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Abstract
Objective  To identify DNA methylation and clinical features, and to construct machine learning classifiers to assign 
the patients with major depressive disorder (MDD) into responders and non-responders after a 2-week treatment into 
responders and non-responders.

Method  Han Chinese patients (291 in total) with MDD comprised the study population. Datasets contained 
demographic information, environment stress factors, and the methylation levels of 38 methylated sites of tryptophan 
hydroxylase 2 (TPH2) genes in peripheral blood samples. Recursive Feature Elimination (RFE) was employed to select 
features. Five classification algorithms (logistic regression, classification and regression trees, support vector machine, 
logitboost and random forests) were used to establish the models. Performance metrics (AUC, F-Measure, G-Mean, 
accuracy, sensitivity, specificity, positive predictive value and negative predictive value) were computed with 5-fold-
cross-validation. Variable importance was evaluated by random forest algorithm.

Result  RF with RFE outperformed the other models in our samples based on the demographic information and 
clinical features (AUC = 61.2%, 95%CI: 60.1-62.4%) / TPH2 CpGs features (AUC = 66.6%, 95%CI: 65.4-67.8%) / both 
clinical and TPH2 CpGs features (AUC = 72.9%, 95%CI: 71.8-74.0%).

Conclusion  The effects of TPH2 on the early-stage antidepressant response were explored by machine learning 
algorithms. On the basis of the baseline depression severity and TPH2 CpG sites, machine learning approaches can 
enhance our ability to predict the early-stage antidepressant response. Some potentially important predictors (e.g., 
TPH2-10-60 (rs2129575), TPH2-2-163 (rs11178998), age of first onset, age) in early-stage treatment response could be 
utilized in future fundamental research, drug development and clinical practice.
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Background
Depression is a heterogeneous syndrome and encom-
passes various concomitant symptoms with varying 
reactions to treatment. Depressive symptoms are cur-
rently assessed through mainly subjective self-reported 
measures such as questionnaires and interviews. Clinical 
decision-making and treatment selection depend primar-
ily on the clinical experience and professional judgment 
of psychiatrists because of no biomarker available for 
diagnostic or prognostic testing [1]. Selective serotonin 
reuptake inhibitors (SSRIs) are the common first-line 
agents used to treat major depressive disorder (MDD) 
[2, 3], but over two-third of the patients who received 
SSRIs treatment failed to achieve symptom remission [4]. 
In response to antidepressants, it is estimated that up to 
42% of the individual variation was explained by genetic 
factors. From this perspective, the genetic makeup of 
patients may help to select an appropriate medication for 
different individuals and allow adjustment of drug dosage 
according to the likelihood of optimal therapeutic effect 
with least side effects. However, no significant discovery 
of specific genetic polymorphisms have been reported 
[5].

Other studies have demonstrated a link between epi-
genetic modifications and MDD, including methylation 
[6]. DNA methylation occurs at the cytosine pyrimi-
dine ring of cytosine–phosphate–guanine dinucleotide 
sites (CpGs), which are particularly common in the pro-
moter regions [7]. DNA methylation in combination with 
genetic predisposition and environmental exposure could 
serve as a prognostic factor of disease occurrence or per-
sonal risk [8]. Blood methylation patterns have also been 
evidenced to be associated with the risk of long-term 
depression [9]. Variation in the TPH2 gene was explored 
as a possible factor since genetic variability related to the 
brain serotonin system has a significant impact on MDD 
[10]. Our previous studies indicate that TPH2 single 
nucleotide polymorphisms (SNPs) (rs7305115, the hap-
lotype of rs7305115 and rs4290270 [11], rs1487278, and 
rs2171363 compounding childhood adversity [12]) are 
closely associated with the antidepressant response in 
Chinese MDD patients. Equally important, the investi-
gation on potential biomarkers for predicting response 
to depression treatment is urgently need due to the high 
rate of treatment resistance, the increased suicide rate in 
non-reactive MDD patients, and the crushing economic 
burden. Predicting patient’s response to an early-stage 
treatment can help clinicians to optimize therapeutic 
methods at an earlier stage, which will reduce morbid-
ity and improve patients’ life quality. To the best of our 
knowledge, only little research has previously been 
undertaken to predict early responders in MDD based on 
DNA methylation.

