
Duan et al. BMC Psychiatry          (2023) 23:153  
https://doi.org/10.1186/s12888-023-04597-z

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Psychiatry

Neurodevelopmental trajectories, polygenic 
risk, and lipometabolism in vulnerability 
and resilience to schizophrenia
Jia Duan1,2†, Xiaohong Gong3†, Fay Y. Womer4, Kaijin Sun1, Lili Tang1,2, Juan Liu1,2, Junjie Zheng1, Yue Zhu1,2, 
Yanqing Tang2*, Xizhe Zhang5* and Fei Wang1,2* 

Abstract 

Background  Schizophrenia (SZ) arises from a complex interplay involving genetic and molecular factors. Early inter-
vention of SZ hinges upon understanding its vulnerability and resiliency factors in study of SZ and genetic high risk 
for SZ (GHR).

Methods  Herein, using integrative and multimodal strategies, we first performed a longitudinal study of neural 
function as measured by amplitude of low frequency function (ALFF) in 21 SZ, 26 GHR, and 39 healthy controls to 
characterize neurodevelopmental trajectories of SZ and GHR. Then, we examined the relationship between polygenic 
risk score for SZ (SZ-PRS), lipid metabolism, and ALFF in 78 SZ, and 75 GHR in cross-sectional design to understand its 
genetic and molecular substrates.

Results  Across time, SZ and GHR diverge in ALFF alterations of the left medial orbital frontal cortex (MOF). At base-
line, both SZ and GHR had increased left MOF ALFF compared to HC (P < 0.05). At follow-up, increased ALFF persisted 
in SZ, yet normalized in GHR. Further, membrane genes and lipid species for cell membranes predicted left MOF ALFF 
in SZ; whereas in GHR, fatty acids best predicted and were negatively correlated (r = -0.302, P < 0.05) with left MOF.

Conclusions  Our findings implicate divergence in ALFF alteration in left MOF between SZ and GHR with disease pro-
gression, reflecting vulnerability and resiliency to SZ. They also indicate different influences of membrane genes and 
lipid metabolism on left MOF ALFF in SZ and GHR, which have important implications for understanding mechanisms 
underlying vulnerability and resiliency in SZ and contribute to translational efforts for early intervention.
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Introduction
Schizophrenia (SZ) manifests from a complex interplay 
of genes and molecules that shape brain structure and 
function across the lifespan. It appears to be a highly her-
itable neurodevelopmental disorder [1, 2] with progres-
sion of neural alterations in early development leading to 
psychotic onset usually following puberty. Understand-
ing the vulnerability and resilency factors in SZ is critical 
for early intervention of this debilitating illness. Studies 
of SZ and nonpsychotic individuals at genetic high risk 
for SZ (GHR) and longitudinal designs are especially 
important for elucidating vulnerability and resiliency to 
SZ and preventive interventions [3]. GHR individuals, 
which are defined as those with first-degree relatives with 
SZ, have almost a tenfold increased risk of developing 
SZ [4]. Similarities in neural alterations between SZ and 
GHR have been observed in early development [5–7]. 
However, prior studies indicate that most GHR do not 
develop SZ in their lifetime and early neurodevelopmen-
tal similarities normalize with age in GHR but not in SZ 
[7–10]. These studies implicate resiliency factors in GHR 
and suggest divergent neurodevelopmental trajectories 
between SZ and GHR.

Longitudinal neuroimaging studies is of increasing 
importance in characterizing neural trajectory. However, 
there are significant challenges in performing longitudi-
nal studies in human subjects including participant attri-
tion over time, feasibility of multimodal data collection 
at every timepoint, and sufficient funding to sustain such 
study. Some of these challenges could be mitigated by 
cross-sectional studies that consist of large sample sizes 
and multimodal data (e.g., genetic and metabolic) collec-
tion allowing integrative analysis. Further, previous stud-
ies implicate both genetic and metabolic factors in SZ 
etiology and pathophysiology [11, 12]. Along with neuro-
imaging, genomic and metabolomic data may provide a 
more comprehensive perspective on the development of 
SZ and related vulnerability and resiliency factors.

