GABRA1,OPRM1

Neuronal cell body 1.85E-25 SLC6A3,TH,DRD1,DRD2,HTR1A,DRD4,HTR2A,HTR3A,NRXN1,HTR7, 
MAP2,MTOR,SLC18A2,NTRK1,NTRK2,ESR1,
ESR2, CNTNAP2,ARC,GRIA2,GRIA3,GRIK2,GRIK3, 
DBH,GRIN2B,HTR3B,FAS,SLC1A1, HOMER1,CRH,
BDNF,NPY,GABBR1,SOD1,OPRM1

Dendritic tree 2.07E-25 GABRG2,TH,DRD1,DRD2,HTR1A,DRD4,HTR1B,HTR2A,COMT,HTR7, 
MAP2,MTOR,NTRK1,NTRK2,CNTNAP2,
ARC,GRIA2,GRIA3,DLG4, GRIK2,GRIK3,DBH,GRIN2B,CTNNB1,NR3C1,
GRM5,FAS,SLC1A1,
SLC1A2,AR,HOMER1,BDNF,GABBR1,SOD1,GABRA1,OPRM1

Intrinsic component of synaptic membrane 1.23E-24 SLC6A3,SLC6A4,GABRG2,DRD1,DRD2,DRD3,HTR1A,DRD4, 
HTR1B,HTR2A,HTR3A,NRCAM,NRXN1,
HTR7,NTRK3,GRIA2,GRIA3,DLG4,GRIN2B,GRM5,SLC1A2,GABBR1,GA
BRA1,OPRM1

glutamatergic synapse 2.06E-18 GABRG2,DRD1,DRD2,DRD3,DRD4,HTR2A,HTR3A,NRCAM,NRXN1, 
MTOR,NTRK2,NTRK3,ARC,GRIA2,GRIA3,
DLG4,GRIK2,GRIK3, GRIN2B,NR3C1,GRM5,SLC1A2,HOMER1,GABBR
1,NOS1AP

Neuron spine 5.57E-18 DRD1,DRD2,DRD4,COMT,NTRK2,CNTNAP2,ARC,SYP,GRIA2, 
GRIA3,DLG4,GRIK2,GRIN2B,
NR3C1,GRM5,SLC1A1,SLC1A2, HOMER1,GABBR1,OPRM1
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Table 1  (continued)

Name q-value FDR B&H Involved Genes

Distal axon 2.31E-17 GAD1,TH,DRD1,DRD2,DRD4,HTR1B,NRXN1,HTR7,MAP2,SLC18A1, 
SLC18A2,NTRK2,ESR1,SYP,
GRIA2,GRIA3,GRIK2,GRIK3, DBH,GRIN2B,SLC1A1,BDNF,NPY

Terminal bouton 4.14E-16 TH,DRD4,SLC18A1,SLC18A2,NTRK2,ESR1,SYP,GRIA2, 
GRIA3,GRIK2,GRIK3,DBH,
GRIN2B,BDNF,NPY

Dendritic spine 1.68E-15 DRD1,DRD2,DRD4,COMT,NTRK2,ARC,GRIA2,GRIA3,DLG4,GRIK2,GRI
N2B,NR3C1,GRM5,SLC1A1,SLC1A2,
HOMER1,GABBR1,OPRM1

Dendritic shaft 1.46E-13 DRD1,HTR2A,MAP2,GRIA2,GRIA3,CTNNB1,GRM5,SLC1A1,SLC1A2,H
OMER1,GABBR1

Perikaryon 2.04E-13 TH,DRD2,NTRK2,ESR1,ESR2,CNTNAP2,GRIA2,GRIA3,GRIK2, GRIK3,SL
C1A1,CRH,BDNF,NPY,OPRM1

Asymmetric synapse 6.82E-12 DRD1,DRD2,DRD3,NRCAM,MAP2,NTRK2,ARC,SYP, GRIA2,GRIA3,DLG
4,GRIK2,GRIN2B,CTNNB1,
NR3C1,GRM5,SLC1A1,HOMER1

