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Abstract
Background The nucleus accumbens (Nac) is a crucial brain region in the pathophysiology of major depressive 
disorder (MDD) patients with anhedonia. However, the relationship between the functional imaging characteristics 
of Nac subregions and anhedonia remains unclear. Thus, this study aimed to investigate the role of resting-state 
functional connectivity (rsFC) of the Nac subregions between MDD and anhedonia.

Methods We performed resting-state functional magnetic resonance imaging (fMRI) to measure the rsFC of Nac 
subregions in 55 MDD patients and 30 healthy controls (HCs). A two-sample t test was performed to determine the 
brain regions with varying rsFC among Nac subregions between groups. Then, correlation analyses were carried 
out to investigate the relationships between the aberrant rsFC of Nac subregions and the severity of anhedonia. 
Furthermore, we constructed a mediation model to explain the role of the aberrant rsFC of Nac subregions between 
MDD and the severity of anhedonia.

Results Compared with the HC group, decreased rsFC of Nac subregions with regions of the prefrontal cortex, 
insula, lingual gyrus, and visual association cortex was observed in MDD patients. In the MDD group, the rsFC of 
the right Nac shell-like subregions with the middle frontal gyrus (MFG)/superior frontal gyrus (SFG) was correlated 
with consummatory anhedonia, and the rsFC of the Nac core-like subdivisions with the inferior frontal gyrus (IFG)/
insula and lingual gyrus/visual association cortex was correlated with anticipatory anhedonia. More importantly, the 
functional alterations in the Nac subregions mediated the association between anhedonia and depression.

Conclusions The present findings suggest that the functional alteration of the Nac subregions mediates the 
association between MDD and anhedonia, which provides evidence for the hypothesis that MDD patients have 
neurobiological underpinnings of reward systems that differ from those of HCs.

Keywords Anhedonia, Functional connectivity, Major depressive disorder, Nucleus accumbens subregions

Abnormal functional connectivity of the 
nucleus accumbens subregions mediates the 
association between anhedonia and major 
depressive disorder
Yanqin Hu1, Chaoqi Zhao1, Houfeng Zhao2,3* and Juan Qiao2,3*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12888-023-04693-0&domain=pdf&date_stamp=2023-4-7


Page 2 of 13Hu et al. BMC Psychiatry          (2023) 23:282 

Background
Major depressive disorder (MDD) has become one of 
the leading causes of disease burden worldwide, and its 
lifetime prevalence is approximately 3.4% [1, 2]. As one 
of the recognized core symptoms of MDD, anhedo-
nia includes a wide range of reward processing defects, 
such as reward learning, evaluation, expectation, moti-
vation, effort expenditure, and consummatory pleasure 
[3–6]. For MDD patients, anhedonia is a strong predic-
tor of psychosocial functioning improvement, mediat-
ing between the severity of depressive symptoms and 
improvement in social functioning [7]. In addition, MDD 
patients with anhedonia have a more severe course of ill-
ness and a higher risk of suicide [8].

The deficit of reward circuits is a core mechanism of 
anhedonia, which originates from the dopaminergic 
mesolimbic pathway in the ventral tegmental area (VTA) 
and to the Nac, amygdala, and hippocampus of the ven-
tral striatum (VS) [9–11]. Neuroimaging has found that 
the striatum plays an important role in both anticipatory 
pleasure (“wanting”) and consummatory pleasure (“lik-
ing”) [12]. And the concepts of “wanting” and “liking” 
correspond to the hypothesis that different subregions 
of the striatum have corresponding functions [13, 14]. 
When naltrexone is used to inhibit the function of opi-
oid receptors, dorsolateral prefrontal cortex (dlPFC)-stri-
atum connections are enhanced [15, 16], and top-down 
inhibition of the prefrontal cortex (PFC) to the striatum 
is achieved [17]. Similarly, after the reward “liking” stage 
of MDD patients, low activation was observed in the 
striatum [18] as was excessive activation of dlPFC [19]. 
This evidence is related to abnormal signalling of opi-
oids that mediate “liking”, which is consistent with the 
neurobiological hypothesis that the striatum plays a key 
role in hedonic processes [20, 21] and supports optoge-
netic studies in animals showing that overactivation of 
PFC can inhibit the striatal response to reward and lead 
to anhedonia [19].

The Nac, located in the ventral part of VS, is an impor-
tant brain region that regulates motivational learning 
[22, 23] and mainly mediates the hedonic perception of 
rewards, which is related to reward evaluation and expec-
tation [24]. Neuroimaging studies have found aberrant 
alterations in the reward system in MDD patients. Struc-
tural magnetic resonance imaging studies have found that 
the volume of left Nac in MDD patients is larger than that 
in HCs [25]. Resting-state fMRI studies have indicated 
that rsFC between the Nac and extensive cortical regions, 
such as the orbitofrontal cortex (OFC) and anterior cin-
gulate cortex (ACC), are reduced in MDD patients [26]. 
Previous findings support the hypothesis that the reward 
systems work as a whole and that key structures cannot 
work in isolation from the whole [27]. Abnormal reward 
processing is thought to disrupt the VTA-Nac pathway 

in MDD patients [28]. That is, MDD may change reward 
circuits that are associated with the VTA-Nac pathway so 
that patients fail to feel pleasure and motivation [29, 30].