Genome-wide association studies (GWAS) offer a 
powerful approach to understanding the genetic basis 
for brain alterations. While each individual disease-
associated single nucleotide polymorphism (SNP) car-
ries only a subtle increase in SZ risk (with odds ratios in 
the range of 1.1 to 1.2), the cumulative risk of the various 
SNPs amount to a measure called the polygenic risk score 
(PRS), capturing the polygenic nature of complex dis-
orders like SZ [13]. Previous studies have examined the 
effect of PRS for SZ (SZ-PRSs) on functional brain altera-
tions of SZ [14–17]. Studies have shown that SZ-PRS 
could predict mnemonic hippocampal activity [16] and is 
associated with left dorsolateral prefrontal cortex (PFC) 
inefficiency of SZ [15]. A family study also suggests that 
SZ-PRS affects early neurodevelopment and indicates an 

increased risk of developing the disorder [18]. Therefore, 
imaging genetics using PRS could lead to better under-
standing of genetic determinants of neurodevelopmental 
deficits in SZ [19].

Metabolomics is also a promising technology to under-
stand brain alterations at the molecular level. Lipids are 
especially important regulators of brain function and 
are increasingly implicated in neuropsychiatric disease 
[20]. One study suggested that changes in lipometabo-
lism presented early in the development of SZ [21]. Lev-
els of lipids were correlated with the severity of negative 
symptoms in SZ [22, 23]. Moreover, lipid abnormalities 
have been shown in both postmortem brain tissue and 
peripheral blood of SZ [24, 25]. In addition, an animal 
study found that lipid washout led to a change in brain 
structure [26]. Altogether, these findings demonstrate the 
importance of lipometabolism in brain alterations associ-
ated with SZ.

SZ is a multifaceted disorder arising from a complex 
interplay of genetic and molecular factors. Thus, integra-
tive and multimodal strategies are needed to comprehen-
sively understand SZ development and pathophysiology. 
Amplitude of low frequency fluctuations (ALFF), an effi-
cient index of local spontaneous neuronal activity at rest 
[27], is used to examine neural function. ALFF exhibits 
moderate to substantial test–retest reliability [28] ensur-
ing a high upper bound for its validity. Evidence has sug-
gested ALFF alterations both in SZ and GHR [29, 30], 
reflecting their altered neuronal function. In this study, 
we first performed a longitudinal neuroimaging study of 
ALFF in SZ and GHR to characterize neurodevelopmen-
tal trajectories of SZ and GHR. Using divergent ALFF 
alterations in SZ and GHR across time, we then examined 
the influence of polygenic risk and lipometabolism on 
neural function in SZ and GHR in cross-sectional designs 
to comprehensively understand genetic and molecular 
substrates of altered neural function.

Materials and methods
Participants
The study was approved by the Medical Science Research 
Ethics Committee of the First Affiliated Hospital of 
China Medical University (approval reference number 
[2012]25–1). All procedures performed in studies involv-
ing human participants were in accordance with the ethi-
cal standards of the institutional and/or national research 
committee and with the 1964 Helsinki declaration and 
its later amendments or comparable ethical standards. 
All participants provided written informed consent by 
themselves or by their parents/guardians if they were 
under 18  years old after a complete description of the 
study. SZ and GHR participants were recruited from the 
inpatient and outpatient services at Shenyang Mental 
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Health Center and the Department of Psychiatry at First 
Affiliated Hospital of China Medical University. Healthy 
controls (HC) participants were recruited from the local 
community by advertisement.

All components of the study were conducted at a sin-
gle site and included both longitudinal and cross-sec-
tional study cohorts, aged 13–45  years. All participants 
were evaluated by 2 trained psychiatrists to determine 
the presence or absence of Axis I psychiatric diagnoses 
using the Structured Clinical Interview for Diagnostic 
and Statistical Manual of Mental Disorders-IV-Text Revi-
sion (DSM-IV) Axis I Disorders (SCID) in those 18 years 
old and older and the Schedule for Affective Disorders 
and Schizophrenia for School-Age Children-present and 
Lifetime Version (K-SADS-PL) in those younger than 
18  years. SZ participants met DSM-IV diagnostic crite-
ria for SZ and not any other Axis I disorder. GHR par-
ticipants were first-degree relatives of individuals with 
SZ and did not meet criteria for any DSM-IV Axis I dis-
order. HC participants did not have current or lifetime 
Axis I disorder or history of psychotic, mood, or other 
Axis I disorders in first-degree relatives as determined 
by detailed family history. Participants were excluded 
if any of the following were present: (1) the existence of 
substance/alcohol abuse or dependence or concomi-
tant major medical disorder, (2) any magnetic resonance 
imaging (MRI) contraindications, and (3) history of head 
trauma with loss of consciousness for ≥ 5 min or any neu-
rological disorder. Symptom severity was measured using 
the Brief Psychiatric Rating Scale (BPRS).