Neuron to neuron synapse 1.87E-11 DRD1,DRD2,DRD3,NRCAM,MAP2,NTRK2,ARC,SYP,GRIA2, GRIA3,DLG
4,GRIK2,GRIN2B,CTNNB1,
NR3C1,GRM5,SLC1A1,HOMER1

Receptor complex 3.58E-10 GABRG2,HTR1B,HTR2A,HTR3A,NTRK1,NTRK2,NTRK3,GRIA2,GRIA3,D
LG4,GRIK2,GRIK3, GRIN2B,HTR3B,
GDNF,IL6,GABBR1,GABRA1

GABA-ergic synapse 5.15E-10 GABRG2,DRD1,DRD2,DRD3,HTR1A,DRD4,NRXN3,NRXN1,GABBR1,
GABRA1

Fig. 2  Gene-pathway interaction network (KEGG) for SCZ-OCD shared genes. Each pathway (blue nodes) is connected to its related genes (red 
nodes) through edges. Pathways that are more connected are represented bigger than others
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Table 2  Result of transcription factor prediction for SCZ-OCD shared genes

Name P-value Involved Genes

HMGA1 0.0001071 GRIA2, GABRA1, ABCB1, BDNF, NRXN1, GSTP1, NRXN3, HTR3D, HTR3A, PRL,OPRM1,NR3C1, RGS4, NOS1AP, UCP2,DRD2,GRIA3

MAPK14 0.0002271 GABRA1, KCNH5, SLC1A1, OPRM1, NR3C1, ESR1, RGS4,AR, NOS1AP,CRH, DRD1, ANKK1, SLC18A1, DRD3,SLC18A2

HINFP 0.0002323 CNTNAP2, MAOB, COMT, NR3C1, SLC6A3, RGS4, AKT1, NRCAM, DRD2,SLC18A2, KCNH2, NTRK1,NTRK2,EGR1,GABRA1,BDNF,NTRK3,
OLIG2,OPRM1,HTR3B,ESR1,AR, ARC,NOS1AP,CRH,CYP2E1,HLA-DRB1

TEAD2 0.0007907 HOMER1, BDNF, NTRK3, GRIK3, HTR2A,COMT, NR3C1, SLC6A3, LMX1A,TH, GDNF, DLG4, UCP2, CTNNB1, ANKK1, SLC18A2,

JUND 0.001069 GRIA2, GABRA1, MAOB, BDNF, NRXN1, NRXN3, PRL,NR3C1, CYP3A5,GABRG2, HTR7, NPY, CRH, NRCAM, SLC18A1

NFIA 0.001384 MAOB, PRL,NR3C1, CYP3A4, ESR1, ESR2, SOD1, AR, GRM5, LMX1A, TH, CYP2D6, DLG4, CYP2E1, DRD3

SAMD9L 0.003779 KCNH2, NPSR1,TPH2,GRIA2,EGR1,MOG,HTR3D, GAD2, HTR3A,NR3C1,CYP3A5,ESR1,DRD1,DRD3

NFKB1 0.004332 GSTP1, SLC1A1,NRXN3,COMT, SLC6A3, SLC6A4, AKT1, EGR1, EGR2, KCNH5, BDNF, NTRK3, GAD1, GAD2, OPRM1, GRIN2B, ESR1, 
GABRG2, MTOR, ESR2,ARC,IL6, CREB1, GDNF, NOS1AP,ANKK1

REL 0.00493 KCNH5, LMX1A, BDNF, NTRK3,PRL,SLC6A4

PRDM1 0.005229 NTRK2, GABRA1, BDNF, NFKBIL1, NRXN1, NRXN3, DBH, OPRM1, COMT, NR3C1, RGS4, CREB1, GDNF, HLA-DRB1

HOXA5 0.005306 CNTNAP2, GRIA2, GABRA1, GABBR1, EGR2, MAOB, BDNF, SLC1A1, SLC1A2,NRXN3, HTR1A, HTR3D, GAD2, HTR3A, OLIG2, OPRM1, 
COMT, NR3C1, SLC6A3, GDNF, MAP2, NRCAM, DRD3