Machine learning (ML) has been used as a valuable 
tool to assist clinicians to make more thoughtful deci-
sions for their patients due to its capability to manage 
complex and voluminous datasets with various types 
of clinical and genomic data [13]. Machine learning has 
also emerged as a powerful tool to uncover unknown fea-
tures from large-scale epigenetic data [14]. MDD classi-
fication and prediction, based on machine learning and 
neuroimaging information (e.g., MRI data), have been 
investigated [15] and systematically summarized [16]. An 
ensemble learning model has been reported to integrate 
imaging and genetic information for individualized base-
line prediction of response to a 2-week antidepressant 
treatment in 98 MDD inpatients [17]. Along with clinical 
and genetic factors assessed at baseline, some machine 
learning models could generate predictors for treatment 
response assessed at Week 5 [18]. Deep learning models 
were developed to evaluate antidepressant treatment out-
comes in Taiwanese subjects [19].

Therefore, we sought to identify DNA methylation 
features and to construct supervised machine learn-
ing classifiers to assign responders and non-responders 
after a 2-week treatment. These potential predictors may 
enhance the understanding of the epigenetic mechanisms 
of early prognosis in MDD.

Materials and methods
Standards and guidelines of machine learning in psychia-
try were followed when this study was conducted and 
reported [20].

Participants and clinical assessments
This study included 291 inpatients in a tertiary hospi-
tal who were diagnosed as major depressive disorders. 
Patient eligibility was determined based on the criteria 
of the Diagnostic and Statistical Manual of the American 
Psychiatric Association, Fourth Edition (DSM-IV). Blood 
samples were collected before antidepressant treatment.

All patients met the following criteria: Han Chinese, 
18–65 years old, baseline 17-item Hamilton Depression 
Rating Scale (HAMD-17) [21] scores > 17 points, and 
their depressive symptoms lasted at least 2 weeks. All 
patients had just been diagnosed or had recently relapsed 
and had not been on medication for at least two weeks 
prior to enrollment. All diagnoses were made indepen-
dently by two psychiatrists with professional tenure or 
higher, and confirmed by a third psychiatrist. Partici-
pants had never been diagnosed with other DSM-IV Axis 
I diagnosis (including substance use disorder, schizo-
phrenia, affective disorder, bipolar disorder, generalized 
anxiety disorder, panic disorder, obsessive-compulsive 
disorder). They had never been diagnosed with person-
ality disorder or mental retardation. Patients with a his-
tory of organic brain syndrome, endocrine, and primary 
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organic diseases, or other medical conditions that would 
hinder psychiatric evaluation were excluded from the 
study. Other exclusion criteria included blood, heart, 
liver, and kidney disorders; electroconvulsive therapy in 
the past 6 months; or an episode of mania in the previ-
ous 12 months. Pregnant and nursing females were also 
excluded from participation.

All study subjects in the study endorsed written con-
sent that was approved by the Zhongda Hospital Ethics 
Committee (2016ZDSYLL100-P01) under the Declara-
tion of Helsinki.

Demographic and clinical data
Response was defined as ≥ 50% reduction in HAMD-17 
scores from baseline to two weeks [22]. Accordingly, the 
two-week treatment participants were divided into two 
groups, responders and non-responders.

Two retrospective self-report questionnaires, the 
Childhood Trauma Questionnaire (28-item short-form, 
CTQ-SF) and the Life Events Scale (LES), were used to 
evaluate recent stress exposures and childhood adversi-
ties, respectively. The evaluation of LES and CTQ scales 
was completed by the same nurse using consistent, 
scripted language. LES is a self-assessed questionnaire 
composed of 48 items, reflecting both positive and nega-
tive life events experienced within the past year. The LES 
is divided into positive and negative life events (NLES). 
The CTQ-SF was dichotomized for use in the gene-envi-
ronment interaction analyses.

Twelve considered demographic and clinical features 
are age, gender, years of education, marital status, fam-
ily history, first occurrence or not, age of onset, number 
of occurrences, illness duration, HAMD-17, NLES and 
CTQ-SF baseline scores (Supplemental Material Table 1).

Genetic information
Primers were previously designed by us to encompass 
100 bp upstream and 100 bp downstream of TPH2 SNPs 
that showed a significant association with the antidepres-
sant response, as well as with GC sequence content of 
CpGs > 20% after methylation [11, 12]. Out of the total 
24 TPH2 SNPs, only 11 SNPs (rs7305115, rs2129575, 

rs11179002, rs11178998, rs7954758, rs1386494, 
rs1487278, rs17110563, rs34115267, rs10784941, 
rs17110489) met the DNA methylation status criteria 
of the sequences to be detected (Supplemental Mate-
rial Table 2). Methylation levels of 38 TPH2 CpGs were 
calculated and presented as the ratio of the number of 
methylated cytosines to the total number of cytosines.