Longitudinal ALFF alterations
Participants were recruited and participated between 
April 2011 and April 2019. A total of 86 participants 
were included in this portion of the study, including 21 
SZ, 26 GHR, and 39 HC. At baseline, the mean age was 
25.93 (7.65) years, aged 13–45 years. There were no sig-
nificant differences in age among the SZ, GHR, and HC 
groups; however significant differences were observed 
in sex (χ2 = 12.82, p = 0.002). All participants underwent 
clinical and resting state functional MRI (R-fMRI) assess-
ment at baseline and follow-up at least 10 months after 
initial scan (ranged 11–67  months). The mean duration 
between baseline and follow-up scans was 26.16 (14.28) 
months. Diagnoses were confirmed again at follow-up 
(using SCID or K-SADS-PL) with no diagnostic change 
for any participants.

The influence of polygenic risk and lipometabolism on ALFF 
alterations
A total of 298 participants, consisting of 78 SZ, 75 
GHR, and 145 HC, were included in this portion of the 
study. Baseline measures for 51 participants from the 

longitudinal study were included for this portion. Blood 
samples were obtained within 24 h of scanning. All par-
ticipants underwent venipuncture between 10:00 a.m. 
and 3 p.m. Venous blood samples were centrifuged at 
2,000 rpm for 10 min, and then stored at -80 °C for geno-
typing and lipidomic measurements.

MRI Acquisition and Data Processing
MRI data acquisition
MRI data were acquired using a GE signa HDX 3.0  T 
scanner (General Electric, Milwaukee, USA) with a 
standard 8-channel head coil at the First Affiliated Hospi-
tal of China Medical University, Shenyang, China. Func-
tional images were collected with a gradient-echo planar 
imaging (EPI-GRE) sequence. The parameters were as 
follows: TR = 2000 ms, TE = 30 ms, flip angle = 90°, field 
of view = 240 × 240 mm2, matrix = 64 × 64. Thirty-five 
axial slices were collected with 3 mm thickness without 
gap. The scan lasted for 6 min and 40 s, resulting in 200 
volumes. Participants were instructed to rest and relax 
with their eyes closed but remain awake during scanning.

Data preprocessing and ALFF calculation
Preprocessing of all functional images was performed 
using SPM12 (www.​fil.​ion.​ucl.​ac.​uk/​spm/) and DPARSF 
[31]. The first 10 time points were discarded for magnetic 
field stabilization and allowing participants to adapt to 
the scanning environment. The subsequent preprocess-
ing steps included slice time correction and head motion 
correction. Each participant’s motion was assessed by 
means of translation/rotation, and an exclusion criterion 
(translation > 3  mm, rotation > 3° in each direction) was 
set. Next, the corrected functional images were normal-
ized to MNI space using the EPI template in SPM12, res-
ampled to 3 mm isotropic voxels, and further smoothed 
via a Gaussian kernel with a 6 mm full-width at half-max-
imum. Linear detrending was also performed. Finally, 
voxel-wise ALFF (0.01–0.08 Hz) maps were calculated for 
each participant. ALFF (0.01–0.08 Hz) of the BOLD sig-
nal, which is considered to be physiologically meaningful 
and related to regional spontaneous neural activity [32], 
was used to identify regional cerebral function.

Polygenic risk scores (PRS)
Genotyping and quality control
Venous blood was collected from all the participants of 
cross-sectional study, and genomic DNA was extracted 
from whole blood according to standard procedures. 
DNA samples were genome-wide genotyped using the 
Illumina Global Screening Array-24 v1.0 BeadChip, 
which provides data for 642,824 fixed genetic variants, 
in addition to 53,411 customized variants. The qual-
ity control parameters used for the exclusion of SNPs 

http://www.fil.ion.ucl.ac.uk/spm/
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were as follows: (1) SNPs with minor allele frequency 
(MAF) < 1%, (2) SNPs with call rate < 95%, or (3) deviation 
of a SNP from Hardy–Weinberg equilibrium p < 10–5. 
We then applied the following quality control criteria to 
exclude participants: (1) individuals with excessive miss-
ingness > 5%, (2) gender mismatch, and (3) an estimation 
of identity-by-descent > 0.90.