Recent studies have explored the functional character 
of the Nac on a subregional level, revealing that Nac sub-
regions have different functions in an indivisional’s plea-
sure experience process. The Nac can be divided into the 
core-like part and shell-like part. Studies have found that 
the core-like subdivision receives projections from the 
mediolateral OFC and prelimbic medial prefrontal cortex 
(mPFC) [31, 32], and the shell-like subdivision receives 
projections from the ventral medial prefrontal cortex 
(vmPFC) [33]. The two subregions have different inputs 
and outputs, indicating that they contribute differen-
tially to goal-directed behaviours [34, 35]. Animal studies 
have found that the Nac core-like subdivision is related 
to appetite controls and responses to aversive motiva-
tion [36], goal-directed behaviour, instrumental learning, 
and motivation [37, 38], while the shell-like subdivision 
is associated with the integration of motivational valence 
and novelty [39, 40].

Neurobiological studies have found that reward pro-
cessing procedures include desire, anticipation, effort 
to attain reward, consummatory pleasure, and cognitive 
aspects of learning [5]. Whereas anticipatory pleasure 
is more closely related to reward motivation and goal-
directed behaviours (i.e., “wanting”), consummatory 
pleasure may more accurately reflect pleasure in the pres-
ent moment and satisfaction after every obtained reward 
(i.e., “liking”) [41]. This distinction is critical for identify-
ing the specificity and the mechanisms of reward-related 
deficits in MDD and schizophrenia [42]. Anticipatory 
pleasure and consummatory pleasure represent differ-
ent types of pleasure with different brain regions and 
neural circuits [43]. We divided the Nac into two func-
tionally distinct subregions, the core and the shell, by 
the 2-cluster solution [44]. Anticipatory anhedonia may 
be mediated by the Nac core-like subdivision, while con-
summatory anhedonia is mediated by the Nac shell-like 
subdivision [45–47]. Previous empirical work on anhedo-
nia in depression has mainly focused on consummatory 
anhedonia, while there have been relatively few studies 
on anticipatory anhedonia. Questionnaire and labora-
tory measures of anhedonia have also emphasized the 
consummatory phase [48]. Therefore, consummatory 
anhedonia was once considered to be the main cause of 
anhedonia in MDD. A recent study of MDD patients sup-
ports that anticipatory pleasure is as flawed as consum-
matory pleasure [49]. More importantly, anticipatory 
anhedonia and consummatory anhedonia show a disso-
ciated pathophysiological basis [50]. To comprehensively 
understand the relationship between the consummatory 
and anticipatory dimensions of anhedonia and the rsFC 
of Nac subregions in MDD patients, we administered 
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the Temporal Experience of Pleasure Scale (TEPS) to all 
participants to measure the severity of their anhedonia 
as this assessment can be used to distinguish between 
anticipatory anhedonia and consummatory anhedonia 
[51]. The innovative point of this study was the division 
of Nac into subregions and the investigation of the cor-
relation between the two dimensions of anhedonia and 
the rsFC of Nac subregions. Then, we hope to evaluate 
clinical subjects with a two-dimension scale to provide 
evidence for finding potential biological markers of MDD 
with specific anhedonia.

In this study, we first hypothesized that the rsFC of Nac 
subregions would be different between the MDD and HC 
groups, Second, we hypothesized that there were correla-
tions between the rsFC of the Nac core-like subdivision 
and anticipatory anhedonia as well as the rsFC of the Nac 
shell-like subdivision and consummatory anhedonia in 
MDD patients, which differed from that in HCs. And this 
variance may be associated with a different neurobiologi-
cal basis in Nac subregions within the two groups [52], 
indicating that MDD may damage the normal function of 
Nac subregions in the reward circuit. Third, we hypoth-
esized that the altered rsFC of Nac subregions play medi-
ating roles between group and the severity of anhedonia. 
As the largest variable factor, MDD may indirectly regu-
late the severity of anhedonia by changing the rsFC of the 
Nac subregions.

Materials and methods
Participants
A total of 55 patients with depression and 30 healthy 
controls were included in this research. All of the MDD 
patients were inpatients in the Affiliated Xuzhou Orien-
tal Hospital of Xuzhou Medical University who met the 
following criteria: [1] the diagnostic criteria of the major 
depressive disorder according to the Diagnostic and Sta-
tistical Manual of Mental Disorders, fifth edition (DSM-
V) criteria; [2] right-handed; [3] age in the range of 18 
to 55 years old; and [4] generally normal intelligence. 
The MDD patients who met the following criteria were 
excluded: [1] previous or existing mental disorders other 
than MDD; [2] secondary depressive episodes caused 
by organic mental disorders or other diseases; [3] neu-
rodegenerative diseases, such as brain trauma, cerebro-
vascular diseases, and other organic cerebral diseases; 
[4] history of severe cardiac dysfunction, renal insuf-
ficiency, hepatic diseases, poorly controlled diabetes or 
other major somatic diseases; [5] pregnant, breastfeeding 
and preparing for pregnancy; and [6] contraindications 
for a magnetic resonance imaging (MRI) scan. The HCs 
recruited were matched with the MDD patients in age, 
sex, and education years and lived in the same or similar 
place as the MDD patients. HCs all met exclusion crite-
ria the same as MDD patients. This study was approved 

by the Medical Ethics Committee of Xuzhou Medical 
University Affiliated East Hospital. All subjects signed 
informed consent forms.