Missing value handling
In the data set comprising 291 observations of 51 vari-
ables (12 demographic and clinical features, 38 CpGs’ 
methylation levels and 1 response variable), 6% entries 
were missing (see Fig. 1). Of the CpGs’ methylation lev-
els, 3 CpGs (TPH2-7-99, TPH2-7-142, TPH2-7-170) 
were excluded because they had more than 45% missing 
values. Due to the randomness of experimental/techno-
logical errors and interrelatedness of the variables, miss-
ing completely at random (MCAR)/missing at random 
(MAR) was assumed for the DNA methylation data and 
the mean imputation can deal with the missing data [23, 
24]. The values of other features with missing values were 
imputed with mode and mean in the case of categorical 
and numerical features, respectively.

Classification modeling using machine learning algorithms
Normalization (Linear transformation) was used to 
improve the numerical stability of the model and reduce 
training time [25]. To avoid overfitting when harnessing 
maximum amount of data, cross-validation (CV) using 
entire sample was used to report prediction perfor-
mance. The CV was 5-fold and the averaged prediction 
metrics including the area under the receiver operating 
curve (AUC), F-Measure, G-Mean, accuracy, sensitivity, 
specificity, positive predictive value (PPV) and negative 
predictive value (NPV) were reported. Hyperparameter 
tuning was based on AUC with random search using 
the caret default tuning settings. A packaging method 
(Recursive Feature Elimination with random forest, RFE-
RF) [26] with 5-fold CV was employed to select the fea-
tures that contributed the most to the prediction of the 
early antidepressant response in MDD patients. The vari-
able importance was also estimated using random forest. 

Fig. 1  Missingness pattern in the DNA methylation data set
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For better replicability, the 5-fold CV procedure was 
repeated 10 times.

ML methods were implemented via their interface with 
the open-source R package “caret” in a standardized and 
reproducible way. Five different supervised ML algo-
rithms were used in this study, including logistic regres-
sion, classification and regression trees (CART), support 
vector machine with radial basis function kernel (SVM-
RBF), a boosting method (logitboost) and random for-
ests (RF) to develop predictive models. All analyses were 
implemented in R statistical software (version 4.0.4). 
We utilized the caret package which implements rpart, 
caTools, e1071 and RandomForest packages for CART, 
logitboost, SVM-RBF and RF, respectively.

Results
Demographic and clinical characteristics of patients
After a two-week antidepressant therapy, 180 (61.9%) of 
MDD patients met the criteria for responding to anti-
depressants. 35.1% (n = 102) of patients were males and 
the mean age was 46.4, 46.7% (n = 136) of patients were 
first occurrence and the mean of baseline HAMD-17 was 
22.95. Further details of the baseline characteristics of 
demographic and clinical features are shown in Table 1.

Prior to treatment, no statistically significant dif-
ferences in the demographic features were observed 

between the responders and non-responders. The demo-
graphic features include age, years of education, family 
history, education duration, marital status, age of onset, 
illness duration, NLES and CTQ scores. However, the 
predominant proportion of women versus men was sig-
nificant (P = 0.011). Moreover, the HAMD-17 baseline 
scores of responders were significantly lower than those 
of non-responders (P = 0.030).

Model performance
Clinical-based classification
Formulas in classifiers were summarized in Table  2. 
The results illustrated in Table  3 were obtained when 
we employed depression severity scores (HAMD-17), 
together with demographic and clinical features, without 
/ with performing feature selection. A comparison of the 
classifiers’ performances led to the conclusion that RF 
reached the highest averaged AUC, and RFE improved 
the AUC from 58.1% (95%CI: 56.9-59.3%) to 61.2% 
(95%CI: 60.1-62.4%), but without statistically significant 
difference (P = 0.067). ROC curves of different classifiers 
based on demographic and clinical features were demon-
strated in Fig. 2. It can also be concluded by comparing 
the other values that SVM-RBF had highest F-measure 
and sensitivity values and that logitboost exhibited a 

Table 1  Demographic and clinical features at baseline
Variables Responders

(N = 180)
Non-responders
(N = 111)

Total P value

Gender, male (n (%)) 53 (29.4) 49 (44.1) 102 (35.1) 0.011

Age (mean (SD)) 46.94 (13.19) 45.63 (14.25) 46.40 (13.65) 0.335

NLES (median [IQR]) 16.00 [5.75, 32.00] 12.00 [3.00, 37.00] 13.00 [4.00, 32.00] 0.558

CTQ (mean (SD)) 47.58 (9.11) 48.50 (8.56) 47.93 (8.90) 0.399

Family history, yes (n (%)) 33 (18.4) 19 (17.1) 52 (17.9) 0.776

Years of education (mean (SD)) 10.80 (3.68) 10.51 (4.34) 10.69 (3.94) 0.537

Marital status, yes (n (%)) 150 (84.7) 85 (79.4) 235 (80.8) 0.325

First occurrence or not, yes (n (%)) 88 (48.9) 48 (43.2) 136 (46.7) 0.414

Age of onset (mean (SD)) 42.09 (13.25) 39.84 (14.54) 41.24 (13.77) 0.185

Illness duration (median [IQR]) 24.00 [6.00, 72.00] 24.00 [11.50, 84.00] 24.00 [6.00, 72.00] 0.268