Imputation and calculation of PRS
This process has been previously described [33]. Briefly, 
genotype imputation was performed by a commer-
cial imputation engine named GenoImpute. We con-
structed PRS in our sample using the PRSice software 
(www.​PRSice.​info) based on common SNP risk effects 
derived from summary statistics from the international 
SZ GWAS results conducted by the Psychiatric Genom-
ics Consortium (PGC-SZ) including 33,426 SZ cases and 
32,541 controls. P-value-informed clumping was per-
formed with a cutoff of r2 = 0.1 in a 250-kb window in 
order to account for linkage disequilibrium (LD) among 
SNPs. PRS were calculated using the following twelve 
PRSs at different p value thresholds (pT) (0.0001, 0.001, 
0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) for 
each study participant.

Bioinformatics enrichment analyses
All the SNPs in SZ-PRS under a certain p value threshold 
were extracted and mapped to the corresponding genes 
where they were located based on dbSNP database. A 
gene list was obtained and uploaded to the online tool 
DAVID Bioinformatics Resources v6.8 (https://​david.​
ncifc​rf.​gov/,) [34, 35] for the Gene Ontology (GO) and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[36] pathway analyses. The functions of genes were anno-
tated with three GO terms: biological process (BP), cel-
lular component (CC) and molecular function (MF). 
Multiple testing corrections were performed with Benja-
mini method (significance level at 0.05).

Lipidomics
Lipidomics profile acquirement.
Untargeted metabolomics analysis were conducted in 
this study. The measurement details can be found in 
Additional file 1, including sample preparation, metabolic 
profiling data acquisition, and data processing. Lipidom-
ics profiles (lipids and lipid-related metabolites) were 
selected from untargeted metabolomics data to conduct 
subsequent statistical analysis.

Statistical Analyses
Longitudinal ALFF alterations
Two-way analysis of variance with a repeated measures 
design was implemented in SPM with group (SZ, GHR 

or HC) as a between-subject factor, time (baseline and 
follow-up) as within-subject factor, and age, gender and 
inter-MRI interval as covariates. Clusters that had main 
effects of group, time, and especially group-by-time 
interaction on ALFF values were identified. Signifi-
cance was set at voxel-level inference of P < 0.05 with 
Gaussian random field (GRF) correction for cluster-
level inference of P < 0.05.

For regions with significant group-by-time interac-
tion, ALFF values were extracted for additional post-
hoc analyses. At baseline and follow-up, general linear 
model was performed among SZ, GHR and HC, with 
age and gender as covariates. Baseline to follow‐up 
comparisons were performed at SZ, GHR or HC by the 
paired t-test. Statistical significance was set to P < 0.05.

The influence of polygenic risk and lipometabolism on ALFF 
alterations
ANOVAs (analyses of variance) or chi-square tests were 
used to examine participants’ demographic character-
istics, clinical characteristics, SZ-PRS and lipometabo-
lism accordingly. Results were considered significant at 
P < 0.05.

For participants in this portion of the study, ALFF 
values were extracted from the regions with significant 
group by time interaction in the longitudinal study for 
regression and correlation analyses with SZ-PRS and 
lipid profiles.

SZ‑PRS and ALFF alterations  In SZ and GHR, ran-
dom forest was used to identify the SZ-PRS that could 
predict significant ALFF alterations identified in the 
longitudinal study. Random forest is an ensemble 
method composed of a number of decision trees for 
regression prediction. Five-fold cross-validation was 
performed to validate regression results. Subsequently, 
the prediction model’s performance was evaluated 
based on mean absolute error (MAE, the average abso-
lute error between the predicted values and the real 
value) and Pearson correlation coefficient (the correla-
tion between the predicted ALFF values and the actual 
values). For each SZ-PRS, we separately trained a pre-
diction model in SZ and GHR to predict ALFF values 
in regions with significant group-by-time interaction 
in the longitudinal study. A total of 24 models were 
trained and evaluated.

To further explore the relationships between predic-
tive SZ-PRSs and significant ALFF alterations, partial 
correlation analyses, controlling for age and sex, were 
performed in SZ or GHR. Results were considered sta-
tistically significant at P < 0.05.

http://www.PRSice.info
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/


Page 5 of 12Duan et al. BMC Psychiatry          (2023) 23:153 	

Lipometabolism and ALFF alterations  Similar to above, 
regression analyses were performed to identify the lipids 
and their metabolites that strongly predicted significant 
ALFF alterations in SZ and GHR. The lipid profiling con-
sists of 474 lipids or lipid-related metabolites that can be 
divided into 19 lipid species. For each lipid species, we 
separately trained a prediction model in SZ and GHR to 
predict ALFF values in regions with significant group-by-
time interaction. A total of 38 models were trained and 
evaluated. Further details can be found in Additional 
file 1.