Behavioural assessment
All subjects completed clinical and behavioural assess-
ments. The Montgomery-Asberg Depression Rating 
Scale (MADRS) was used to assess the severity of depres-
sion. The lower the score, the lower the depression sever-
ity. TEPS was used to assess the severity of anhedonia. 
The lower the score, the higher the anhedonia severity. 
Chan [53] designed the TEPS for Chinese people in the 
context of Chinese culture based on the TEPS, which was 
verified [54, 55]. The scales above were administered on 
the day of the fMRI examination by 2 psychiatrists with 
professional training.

Differences in demographic and other data between the 
HC group and the MDD group were compared using the 
two-sample t test and chi-square test.

Image acquisition
We conducted fMRI with Siemens 3.0T on all subjects at 
Xuzhou Medical University Affiliated East Hospital. Dur-
ing scanning, subjects were required to remain awake, 
keep their eyes closed, keep their heads fixed, and lay 
quietly on the examination bed without thinking actively. 
Structural T1-weighted images were acquired by the gra-
dient recalled echo sequence. The parameters were set 
as follows: repetition time (TR)/echo time (TE) = 1900 
ms/2.58 ms, field of vision (FOV) = 250 × 250 mm2, 
matrix = 256 × 256, layer number = 176, layer thickness = 
1 mm, and voxel size 3 × 3 × 3 mm, and scanning time = 
4 min 18 s. If no abnormalities were found, resting-state 
functional scans were performed. Resting-state fMRI 
images were obtained by conducting a gradient-recall 
echo-planar imaging (GRE-EPI) pulse sequence with the 
following parameters: TR/TE = 3000 ms/40 ms, FOV = 
240 mm×240 mm, 32 layers, matrix size = 64 × 64, layer 
thickness = 4 mm, time point = 135, and scanning time = 
6 min 56 s.

Functional imaging data preprocessing and preliminary 
data analysis
Neuroimaging data were transformed by MRIcron 
(http://www.mccauslandcenter.sc.edu/mricro/mricron). 
Then, we obtained the remaining 130 time point data 
after discarding the first five time images. Functional MRI 
data were preprocessed using the CONN toolbox (Cogni-
tive and affective neuroscience laboratory, Massachusetts 
Institute of Technology, Cambridge, MA, USA; www.
nitrc.org/projects/conn) and SPM12(Wellcome Depart-
ment of Imaging Neuroscience, London, UK; www.fil.
ion.ucl.ac.uk/spm) [56], running on MATLAB R2013b 
(MathWorks). The spatial preprocessing steps included 

http://www.mccauslandcenter.sc.edu/mricro/mricron
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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slice-timing correction, realignment, and two-step reg-
istration by using indirect segmentation and normaliza-
tion. Then, the standard brain was spatially smoothed by 
4 mm ×4 mm ×4 mm, and head motion < 2 mm or < 2° 
was required for inclusion. In order to remove unwanted 
motion, physiological, and other artifactual effects from 
the blood oxygen level-dependent (BOLD) signal, linear 
regression was performed with three different sources of 
possible confounders, including white matter and cere-
brospinal fluid masks (5 dimensions each), scrubbing 
and realignment parameters (12 regressors: 6 motion 
parameters + 6 first-order temporal derivatives), and the 
effect of rest (2 regressors: 1 motion parameters + 1 first-
order temporal derivatives) [56, 57]. In addition, we used 
a seed-based approach to obtain the rsFC values after 
adjusting the filter to 0.01–0.08 Hz to avoid possible con-
founding effects.

Compared to a previous study [58], Cartmell et al. lev-
eraged the larger number of subjects in their dataset, 
minimizing uncertainty generated during the acquisi-
tion and processing pipeline to produce a greater signal 
[44]. The core-like and shell-like subdivisions of Nac were 
defined based on a probabilistic atlas of Nac subregions 
[44]. Then, the bilateral core-like and shell-like subdivi-
sions of Nac were chosen as seeds that corresponded to 4 
subregions (the left core-like subdivision, the right core-
like subdivision, the left shell-like subdivision, and the 
right shell-like subdivision) (Fig. 1).

The first-level analysis included bivariate correlations 
between seeds and all voxels throughout the whole brain. 
Then, we obtained brain maps for each individual. In 
order to verify the accuracy of the NAc subregions seg-
mentation, we conducted one-sample t tests on the rsFC 
maps of the two groups, respectively (voxel-wise p < 
0.001; cluster-level family-wise error (FWE) p < 0.05). In 
addition, paired-samples t-tests were conducted to com-
pare the differences in rsFCs between the ipsilateral NAc 
subregions in HCs (voxel-wise p < 0.001; cluster-level 

FWE p < 0.05). A two-sample t test in the CONN toolbox 
was used to compare the rsFC values between the two 
groups and to identify the brain regions with differences 
between MDD patients and HCs (thresholded at a whole-
brain P < 0.001 uncorrected voxel threshold and cluster-
level FWE p < 0.05). BrainNet Viewer (https://www.nitrc.
org/projects/bnv/) was used to report significantly differ-
ent brain regions.