GATA1 0.006189 NPSR1, NTRK2, EGR1, ABCB1, BDNF, NRXN3, PRL, OPRM1, SYP, CYP3A4, ESR1, RGS4, GRM5, HTR7, MAP2, DLG4, NPY, CRH, FAS, 
DRD3, SLC18A2

NKX3-1 0.006509 KCNH5, NRXN3, ESR1, MTOR

VDR 0.007118 BDNF, CYP3A4, CYP3A5

STAT3 0.008629 GRIA2, TPH1, GABBR1, EGR2, ABCB1, MOG, BDNF, NFKBIL1, NTRK3, GAD1, DBH, OPRM1, CYP3A5, ESR1, SLC6A4, RGS4, AR, IL6, 
MAP2, NRCAM, HLA-DRB1

Fig. 3  Gene-miRNAs interaction network for common genes between SCZ and OCD. In the current network each shared gene (green nodes) 
targeting some significant miRNAs (orange nodes). miRNAs with more degrees are represented larger than others
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SCZ-OCD-associated common genes (Fig. 4). In addition, 
the gene-drug interaction network revealed that four drugs 
Haloperidol, Clozapine, Fluoxetine and Melatonin were 
more connected drugs according to their degrees (Fig. 4).

Discussion
Previous studies have shown that SCZ is closely related to 
OCD [13, 15–19]. In the present study, we used globally 
accessible databases (Geneweaver and Harmonizome) 
for exploiting related genes of SCZ and OCD to survey 
(by conducting bioinformatic analyses) the hypothesis 
that these two mental disorders display prospective sig-
nificant shared genetic basis, potential biomarkers and 
therapeutic targets in terms of common genes. Initially, 
we found a big common gene set (with 89 genes) between 
SCZ and OCD which can be evidence for the common 
pathogenesis and co-occurrence of these two disorders. 
The results of enrichment analysis on the common genes 
showed that ten genes (BDNF, SLC6A4, GAD1, HTR2A, 
GRIN2B, DRD2, SLC6A3, COMT, TH and DLG4) are the 
most central genes in associated with both disorders.

BDNF was found as the most central shared gene 
(Fig.  1). This gene encodes BDNF protein which is 
a member of a large family of neuronal growth fac-
tors called neurotrophins and plays a pivotal role in 

neurogenesis, differentiation and cell survival [33]. 
Meanwhile, it contributes to the transcription and 
translation of proteins involved in the synaptogene-
sis, development and stability of synapses [34]. BDNF 
has been widely studied in psychiatric disorders and 
its possible roles in the pathophysiology of them were 
discussed in the last two decades. It is released at the 
synapse and affects synaptic plasticity, subsequently 
induces critical changes in cognitive functions, learn-
ing and memory [35, 36]. While, a defect in the regu-
lation of BDNF release can cause abnormalities in the 
underlying brain processes and cognitive dysfunctions 
in the psychiatric disorders [37]. BDNF signaling may 
substantially promote the structure and functioning 
of several neural circuits involved in the modulation 
of various neurotransmitter systems, including the 
dopaminergic [38], serotoninergic [39] and GABAe-
rgic [40] systems, all closely related to SCZ. In this 
regard, the normal development of these systems may 
disturb by dysfunction of BDNF-TrkB signaling dur-
ing critical developmental periods, consequently lead-
ing to physiological dysregulation and vulnerability to 
SCZ[41]. Relating to OCD, it has been demonstrated 
that sequence variants in the BDNF gene are strongly 
associated with OCD [42]. For example, it was reported 

Fig. 4  Gene-drug interaction network of SCZ-OCD shared genes. In the current network each shared genes (circle nodes) targeting some drugs 
(diamond nodes)."D" is considered as degree values for related drugs in the network
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that the Val66Met BDNF gene variant contributes to 
the OCD pathobiology [43, 44]. In addition, more stud-
ies have shown that this variant lead to functional dif-
ferences and consequently decrease the activity of the 
BDNF system, which can be a risk factor for OCD [45].