To further explore the relationships between predictive 
lipid species and significant ALFF alterations, partial 

correlation analyses were performed in SZ or GHR, with 
age, gender and BMI as covariates. Results were consid-
ered statistically significant at P < 0.05.

Results
Experimental design
We included two parts in this study. First, we performed a 
longitudinal neuroimaging study of ALFF in SZ and GHR 
to identify the key regions with differentiating neural fea-
tures (Fig.  1A). After that, using divergent ALFF altera-
tions in SZ and GHR across time, we then examined the 
influence of polygenic risk and lipometabolism on neural 

Fig. 1  The flowchart of study design. HC, Healthy control; SZ, Schizophrenia; GHR, Genetic high risk; ALFF, Amplitude of low frequency fluctuations; 
PRS, Polygenic risk scores
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function and their relationship with neural function in 
SZ and GHR in cross-sectional designs (Fig. 1B).

Demographic and Clinical Data
Demographic and clinical information for individuals 
in the longitudinal study sample is presented in Table 1. 
There were no significant differences in age among the 
SZ, GHR, and HC groups at baseline. Significant differ-
ences were observed in age at follow-up (F = 3.9, P < 0.05, 
Table 1). Significant differences were observed in gender 
(χ2 = 12.82, P < 0.05, Table 1). Significant differences were 
observed in BPRS scores among the three groups at base-
line and follow-up (Table 1).

Demographic and clinical information for individu-
als in the cross-sectional study sample is presented in 
Table 2. There were significant differences in age among 
the SZ, GHR, and HC groups (F = 11.18, P < 0.001). 

Significant differences were observed in gender 
(χ2 = 13.57, P = 0.001, Table  2). Significant differences 
were observed in BPRS scores among the three groups 
(Table 2).

Longitudinal ALFF alterations
Group-by-time interaction effect on ALFF was identi-
fied in left medial orbital frontal cortex (MOF) (Fig. 2A). 
Post-hoc analyses revealed that at baseline both SZ and 
GHR groups had increased ALFF in left MOF compared 
to HC. At follow-up, compared to HC, increased ALFF 
in left MOF persisted in SZ but not in GHR (Fig.  2B). 
Notably, compared to HC, GHR did not significantly 
differ in ALFF in left MOF at follow-up, but normalized 
across time (Fig.  2B). In SZ, ALFF in left MOF did not 
significantly change from baseline to follow-up (P > 0.05). 

Table 1  Demographics and clinical characteristics of healthy control, genetic high risk, and schizophrenia in longitudinal study

Data are presented as mean (standard deviation)

BPRS Brief Psychiatric Rating Scale

Healthy Control 
(n = 39)

Genetic High Risk 
(n = 26)

Schizophrenia (n = 21) Statistic values

Baseline Follow-up Baseline Follow-up Baseline Follow-up Baseline Follow-up

Demographic characteristic
  Age at scans (year) 27.46 (7.39) 30.59 (7.44) 26 (7.29) 28.38 (6.84) 23 (8.06) 25.05 (7.77) F = 2.4, P = 0.97 F = 3.9, P < 0.05

  Gender (male/female) 14/25 20/6 7/14 χ2 = 12.82, P < 0.05

  Duration of MRI interval 
(month)

29 (14.87) 22.5 (11.48) 25.43 (17.77) F = 1.68, P = 0.19

Clinical Characteristics
  Duration of illness 
(months)

N/A N/A 27.0 (38.95) 51.94 (60.27)

  Medication (yes/no) N/A N/A 18/3 19/2

  BPRS 18.67 (1.36) 18.77(2.15) 19.46 (2.99) 18.85(1.59) 28.14 (8.07) 23.38(6.60) F = 31.53, P < 0.001 F = 12.47, P < 0.001

Table 2  Demographics and clinical characteristics of healthy control, genetic high risk, and schizophrenia in cross-sectional study

Data are presented as mean (standard deviation)

BMI Body mass index, BPRS Brief Psychiatric Rating Scale

Healthy Control Genetic High Risk Schizophrenia F/χ2 Values P Values
(n = 145) (n = 75) (n = 78)

Demographic characteristic
  Age at scans (year) 28.28 (7.83) 25.29 (8.24) 23.09 (8.23) 11.18  < 0.001

  Gender (male/female) 58/87 43/32 22/56 13.57 0.001

  BMI 22.19 (3.63) 22.69 (4.11) 23.39 (4.33) 2.28 0.104

Clinical characteristic
  Duration of illness (months) N/A N/A 25.05 (40.70)

  First episode (yes/no) N/A N/A 55/23

  Medication (yes/no) N/A N/A 66/12

  BPRS n = 131 n = 72 n = 77

18.44 (1.03) 18.93 (2.06) 31.73 (10.92) 140.07  < 0.001
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In GHR, ALFF in left MOF significantly decreased from 
baseline to follow-up, while ALFF in left MOF signifi-
cantly increased in HC.