Correlation analysis
To investigate the correlation between the rsFC values 
and TEPS scores, we conducted Spearman and Pear-
son correlation analyses (Benjamini/Hochberg method 
was used to control the false discovery rate, adjusted p 
< 0.05). Then, the rsFC values and group were used as 
the independent variables, and the TEPS score was the 
dependent variable, while sex, age, and education years 
were controlled. Multiple linear regression with the 
“Enter” method was conducted using SPSS 26 software to 
explore the influencing factors of anhedonia.

Mediation analysis
We performed bootstrap analyses that were generated 
from 5,000 bootstrapped samples controlling for age, 
sex, and years of education to test the mediating role of 
the rsFC of Nac subregions in the relationships between 
group and the TEPS scores on Model 4 of PROCESS V4.0 
by Andrew F Hayes’ in IBM SPSS Statistics version 26.0. 
First, group was defined as the independent variable (X), 
while the TEPS score was defined as the outcome vari-
able (Y). Then, we tested whether the indirect effect of X 
on Y (a × b) was statistically significant. If the 95% CI did 
not cross 0, the mediation effect existed. In addition, we 
tested whether the direct effect of X on Y (c) is statisti-
cally significant. The relationship between X and Y was 
completely mediated if the 95% CI crossed 0, or the rela-
tionship between X and Y was mediated partially.

Results
Demographic and clinical information
As shown in Table 1, we did not find significant differ-
ences in age, sex, or education years (p > 0.05) between 
the groups of participants. The MADRS score was higher 
and the TEPS, anticipatory pleasure dimension of TEPS 
(TEPS_C), and anticipatory pleasure dimension of TEPS 
(TEPS_A) scores were lower in the MDD group than in 
the HC group (p < 0.001). In conclusion, MDD patients 
had significantly more severe anticipatory and consum-
matory anhedonia than HCs.

RsFC analyses of each Nac subregion
One-sample t test analyses revealed that positive rsFCs 
with the four Nac subregions and the regions of the fron-
tal lobe, temporal lobe, ACC, subcallosal gyrus, basal Fig. 1 The four Nac subregions characterized by Cartmell et al. [44]
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ganglia, OFC, and parahippocampal gyrus in both the 
MDD group and HC group (Fig. 2).

In the HC group, paired-samples t test analyses 
revealed that the rsFC of Nac core-like subdivisions with 
the regions of the frontal lobe and ACC was stronger 

than that of shell-like subdivisions, and the rsFC of Nac 
core-like subdivisions with the regions of subcallosal 
gyrus and parahippocampal gyrus was weaker than that 
of shell-like subdivisions. These findings are consistent 
with those of previous studies [52, 58, 59] (Fig. 3).

Table 1 Demographic and clinical characteristics
Characteristics MDD(N = 55) HC(N = 30) Z/T/χ Value P 

Value
Sex(male/female)
Age (years)
Education (years)
MADRS
TEPS
TEPS_A
TEPS_C

18/37
35.18 ± 12.41
11.47 ± 3.23
33.04 ± 5.67
62.98 ± 10.26
25.78 ± 5.68
34.07 ± 5.64

9/21
36.83 ± 9.80
11.90 ± 1.936
1.97 ± 1.03
86.73 ± 4.62
36.87 ± 3.06
47.43 ± 3.66

0.067
-0.629
-0.661
39.456
-14.662
-11.691
-13.191

0.796a

0.531b

0.510b

0.000b

0.000b

0.000b

0.000b

Abbreviations: MDD major depression disorder, HC healthy control, MADRS Montgomery-Asberg Depression Rating Scale, TEPS the Temporal Experience of Pleasure 
Scale, TEPS_A anticipatory pleasure dimension of the Temporal Experience of Pleasure Scale, TEPS_C consummatory pleasure dimension of the Temporal Experience 
of Pleasure Scale
ap value obtained by chi-squared test
bp value obtained by two-sample t test

Fig. 3 Regions showing significant differences in rsFC with the Nac core-like

 

Fig. 2 Spatial distributions of the rsFC of the four Nac subregions between the HC group and the MDD group. rsFC data were projected onto the images 
of the brain using BrainNet Viewer (https://www.nitrc.org/projects/bnv/). The colour bar scale represents t values
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subdivision compared with the ipsilateral Nac shell-
like subdivision in the HC group. Warm colours rep-
resent the regions showing stronger rsFC with the Nac 
core-like subdivision than with the ipsilateral shell-like 
subdivision. Cool colours represent the regions showing 
weaker rsFC with the Nac core-like subdivision than with 
the ipsilateral shell-like subdivision. Images were created 
using BrainNet Viewer (https://www.nitrc.org/projects/
bnv/). The colour bar scale represents t values.

Compared with the HC group, we found that decreased 
rsFC between the left Nac core-like subdivision and right 
lingual gyrus/visual association cortex in the MDD group 
(FWE p < 0.001); decreased rsFC between the right Nac 
core-like subdivision and right IFG/insula in the MDD 
group (FWE p = 0.003); and decreased rsFC between the 
right Nac shell-like subdivision and right MFG/SFG in 
the MDD group (FWE p = 0.009) (Fig. 4; Table 2).