Furthermore, the interface between SCZ and OCD 
can be explained through the serotoninergic neurotrans-
mission as two important common genes are SLC6A4 
and HTR2A which have critical functions in the seroto-
ninergic pathway. SLC6A4 by the encoding of serotonin 
transporter (5-HTT) has a crucial role in the regulation 
of serotonin via reuptake of it from synaptic clefts [46]. 
Because this gene is involved in the pathogenesis of SCZ, 
it is considered as a candidate gene for SCZ [47]. It has 
been reported that mRNA and protein levels of 5-HTT 
were changed in SCZ patients compared with healthy 
subjects [48, 49]. Likewise, there is a lot of evidence 
reporting that serotonergic system is implicated in the 
pathophysiology of OCD, in particular well-known anti-
obsessional efficacy of selective serotonin reuptake inhib-
itors (SSRIs) have suggested an important role for 5-HTT 
in the etiology of OCD [50]. Zitterl et al. showed a signifi-
cant reduction in 5-HTT availability in the brain regions 
of OCD patients [51]. Clearly, several studies demon-
strated that there is a significant association between the 
SLC6A4 polymorphisms and OCD susceptibility [52]. 
The HTR2A gene encodes the serotonin receptor type 
2A (5-HTR2A) and is abundantly expressed in the glu-
tamatergic neurons and GABA-ergic interneurons in the 
prefrontal cortex and hippocampal regions which both 
neurotransmission systems are well known to be asso-
ciated with SCZ [53]. It has been shown that 5-HTR2A 
is involved in the pathogenesis of SCZ as its activation 
regulates both dopaminergic and glutamatergic trans-
mission in the brain [54]. Relating to OCD, findings 
from candidate gene studies demonstrated that HTR2A 
is a most important gene for development of the disor-
der [55]. Also, recent meta-analytic evidence showed that 
polymorphic variants within this gene are significantly 
associated with OCD pathogenesis [56, 57].

GAD1 is one of the other important genes in both SCZ 
and OCD. It encodes the glutamic acid decarboxylase-67 
(GAD67) enzyme in multiple cortical regions (particu-
larly in the prefrontal cortex and hippocampus) which 
is responsible for most cortical γ-Aminobutyric acid 
(GABA) synthesis [58]. This gene with a lower expression 
level in the SCZ subjects and consequently lower levels 
of GAD67 mRNA and protein is a well-known biomarker 
for SCZ [59]. In OCD patients, a recent clinical study 
reported that GABA abnormalities can be found within 
the anterior cingulate cortex [60]. Besides, Zhang et  al. 
indicated that GABA concentration in the prefrontal cor-
tex contributes to the psychopathology of OCD [61].

According to our results, another candidate gene for 
co-occurrence of SCZ and OCD is GRIN2B encodes the 
NR2B subunit of N-methyl D-aspartate (NMDA) gluta-
mate receptors and may play an important role in syn-
aptic plasticity, circuit formation and brain development 
[62]. Recently, it has been reported that variations in 
GRIN2B can be associated with SCZ which may be due 
to abnormalities of the NR2B subunit and consequently 
altered function of NMDA receptors [63]. In addition, 
hypofunction of NMDA receptors has been suggested as 
a mechanism in the pathogenesis of SCZ, based on the 
point that noncompetitive antagonists of the NMDA 
receptors, such as ketamine and phencyclidine, induce 
SCZ-like symptoms [64]. In contrast, it is proposed 
that neuronal excitotoxicity resulting from hyperactive 
NMDA receptors has an important role in SCZ [65]. 
Clinical and preclinical evidence have suggested that 
dysregulation of glutamatergic system contributes to the 
etiology of OCD [66]. In imaging studies of OCD, it has 
been shown that a hyperglutamatergic dysfunction may 
lead to abnormalities in the cortico–striatal–thalamo–
cortical circuits [67]. In addition, it is demonstrated that 
the GRIN2B gene is implicated in OCD as mutations of it 
have been associated with the disorder in males [68] and 
the presence of contamination obsessions and cleaning 
compulsions [69].