There were significant main effects of group and time 
on ALFF (Additional file 1, Figs. S1 and S2).

The influence of polygenic risk and lipometabolism 
on ALFF alterations
SZ‑PRS and ALFF in left MOF
In SZ, the prediction model for SZ-PRS at pT 0.0001 
(MAE = 0.153, r = 0.25, P < 0.05), pT 0.2 (MAE = 0.152, 
r = 0.25, P < 0.05) and pT 0.3 (MAE = 0.145, r = 0.24, 
P < 0.05) performed relatively better. In GHR, the 

prediction model of SZ-PRS at pT 0.001 (MAE = 0.121, 
r = 0.31, P < 0.05) had relatively better performance. Pre-
diction models for other SZ-PRS had poor performance 
(P > 0.05). SZ-PRS that had better prediction perfor-
mance were identified as predictive SZ-PRS for SZ and 
GHR, respectively. Prediction performance for different 
SZ-PRS are summarized in Additional file 1 (Table S1).

Significant positive correlation was found between 
left MOF ALFF and predictive SZ-PRS at pT 0.0001 
(r = 0.349, P < 0.005) in SZ. There was no significant cor-
relation between left MOF ALFF and predictive SZ-PRS 
at pT 0.001 in GHR (P > 0.05).

Bioinformatics enrichment analyses were performed 
for predictive SZ-PRS at pT 0.0001, which was positively 

Fig. 2  Group-by-time interaction on ALFF among SZ, GHR and HC at baseline and follow-up. A Significant group-by-time interaction effect of ALFF 
values in left MOF (peak at x, y, z = -18, 48, -12; F = 8.27; cluster size = 172). Significance level was set as p < 0.05 at voxel level with GRF for multiple 
comparisons. B ALFF values in left MOF of SZ, GHR and HC at baseline and follow-up. The solid lines indicate the mean value. Significance level 
was set as p < 0.05. In SZ, ALFF in left MOF did not significantly change from baseline to follow-up (P > 0.05). In GHR, ALFF in left MOF significantly 
decreased from baseline to follow-up, while ALFF in left MOF significantly increased in HC. HC, Healthy control; SZ, Schizophrenia; GHR, Genetic 
high risk; MOF, medial orbital frontal cortex; GRF, Gaussian random field correction. *, p < 0.05
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correlated with left MOF in SZ as described above. SZ-
PRS genes were significantly enriched in five GO terms 
of cellular component (Fig. 3A), involved in postsynaptic 
density, postsynaptic membrane, cell junction, dendritic 
spine and plasma membrane and were mainly located 
within neuronal structures, particularly cell membranes. 
Analyses also indicated the significance of two enriched 
KEGG pathways (Fig.  3B) including AMP-activated 
protein kinase (AMPK) signaling pathway and axon 
guidance.

Lipometabolism and ALFF in left MOF
In SZ and GHR, all models had good prediction per-
formance (P < 0.05). The five lipid species with the least 
MAE were identified as predictive lipid species for SZ 
and GHR, respectively. The predictive lipid species for 
SZ were coenzyme, phosphatidylinositol, lysophosphati-
dylcholine, sphingomyelin, and ceramide (Table  3). For 
GHR, these predictive lipid species were fatty acids, cera-
mide, sphingosines, phosphatidylserine and diglyceride 
(Table  3). Prediction performance of other lipid species 
can be found in Additional file 1 (Table S2).

Partial correlation between ALFF values in left MOF 
and mean lipid levels were performed in SZ and GHR for 
their respective predictive lipid species. In SZ, there was 
no significant correlation between ALFF in left MOF and 
mean levels of these five species (P > 0.05). In GHR, left 

MOF ALFF and mean fatty acid level had significant neg-
ative correlation (r = -0.302, P < 0.05) (Fig. 4).

Significant differences in SZ-PRS and lipometabolism 
among groups can be found in Additional file 1 (Fig. S4).