Correlation between anhedonia severity and imaging 
characteristics
This study revealed that TEPS_C scores were positively 
correlated with rsFC values between the right Nac shell-
like subdivision and right MFG/SFG (r = 0.323, p = 0.016, 
adjusted p = 0.048), and TEPS_A scores were positively 
correlated with rsFC values between the right Nac core-
like subdivision and right IFG/insula (r = 0.566, p < 0.001, 
adjusted p < 0.001) and with rsFC values between the 
left Nac core-like subdivision and right lingual gyrus/
visual association cortex (r = 0.321, p = 0.017, adjusted 
p = 0.034) in the MDD group (Fig. 5). However, we did 

not find any significant correlation in the HC group. All 
of the above are shown in Fig. 4.

Multiple linear regression analysis of the factors of 
anhedonia
Multiple linear regression analysis revealed that group 
and rsFC values were statistically significant (Tables 3 
and 4). It is worth noting that rsFC values were less sig-
nificant when group was taken as an independent vari-
able in multiple linear regression models (Tables 3 and 4). 
When we analyzed the MDD and HC groups separately, 
the rsFC of the Nac subdivisions became significant (p < 
0.001). The results showed that abnormal rsFC values of 
Nac core-like subdivisions and the right Nac shell-like 
subdivision were independent factors of anticipatory 
anhedonia and consummatory anhedonia, respectively 
(Tables 3 and 4). Variance inflation factor (VIF) scores 
were all less than 2, which indicated that these variables 
had acceptable multicollinearity.

Testing for the mediator
The results showed (Table 5) that the 95% CI of the 
TEPS_C indirect effect (-0.185, -0.025) and direct effect 
(-13.847, -9.072) as well as the 95% CI of the TEPS_A 
indirect and direct effect did not cross 0. This finding 
indicated that the rsFC values of Nac subregions play 
partial mediating roles between MDD and anhedonia. 
According to the results above, the two mediation models 
we built presented path coefficients associated with the 
models (Fig. 6). Finally, the mediating effect accounted 

Table 2 Group differences in rsFC between the MDD group and the HC group
Seed region Cluster location Hemisphere Peak (MNI) Number of 

voxels
t-value p-

valueX Y Z
Core_L Lingual gyrus/Visual 

association-cortex
Right 27 -66 -3 95 4.4014 < 0.001

Core_R IFG/insula Right 30 15 -9 65 5.3071 0.003

Shell_R MFG/ SFG Right 18 36 36 54 4.4789 0.009
Abbreviations: MDD major depressive disorder, HC healthy control, MNI Montreal Neurological Institute, Core_R right Nac core-like subdivision, Core_L left Nac core-
like subdivision, Shell_R right Nac shell-like subdivision, IFG inferior frontal gyrus, SFG superior frontal gyrus, MFG middle frontal gyrus

Fig. 4 Regions showing significant differences in rsFC with the Nac subregions between the MDD group and HC group. Warm colours represent the 
regions showing stronger rsFC of Nac subregions in the MDD group than in the HC group. Cool colours represent the regions showing weaker rsFC of Nac 
subregions in the MDD group than in the HC group. The images were created using BrainNet Viewer (https://www.nitrc.org/projects/bnv/). The colour 
bar scale represents t values
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for 13.213% (a1×b1/c), 19.258% (a2×b2/c) and 13.155% 
(a×b/c) of total effect in Models (a) and (b), respectively.

We also noticed that the bilateral rsFC of Nac core-like 
subdivisions both affected the mediation model(a). Then, 
we performed Spearman correlation analysis for the two 
sides of the subdivision. However, no significant corre-
lation between bilateral Nac core-like subdivisions was 
found (p > 0.05). We also performed a mediation analy-
sis separately, which showed that the rsFC of the left Nac 
core-like subdivision and the rsFC of the right Nac core-
like subdivision still had partial mediation effects (effect 
accounted for 15.832% and 21.239%, respectively). The 
right Nac core-like subdivision had higher weight than 
the left as the mediator.

Additionally, the strength of the rsFC of Nac subre-
gions played partial mediating roles in our models (Fig. 
6). MDD partially influenced the severity of anhedonia 
by changing the rsFC of Nac subregions, revealing that 
MDD has a regulatory effect on the neural basis of anhe-
donia [52]. Then, our study revealed that MDD may affect 
anticipatory pleasure through the core-like subdivision 
related neural basis while affecting consummatory plea-
sure through the shell-like subdivision. This evidence was 
consistent with the incentive salience theory [45–47].

Discussion
In this study, fMRI was used to investigate the differences 
in the rsFC of Nac subregions between MDD patients 
and HCs in Xuzhou city and surrounding areas in China. 
Compared with HCs, rsFC decreased in the bilateral 
core-like subregion and right shell-like subdivisions of 
Nac in the MDD group. And the abnormal rsFC values of 
Nac subregions were negatively correlated with anhedo-
nia in the MDD group. However, we found no correlation 
in the HC group, indicating that MDD patients and HCs 
have different neurobiological bases in the “liking” and 
“wanting” processes of pleasure. The correlation between 
both the rsFC of the Nac core-like subdivision and shell-
like subdivision and the severity of anhedonia in MDD 
patients is regulated by depression itself. In addition, 
mediating models demonstrate that decreased rsFC of 
Nac subdivisions is a significant mediator between MDD 
and anhedonia, suggesting that MDD can indirectly 
affect anhedonia by altering the functional connections 
of Nac subregions.