The DRD2 gene, coding for dopamine D2 receptor, is 
an attractive candidate gene for SCZ due to its role in 
dopaminergic system [70]. Several polymorphisms of 
this gene have been identified related to SCZ, hence it is 
well considered as a causative factor in SCZ [71]. Besides, 
DRD2 likely contributes to the OCD pathology since it 
has been demonstrated that the dopaminergic system is 
implicated in inducing or aggravating the symptoms of 
OCD [72] and in particular it is reported that the DRD2 
A2 allele is significantly higher in male OCD patients 
compared to controls[73].

Other important shared genes between SCZ and OCD 
are SLC6A3, COMT, TH and DLG4. The SLC6A3 gene 
encodes the dopamine transporter and can be determi-
native in the regulation of dopamine in the synaptic cleft. 
It has been well indicated that its polymorphisms are 
risk factors for SCZ [74]. Also, the manifestation of OCD 
symptoms can be associated with SLC6A3 [75]. Since the 
COMT enzyme has a crucial role in the metabolism of 
dopamine, the COMT gene is considered as an important 
factor in the etiology of SCZ [76]. Higher dopamine levels 
are likely involved in OCD, hence COMT can be a suit-
able candidate for OCD [77]. Tyrosine hydroxylase (TH), 
encoded by TH gene, is a rate-limiting enzyme that pro-
duces dopamine in the brain and can be related to SCZ 
[78]. Dopamine neurotransmission is likely associated 
with OCD [77]. Therefore, the TH gene may be involved 
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in OCD. Post-synaptic density protein 95 (PSD95), 
encoded by the DLG4 gene, has an essential rolein regu-
lating NMDA receptor activity and altered expression 
of DLG4 has been revealed in the post-mortem brain of 
subjects with SCZ [79]. In OCD pathogenesis, since glu-
tamatergic system can be disrupted [80], DLG4 may be 
an interference factor in this system.

In our study, the significant molecular functions exhibit 
receptor activity as the most common of them associated 
with SCZ and OCD. As recently reviewed, multiple sero-
tonin receptors (5-HTR) are implicated in SCZ, includ-
ing 5-HT1AR, 5-HT2CR, 5-HT3R, 5-HT6R, 5-HT7R 
and several studies link 5-HT2AR to the pathogenesis of 
SCZ as its activation regulates both dopaminergic and 
glutamatergic transmission [54]. It is worth mentioning 
in SCZ that the more-focused and well-known receptors 
are dopamine D2 receptors involved in the mesolimbic 
dopamine pathway, and their hyperactivity is responsible 
for the cause of the positive symptoms of SCZ, with all 
antipsychotics acting to block them [81]. Also, Dopamine 
D2 receptors likely play a part in the OCD pathology as 
decreased striatal D2/D3 and D1 receptors were reported 
in patients with OCD [82]. Positron emission tomogra-
phy (PET) showed a significant reduction of 5-HT2AR 
availability in OCD patients compared to healthy sub-
jects [83].

Based on cellular component enrichment analysis, the 
cellular components involved in the transition of the 
signals, namely, neuron projection and synapse were 
the most important cellular components in both SCZ 
and OCD. As mentioned, serotonergic synapse mark-
ers (5-HTT and 5-HT2AR) contributed to the develop-
ment of OCD. Besides, the neurocircuitry of OCD is 
located between different brain regions which are densely 
innervated by neuron projections of the serotonergic 
and dopaminergic neurotransmitter systems [84]. Also, 
Rosoklija et  al. reported the structural abnormalities of 
dendrites in SCZ and mood disorders [85]. In addition, 
Faludi and Mirnics showed that synaptic disturbances are 
important and integral part of SCZ pathophysiology [86].

KEGG pathway analysis indicated that the identi-
fied common genes mostly contributed to serotoner-
gic synapse, cocaine addiction, dopaminergic synapse, 
amphetamine addiction, alcoholism, taste transduction, 
glutamatergic synapse, tyrosine metabolism and estrogen 
signaling pathways. As discussed above, several studies 
have shown that serotonergic pathway has a substantial 
role in the pathophysiology of SCZ and OCD. In addition 
to the dopamine and glutamate theory of psychosis, there 
is also the serotonin theory states that cortical 5-HT2AR 
hyperfunction can also result in psychosis [81].