Fig. 3  Enrichment analyses for genes of SZ-PRS at pT 0.0001. A GO pathway enrichment analyses for genes of SZ-PRS at pT 0.0001. B KEGG pathway 
enrichment analyses for genes of SZ-PRS at pT 0.0001. AMPK, AMP-activated protein kinase

Table 3  The five predictive lipid species with the least MAE for 
left MOF ALFF in SZ or GHR

MAE Mean absolute error, r Correlation coefficient between the predicted 
ALFF values and the actual values; P, statistical significance of the correlation 
coefficient

MOF Medial orbital frontal cortex
*  P < 0.001

Lipid species MAE r P

Schizophrenia
  Coenzyme 0.162 0.700 1.77E-08*

  Phosphatidylinositol 0.163 0.825 7.06E-14*

  Lysophosphatidylcholine 0.165 0.828 9.43E-15*

  Sphingomyelin 0.166 0.814 2.03E-13*

  Ceramide 0.169 0.827 1.05E-14*

Genetic High Risk
  Fatty Acids 0.128 0.853 1.92E-13*

  Ceramide 0.129 0.836 4.43E-13*

  Sphingosines 0.131 0.817 6.43E-13*

  Phosphatidylserine 0.133 0.784 4.56E-11*

  Diglyceride 0.138 0.808 7.35E-10*
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Discussion
In this study, we used a guided and multimodal approach 
to examine the longitudinal alterations in neural func-
tion as measured by ALFF in GHR and SZ and then the 
influence of polygenic risk and lipometabolism on diver-
gent ALFF alterations in these two groups to understand 
vulnterability and resiliency to SZ. We first performed a 
longitudinal study of ALFF alterations in SZ and GHR to 
determine key regions with differentiating neural features 
between the two groups. Differentiating features would 
reflect disease vulnerability that significantly contrib-
ute to disease state and resiliency to SZ. Our longitudi-
nal study found that left MOF appears to be a key region 
in differentiating SZ and nonpsychotic GHR. We then 
examined the effects of polygenic risk and lipometabo-
lism on left MOF ALFF, as well as their relationship to 
ALFF in left MOF. In SZ, SZ-PRS at pT 0.0001 predicted 
left MOF ALFF and had significant positive correlation 
with it, and bioinformatics enrichment analyses revealed 
that genes involved in neuron structure and mainly 
relate to cell membranes may drive this correlation. 
Correspondingly, lipodomics showed that lipid species 
involved in cell membranes best predicted left MOF in 
SZ. In GHR, fatty acids best predicted ALFF in left MOF 
and had significant negative correlation with left MOF 
ALFF. These lipid differences may reflect vulnerability 
and resiliency to SZ. Interestingly, the longitudinal study 
found normalization of left MOF ALFF in GHR. Taken 
together with fatty acid findings in GHR, fatty acids 
may mediate normalization of ALFF in left MOF. Fur-
ther studies are needed for more definitive conclusions 

regarding the interplay between polygenic risk, lipome-
tabolism, and left MOF ALFF.

The study of brain development encompasses evalu-
ation of the structural, functional, and network-level 
changes that occur across the lifespan. Increasing evi-
dence suggested that the brain achieve a maximum 
level of maturity around the age of 20–30  years, and 
then begin to decline [37–42]. The longitudinal find-
ings herein support divergent neural trajectories in SZ 
and GHR during development and across the lifespan. 
Specifically, the left MOF appears to be a region of 
divergent ALFF trajectory in SZ and GHR. Left MOF, 
part of prefrontal cortex (PFC), is thought to contrib-
ute to higher cognitive functions [43]. The shared ALFF 
increases in left MOF in SZ and GHR at baseline could 
represent shared genetic liability for SZ and may be a 
neural marker of disease vulnerability. Prefrontal defi-
cits have been previously shown in both SZ and GHR 
at early ages [10, 44, 45]. Conversely, normalization of 
ALFF in left MOF at follow-up may reflect resiliency or 
compensatory mechanisms in GHR individuals who do 
not develop SZ. Altogether, our findings suggest that 
left MOF is a critical brain region in understanding the 
developmental processes leading to SZ.