We found that the rsFC of the left Nac core-like subdi-
vision with the right lingual gyrus/visual association cor-
tex was reduced in MDD patients, which was negatively 
correlated with anticipatory anhedonia. Anatomically, 
the lingual gyrus extends to the fusiform gyrus and joins 
the parahippocampal gyrus to form emotion-limbic cir-
cuits, which are associated with visual memory recall and 
emotional processing [60]. The lingual gyrus is associated 
with high-level visual processing and visual memory [61]. 

Fig. 5 Scatter plots of the correlation between significantly different rsFC 
and the anhedonia scale in both groups. (a) Positive correlation between 
rsFC of the right Nac shell-like subdivision and TEPS_C score. (b) Positive 
correlation between rsFC of the left Nac core-like subdivision and TEPS_A 
score. (c) Positive correlation between rsFC of the right Nac core-like sub-
division and TEPS_A score. (MD, major depressive disorder; HC, healthy 
control; TEPS_C, consummatory pleasure dimension of the Temporal Ex-
perience of Pleasure Scale; TEPS_A, anticipatory pleasure dimension of the 
Temporal Experience of Pleasure Scale; IFG, inferior frontal gyrus; SFG_R, 
right superior frontal gyrus; MFG_R, right middle frontal gyrus)
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There is significantly reduced grey matter volume in the 
prefrontal lobe, limbic system, striatum, lingual gyrus, 
and fusiform gyrus in MDD patients [62]. During emo-
tional facial processing, grey matter structural [62–64] 
and functional abnormalities [65] are found in the lin-
gual gyrus and fusiform cortices within MDD patients. 
Impaired lingual gyrus and fusiform gyrus under the 
control of the prefrontal network are thought to underlie 
the onset of MDD and may manifest as deficits in visual 
memory, working memory, and emotional bias [62, 66]. 
Compared with non-melancholic MDD patients, a recent 
study reveals that the decreased long-range positive rsFC 
in the right lingual gyrus in melancholic MDD patients 
[67]. Decreased rsFC of the lingual gyrus and fusiform 
gyrus in MDD patients is also observed [68]. This evi-
dence suggests that the lingual gyrus and its related brain 
areas are closely associated with anhedonia in MDD 
patients. Clinically, deep brain stimulation of the nucleus 

accumbens (DBS-Nac) acts as a suppressor of neuronal 
activity [69, 70], which can improve depressive anhedo-
nia [71, 72]. In addition, DBS-Nac can be feasible in the 
treatment of severe alcohol use disorder, which disrupts 

Table 3 Results of multiple linear regression analysis for anticipatory anhedonia
B Std.error(SE) Beta t 95% CI p VIF

Sex 1.196 1.074 0.077 1.113 (-0.942, 3.334) 0.269 1.036

Age -0.044 0.046 -0.07 -0.955 (-0.136, 0.048) 0.343 1.165

Education 0.106 0.192 0.042 0.553 (-0.277, 0.489) 0.582 1.219

Group -7.553 1.392 -0.502 -5.427 (-10.323, -4.782) 0 1.832

Core_L 8.697 4.073 0.179 2.135 (0.588, 16.806) 0.036 1.505

Core_R 8.88 2.995 0.253 2.965 (2.918, 14.842) 0.004 1.558
R2 adjusted = 0.608

Abbreviations: Core_R rsFC values of the right Nac core-like subdivision with the IFG/insula, Core_L rsFC values of the left Nac core-like subdivision with the right 
lingual gyrus/visual cortex, VIF variance inflation factor

Table 4 Results of multiple linear regression analysis for consummatory anhedonia
B Std.error(SE) Beta t 95% CI p VIF

Sex 2.727 1.097 0.157 2.487 (0.544, 4.91) 0.015 1.013

Age 0.072 0.048 0.102 1.504 (-0.023, 0.168) 0.137 1.178

Education 0.293 0.192 0.102 1.525 (-0.089, 0.676) 0.131 1.142

Group -11.48 1.22 -0.678 -9.411 (-13.908, -9.052) 0 1.321

Shell_R 10.018 3.376 0.214 2.967 (3.297, 16.738) 0.004 1.323
R2 adjusted = 0.670

Abbreviations: Shell_R rsFC of the right Nac shell-like subdivision with the right MFG/SFG, VIF variance inflation factor

Table 5 Mediation model and the mediation effect of rsFC
Effect SE t p 95% CI

TEPS_C
Indirect effect of X on 
Y (a x b)
Direct effect of X on 
Y (c’)
Total effect of X on Y

-1.739
-11.480
-13.219

0.717
1.220
1.121

-
-9.411
-11.795

-
0
0

(-3.255, 
-0.442)
(-13.908, 
-9.052)
(-15.449, 
-10.989)

TEPS_A
Indirect effect of X on 
Y (a1 x b1)
Indirect effect of X on 
Y (a2 x b2)
Direct effect of X on 
Y (c’)
Total effect of X on Y

-1.478
-2.154
-7.553
-11.185

0.759
0.937
1.392
1.120

-
-
-5.427
-9.987

-
-
0
0

(-3.147, 
-0.183)
(-4.230, 
-0.517)
(-10.323, 
-4.782)
(-13.414, 
-8.956)