TF analysis predicted that HMGA1, MAPK14, HINFP 
and TEAD2 are the more relevant TF biomarkers 

associated with both SCZ and OCD. According to the 
gene cards database (www.​genec​ards.​org); HMGA1 
is associated with Type 2 Diabetes Mellitus and Mul-
tiple Lipomatosis. Likewise, Diseases associated with 
MAPK14 include Chlamydia and Alexander Disease. 
HINFP show an association with Cerebro-oculo-facio-
skeletal Syndrome 2 and Fetal Alcohol Spectrum Disor-
der. Diseases associated with TEAD2 include Sveinsson 
Chorioretinal Atrophy and Multiple Acyl-CoA Dehydro-
genase Deficiency [87].

This study predicted 121 significant miRNAs for com-
mon genes through miRDB database (Fig.  3). Among 
them, hsa-miR-3121-3p, hsa-miR-495-3p, hsa-miR-
369-3p, hsa-miR-186-5p, hsa-miR-218-5p, hsa-miR-
22-3p, hsa-miR-330-3p, hsa-miR-543, hsa-miR-1271-5p, 
hsa-miR-96-5p, hsa-miR-148b-3p, hsa-miR-152-3p, 
hsa-miR-148a-3p, hsa-miR-19b-3p and hsa-miR-19a-3p 
were more relevant identified biomarkers in associated 
to both SCZ and OCD. In human, almost 70% of miR-
NAs express in the nervous system [88] and they have 
a role in the regulation of neural structure and function 
such as formation of dendrites and dendritic spines, axon 
growth, neural developments and the maturation process 
[89]. Also, abnormal expressions of miRNAs could be 
important as they are involved in the occurrence of neu-
ropsychiatric disorders [90]. Therefore, considering them 
as potential biomarkers for co-occurrence of SCZ and 
OCD can be useful for more diagnostic and therapeutic 
targets.

A class of non-coding RNA molecules as miRNAs act 
as negative regulators of post-transcriptional processes 
that mediate gene expression profile and subsequent bio-
logical functions. In the present study, we predicted 121 
miRNAs with target predicting score of more than 95 
concerning SCZ and OCD. Pan et  al., showed that hsa-
miR-144-3p is associated with schizophrenia through 
a decrease in the expression of ATPase Na+/K+ trans-
porting subunit beta 2 (ATP1B2) and PI3K/Akt/mTOR 
signalling in rat hippocampus [91]. It has been reported 
that miR-3121-3p suppressed RAP1 GTPase activating 
protein (Rap1GAP) [92], while this protein is crucial for 
development of dentate gyrus and prevention of SCZ-
like behavior in mice [93]. Importantly next-generation 
sequencing and real-time quantitative polymerase chain 
reaction (qRT-PCR) on peripheral blood cells in patients 
with SCZ, suggested hsa-miR-22-3p as a biomarker for 
these patients [94]. Interestingly, the level of hsa-miR-
22-3p also significantly increased in patients with OCD 
compared to healthy subjects [95]. A bioinformatics 
study on microarray dataset from brain post-mortem 
samples of SCZ patients identified hsa-miR-26a-5p as 
a differentially expressed miRNA compared to control 
samples [96]. Also, comparison of expression pattern of 

http://www.genecards.org
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several miRNAs in peripheral blood cells by qRT-PCR 
revealed a significant increase in the expression of miR-
26a-5p in OCD patients compared to control subjects 
[97].