Consistent with the known heritability of SZ, this study 
found genetic influences on neural measures in SZ. We 
found that ALFF in left MOF was positively correlated 
with predictive SZ-PRS at pT 0.0001 in SZ. This finding is 
consistent with previous studies in which higher SZ-PRS 
were associated with functional alterations of PFC [15, 
46, 47]. Bioinformatics enrichment analyses indicated 
that genes involved in neuron structure, especially its 

Fig. 4  Correlation between ALFF values of left MOF and fatty acids in GHR.  GHR, Genetic high risk; MOF, medial orbital frontal cortex
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cell membranes, likely influence ALFF in left MOF. Many 
studies report altered neuron structure in the PFC in SZ, 
including altered postsynaptic density [48], postsynaptic 
membrane [48], cell junction [49], dendritic spine density 
[50], and plasma membrane [51] as well as axon guid-
ance [52, 53], in line with our findings. Lipodomic find-
ings further supported the bioinformatics findings. Our 
analyses showed that phospholipid and ceramide, which 
are key components of cell membranes, best predicted 
left MOF ALFF in SZ. Collectively, our findings implicate 
the importance of cell membrane alterations in the etiol-
ogy and pathophysiology of SZ.

However in GHR, fatty acids best predicted ALFF in 
left MOF, different from SZ. Further, fatty acids nega-
tively correlated with left MOF ALFF in GHR. This cor-
relation along with the observed normalization of ALFF 
in GHR in the longitudinal study suggest fatty acids may 
contribute to resiliency in GHR. Of note, the lipodomic 
analyses included baseline measures of a subset of par-
ticipants in the longitudinal study. Fatty acids play a 
number of key roles in metabolism, including suppliers of 
energy and signaling molecules [54]. The passage of fatty 
acids from the blood to the brain have been previously 
shown [55]. Reduced levels of fatty acids in plasma and 
red blood cells have been observed in SZ [23, 56]. Dis-
turbances in PFC fatty acid composition have also been 
reported in SZ [57, 58], suggesting disturbed PFC fatty 
acid concentrations as a pathological aspect of SZ. How-
ever, little is known about fatty acid alterations in GHR. 
Nevertheless, there is some evidence to support the role 
of fatty acids in GHR resilience. Fatty acids have the abil-
ity to regulate brain-derived neurotrophic factor (BDNF), 
which has been associated with the pathophysiology of 
SZ [59]. Supplementation of fatty acids have been sug-
gested to normalize levels of BDNF and reduce oxida-
tive damage [60], and improve psychiatric symptoms 
[61]. Altogether, fatty acids may be involved in resiliency 
in GHR and counteract or compensate for the effects of 
genetic vulnerability. Further studies are needed.

There are several limitations in this study. Most SZ 
participants were taking psychotropic medications at 
the time of the study, and thus there may be confound-
ing effects as GHR participants were not taking psycho-
tropic medications. The longitudinal sample was only 
of moderate size. Further studies are needed in a larger 
and unmedicated sample of SZ and GHR to confirm our 
results. Moreover, gender and age factors were not con-
trolled in the recruitment of participants to ensure the 
sample size of longitudinal study, which may confound 
our findings. We therefore performed analysis to test 
for interactions between gender and group, and age and 
group. At baseline and follow-up, there was no signifi-
cant interaction effect of group x gender and group x age 

on left MOF ALFF in the longitudinal study. There was 
also no significant interaction effect of group x gender 
and group x age on the lipids and on left MOF ALFF in 
the cross-sectional study. In addition, there was no sig-
nificant linear correlation between ALFF in left MOF 
and lipid species that best predicted left MOF ALFF in 
SZ. There also was no significant correlation between left 
MOF ALFF and predictive SZ-PRSs in GHR. Possible 
explanations for these findings include complex relation-
ships among polygenic risk, lipometabolism, and ALFF 
that cannot be simply accounted for by linear correla-
tions. Therefore, further studies are needed to investigate 
the complex interplay between SZ-PRS, lipids, and ALFF 
in left MOF in SZ and GHR.

Conclusions
Altogether, using a guided, multimodal approach, our 
findings implicate left MOF as a key region with diver-
gent neural trajectory between SZ and GHR. Genomic 
and lipodomic analyses implicate the importance of 
membrane genes and lipids in differential ALFF altera-
tions and their progression in left MOF in SZ and GHR, 
reflecting potential indicators of vulnerability and resil-
iency to SZ. The findings herein suggest that specific 
lipids and left MOF function may be important targets 
for early intervention or prevention in GHR, although 
further studies are warranted for definitve conclusions. 
These findings may have important implications for 
understanding mechanisms underlying vulnerability and 
resiliency in SZ and contribute to translational efforts for 
early intervention and prevention in SZ.
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