Fig. 6 Mediation models for the effect of rsFC on the relationship be-
tween group and anhedonia. (a) Mediation model with regression path 
coefficients of the rsFC of bilateral core-like subdivisions as mediators 
of the relationship between group and anticipatory anhedonia. (b) Me-
diation model with regression path coefficients of the rsFC of the right 
shell-like subdivision as a mediator of the relationship between group and 
consummatory anhedonia. (core_L, rsFC value of the left Nac core-like 
subdivision with the right lingual gyrus/visual cortex; core_R, rsFC value 
of the right Nac core-like subdivision with the IFG/insula; TEPS_A, antici-
patory pleasure dimension of the Temporal Experience of Pleasure Scale; 
shell_R, rsFC value of the right Nac shell-like subdivision with the right 
MFG/SFG; TEPS_C, consummatory pleasure dimension of the Temporal 
Experience of Pleasure Scale)
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the normal rsFC between the Nac and the visual asso-
ciation cortex [73]. That is, DBS-Nac may disturb the 
“wanting” (anticipatory motivation) and “learning” loops 
of alcohol addiction. We speculate that DBS-Nac might 
change the rsFC between the left Nac core-like subdivi-
sion and major regions of emotion-limbic circuits as well 
as the visual association cortex, which may be related 
to anticipatory anhedonia. Moreover, greater sensory 
reactivity in the visual cortex could predict depressive 
relapse [74], and anhedonia is a predictor factor for epi-
sodes of depression as well. These results provide poten-
tial evidence that there is a correlation between the Nac 
core-like subdivision and the visual cortex. Based on the 
role of the lingual gyrus and visual association cortex in 
hedonic and reward processing and their functional and 
structural abnormalities, we hypothesized that decreased 
rsFC between the Nac left core-like subdivision and 
right lingual gyrus/visual association cortex may indicate 
that the reward loop is destroyed in MDD patients. This 
might lead to motivation and subsequent learning dys-
function in these individuals.

Moreover, we found that the rsFC of the right Nac 
core-like subdivision with right IFG/insula [75] was 
reduced in MDD patients, which was negatively corre-
lated with anticipatory anhedonia. Similar alterations in 
the IFG have been observed in sleep deprivation experi-
ments [76]. The IFG is thought to regulate the function 
of Nac [77]. The IFG is closely associated with the inhibi-
tion of hedonic-cue response [78]. At the network level, 
the IFG belongs to the executive control network [79], 
which also regulates the reward network system. Fur-
thermore, the decreased rsFC between the right IFG and 
right Nac core-like subdivision means decreased func-
tional synchronization between the executive control and 
reward networks and leads to an abnormal ability to pro-
cess and control negative reward information. The func-
tional characteristics of IFG are related to eudaimonic 
well-being, whereas the OFC is related to positive affect 
[80]. In addition, a recent study found that MDD patients 
shared decreased dynamic regional phase synchrony 
values in the OFC extending to the insula compared to 
HCs [81], and the right insula extended to the right IFG. 
Pleasant music might significantly activate the interac-
tion of Nac with the insula and OFC [82], indicating that 
the OFC is correlated with the insula and IFG in hedonic 
and reward states. Studies have demonstrated that the 
insula can also affect the function of Nac, suggesting that 
the anticipation process of gain/loss involves an ‘alerting’ 
signal (thalamus) that converges with interoceptive infor-
mation (insula) to shape action selection programs in the 
VS [83]. In addition, the insula is an important brain area 
in the Nac-DBS treatment of psychiatric disorders [84] 
and is involved in regulating autonomic and physiologi-
cal responses to rewarding and emotional stimuli [85]. 

Insula and limbic structures may reveal some correla-
tion during a clinical trial of repeated ketamine treatment 
for MDD patients [86]. Given that MDD patients may 
not be able to exclude psychomotor activity or thinking 
during MRI examination, the brain regions identified 
are not completely consistent with the differential brain 
regions indicated by previous studies [52]. However, in 
terms of the function of brain regions, we can explain the 
association among the insula, IFG, and medial OFC in 
reward processing-related processes. The medial OFC is 
one critical region of the emotion regulation neural sys-
tems and rewarding systems [45, 87, 88]. Both the Nac 
and OFC have been previously thought to represent the 
expected value of a cue to guide reward-learning behav-
iour [18, 89]. During the reward anticipation stage, the 
OFC [90, 91] in MDD patients shows low activation. 
The over-activation of OFC will project to the Nac core-
like subdivision when MDD patients enjoy pleasure. 
Hence, the decreased rsFC of Nac-OFC provides sup-
port for MDD patients with consummatory anhedonia. 
All evidence supports that the IFG, OFC, and insula are 
involved in hedonic and reward processing. Based on the 
role of IFG and insula in hedonic and reward processing 
and our findings, we speculate that the decreased rsFC 
between the right Nac core-like subdivision and IFG/
insula in MDD patients indicates that the reward system 
in MDD is disrupted when patients experience anticipa-
tory anhedonia.