Finally, current research identified drugs (particularly 
Haloperidol, Fluoxetine, Clozapine and Melatonin) that 
may have a potential influence on the co-occurrence of 
SCZ and OCD. Haloperidol, a highly effective first-gener-
ation antipsychotic (FGA), is one of the most used antip-
sychotic drugs, and it has very high anti-dopaminergic 
activity in the mesolimbic dopamine pathway [98] hence 
it is very efficient for the treatment of SCZ [99]. However, 
like other FGAs, it is associated with severe extrapyrami-
dal side effects [100]. Haloperidol is considered as second 
in line with antipsychotic augmenting agents in OCD 
patients who showed an inadequate response to SSRIs 
but better response with antipsychotic augmentation 
[101]. Fluoxetine is one of the oldest SSRIs and is applied 
as a first-line drug for the treatment of some mental ill-
nesses such as major depressive disorder, premenstrual 
dysphoric disorder, panic disorder and bulimia nervosa 
[102]. Furthermore, it is widely used in OCD patients 
due to its good therapeutic response, good compliance 
and low side effects [103, 104]. Also, in treating SCZ, it 
has been indicated that the use of antidepressants like 
fluoxetine as an add-on therapy to antipsychotics can 
improve the negative symptoms in patients with chronic 
SCZ [105]. Clozapine, a dibenzodiazepine developed 
in 1961, is an antipsychotic approved in treating resist-
ant SCZ [106]. It has been indicated that clozapine is 
more effective than any other antipsychotic drug (first 
or second-generation) in the treatment of resistant SCZ 
[107]. However, the anti-serotonergic effects of clozap-
ine in cortico-striatal serotoninergic circuits may induce 
OCD-like behavior in mice and generate OCS in patients 
treated with it [108, 109]. Therefore, it is hypothesized 
that decrease plasma concentration of clozapine may 
alleviate OCD, but it can exacerbate the severity of SCZ 
[20]. Clinicians should be aware of the exacerbation of 
OCD and OCS after chronic prescription of clozapine 
in treatment of SCZ. However, prescription of SSRIs 
along with antipsychotic medications such as clozapine 
and olanzapine might be a proposed alternative treat-
ment in co-occurrence of SCZ and OCD. As, Stryjer et al. 
reported that administration of 20 mg/day escitalopram 
in patients with SCZ and OCD that were treated with 
antipsychotic drugs (i.e. clozapine, risperidone and que-
tiapine), decreased the total Yale Brown Obsessive–Com-
pulsive Scale scores (Y-BOCS, P = 0.001) and Positive and 
Negative Syndrome Scale scores (PANSS, P = 0.03) [110]. 
Melatonin, the endogenous hormone that regulates cir-
cadian rhythms, is used exogenously for the treatment of 
sleep disorders [111]. Available evidence has suggested 

that melatonin is linked to SCZ. Sleep disorder is a usual 
feature of SCZ [112] and appear to be caused by abnor-
mal melatonin functions and abnormal circadian impli-
cated in the pathophysiology of SCZ [113]. Additionally, 
decreased melatonin level in SCZ patients was reported 
[114–116]. A recent systematic review of melatonin use 
for SCZ showed that adjunctive melatonin therapy can 
be useful for sleep, metabolic profile and tardive dyskine-
sia in SCZ patients [117]. Sleep disorders are also preva-
lent among OCD patients, as up to 48% of them report 
these disorders [118]. Furthermore, Monteleone et  al. 
showed that overall plasma concentrations of melatonin 
are lower in patients with OCD compared with normal 
controls [119]. Hence, melatonin therapy may be help-
ful for OCD. Our study utilized a bioinformatic method 
to identify common molecular and cellular mechanisms 
and predict new therapeutic drugs for SCZ and OCD. 
However, the present study has a number of limitations. 
One limitation was the present study failed to verify main 
findings with experimental results due to lack of confirm-
atory experimental animal studies that mimic SCZ and 
OCD-like behavior. Another limitation is lack of an inte-
grated comprehensive database to support genetic basis 
of OCD in human subjects. Furthermore, the function 
of most predicted miRNAs have yet to be determined. 
Therefore, validation of predicted results requires further 
in vitro, in vivo, and especially clinical future experimen-
tal researches with large sample size.

Conclusion
Obsessive–compulsive behavior is a common comor-
bid condition with schizophrenia. Herein, we conducted 
a comprehensive enrichment analysis on the common 
genetic basis of SCZ and OCD. Regarding comorbid 
disorders, bioinformatics studies may help us to better 
understand the common pathophysiology of these dis-
orders by identifying possible biomarkers and underly-
ing mechanisms involved in them. Furthermore, finding 
more potential therapeutic options for disorders can be 
another implication of such analyses and future experi-
mental studies.
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