Although altered rsFC of bilateral Nac core-like sub-
divisions are not exactly the same in the MDD group, 
both of them were negatively correlated with anticipatory 
anhedonia in accordance with our findings. In our per-
spective, the rsFC of Nac core-like subdivisions may be 
relatively separate from related brain areas and unified on 
the defect of anticipatory pleasure [92, 93]. The correla-
tion of the left core-like subdivision is lower than that of 
the right, which means that rsFC on the right may have 
higher weight than that on the left in reflecting the sever-
ity of anticipatory anhedonia in MDD patients.

Moreover, we found that rsFC decreased between the 
right Nac shell-like subdivision and right MFG [75, 94]/
SFG [94] in MDD patients, which was negatively corre-
lated with consummatory anhedonia. The SFG and MFG 
are involved in affective and self-referential processes, 
which are closely related to satisfaction with life [95]. 
The MFG is one part of the dlPFC and is closely corre-
lated with eudemonic well-being [96]. Many studies have 
revealed that structural or functional abnormalities in the 
SFG and MFG are common in MDD patients [97–101]. 
In addition, MDD patients with anhedonia exhibited 
decreased regional homogeneity in SFG [102]. Cerebral 
functional nodal characteristics of the left SFG were 
associated with the severity of consummatory anhedo-
nia in MDD patients with severe anhedonia [103]. And 
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abnormal voxel-mirrored homotopic connectivity values 
in the SFG in MDD patients with anhedonia were found 
in a recent study [104]. During the reward outcome stage, 
the right MFG showed decreased activation in MDD 
patients compared to controls [105]. According to our 
findings and previous studies [102–105], we speculate 
that there are abnormal functional changes in both right 
MFG and SFG can reflect the severity of consummatory 
anhedonia. Furthermore, the rsFC between Nac shell-
like subdivision and right MFG/SFG may be a poten-
tial biomarker to predict the severity of consummatory 
anhedonia.

Almost 70% of MDD patients experience significant 
anhedonia. In the reward circuit, the Nac acts as a hub 
that integrates information. Animal studies have found 
that knockout and inactivation of tachykinin precursor-1 
neurons in the NAC lateral shell-like subdivision can 
induce consummatory anhedonia-like behaviour, indi-
cating that the neurotransmitters delivered by the Nac 
might affect the function of downstream brain regions 
in MDD patients [72]. A positron emission tomography 
study revealed that abnormally high D2/3 receptor avail-
ability in the VS in MDD patients is correlated negatively 
with the severity of motivational anhedonia [106]. There 
was a particularly close relationship among MDD, aber-
rant function of Nac, and anhedonia. To our knowledge, 
few previous studies have explored whether the altered 
rsFC of the Nac subdivisions might be mediators of the 
relationship between group and the severity of anhedonia 
and, if so, to what extent the relationship is mediated. In 
our study, the altered abnormal rsFC of the Nac subdivi-
sions was a partial mediator of the relationship between 
group and the severity of anhedonia. One major mecha-
nism that links the group and the severity of anhedonia 
may be altered rsFC of Nac subdivisions. In this topic, we 
provided a new perspective and a potential explanation, 
that is, MDD might damage the motivation or the capac-
ity for hedonic activity and nurturing one’s well-being by 
indirectly affecting the rsFC of Nac-specific subregions 
in addition to a direct effect. However, we did not find a 
potential mediating association among consummatory 
anhedonia, group, and rsFC of the left shell-like subdi-
vision, suggesting that the pathophysiological basis of 
bilateral shell-like subdivisions in MDD patients might be 
isolated.

In the end, this study had some limitations. First, the 
sample size is not large enough to avoid negative results. 
In this regard, future studies with larger sample sizes are 
needed. Second, some MDD patients had taken antide-
pressant drugs before hospitalization. Although we col-
lected data within three days after admission, we could 
not rule out the influence of psychiatric drugs on the 
brain function of these patients. Third, we evaluated the 
participants’ pleasure experience by a self-report scale, 

and the results may have been affected by participants’ 
emotional state at the time of assessment and memory 
bias. Future research is encouraged to use more com-
prehensive reward-related scales and tasks to compre-
hensively assess the subtypes of anhedonia across more 
dimensions. Last, this study only collected fMRI data of 
MDD patients within 3 days after admission (baseline 
level); thus, data after treatment are lacking. It is neces-
sary to determine the score reduction rate after discharge 
and even long-term longitudinal follow-up studies. 
In summary, future studies need to be more carefully 
designed, with larger sample sizes to facilitate our under-
standing of the neural mechanisms.

Conclusion
Taken together, we found that abnormal rsFC of Nac 
subregions in MDD patients compared to that in HCs. 
There are different neurobiological bases of reward cir-
cuits between the MDD and HC groups [52]. Moreover, 
abnormal rsFC of the Nac subregions is significantly 
associated with the severity of anhedonia, which is a 
mediator between group and the severity of anhedonia. 
Our study might extend the knowledge about functional 
alterations of specific Nac subregions in the pathophysi-
ology of MDD and the neurobiological underpinnings of 
MDD patients with anhedonia, which can clearly differ-
entiate them from healthy people. The functional altera-
tions in Nac subregions have the potential to be imaging 
biomarkers of anhedonia in MDD patients, which can 
help make clinical diagnosis and treatment more accu-
rate. In the future, longitudinal studies are needed to 
clarify these inferences.
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