Number of occurrences (mean (SD)) 1.89 (1.29) 2.24 (1.68) 2.02 (1.46) 0.046

Baseline HAMD-17 (mean (SD)) 22.55 (3.86) 23.59 (4.06) 22.95 (3.97) 0.030

Table 2  Formulas in classifiers
Data set Feature 

selection
Formulas Number

Only demograph-
ic and clinical 
features

Without RFE w2yn ~ gen + age + les + ctq + his + edu + mar + fst + mon + times + fstyn + HAMD0 12

With RFE w2yn ~ HAMD0 + age + times + les + ctq + gen + edu + fst + fstyn + mar 10

Only TPH2 CpGs Without RFE w2yn ~ t1 + t2 + … + t38a 35

With RFE w2yn ~ t6 + t12 + t13 + t11 + t29 + t17 + t15 + t32 + t33 + t16 + t2 + t18 + t14 + t28 + t20 + t31 16

Both Without RFE w2yn ~ gen + age + les + ctq + his + edu + mar + fst + mon + times + fstyn + HAMD0 + t1 + t2 + … + t38 a 47

With RFE w2yn ~ t12 + t17 + t6 + t15 + t13 + t32 + gen + t11 + times + age + t14 + t29 + HAMD0 + t16 + fst + t18 + m
ar + les + t31 + t33 + ctq + t4 + t2

23

a 35 CpGs features were included in the model, and 3 CpGs (TPH2-7-99、TPH2-7-142、TPH2-7-170) were excluded with more than 45% missing values
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higher G-mean, accuracy and specificity than the rest of 
the algorithms.

CpGs-Based classification
We then examined the discriminant methylation poten-
tial of 38 TPH2 CpGs. Formulas in classifiers were listed 
in Table 2. The results that we achieved when CpG sites 
were used for classification without/with RFE were sum-
marized in Table  4. It can be concluded that the best 
performing classification algorithm is RF. Additionally, 
RFE improved the AUC from 59.0% (95%CI: 57.8-60.3%) 
to 66.6% (95%CI: 65.4-67.8%) and accuracy from 62.8 
to 67.0%, with significant differences (P = 0.004). ROC 

curves of different classifiers based on TPH2 CpGs data 
were shown in Fig.  3. SVM-RBF obtained F-measure 
above 75% and sensitivity above 98%.

Clinical-and-CpGs-Based classification
The results that were gathered from the clinical and 
TPH2 CpGs data, without/with performing feature selec-
tion, were summarized in Table 5, which suggest that RF 
clearly outperformed the other four classifiers. Addition-
ally, RFE improved the AUC from 61.1% (95%CI: 59.9-
62.3%) to 72.9% (95%CI: 71.8-74.0%) and accuracy from 
62.5 to 70.0%, the differences were significant (P < 0.001). 
ROC curves of different classifiers based on clinical and 

Table 3  Averaged prediction metrics for each classifier based on clinical characteristics
Feature selection Classifier ROC (95%CI) F-Measure G-Mean Accuracy Sensitivity Specificity PPV NPV
Without RFE Logistic 0.551 (0.529–0.572) 0.710 0.428 0.589 0.813 0.225 0.630 0.426

Rpart 0.508 (0.496–0.521) 0.684 0.422 0.563 0.766 0.233 0.618 0.380

SVM-RBF 0.510 (0.498–0.523) 0.762 0.113 0.617 0.990 0.013 0.619 0.445

LogitBoost 0.569 (0.557–0.580) 0.724 0.523 0.624 0.786 0.348 0.662 0.501

RF 0.581 (0.569–0.593) 0.687 0.471 0.577 0.750 0.296 0.633 0.422

With RFE Logistic 0.567 (0.545–0.588) 0.722 0.444 0.604 0.830 0.237 0.638 0.462

Rpart 0.512 (0.500-0.525) 0.685 0.428 0.565 0.766 0.239 0.620 0.386

SVM-RBF 0.529 (0.516–0.541) 0.758 0.177 0.615 0.975 0.032 0.620 0.441

LogitBoost 0.576 (0.564–0.587) 0.726 0.539 0.629 0.782 0.372 0.669 0.513

RF 0.612 (0.601–0.624) 0.694 0.487 0.587 0.756 0.314 0.641 0.442

Table 4  Averaged prediction metrics for each classifier based on TPH2 CpGs
Feature selection Classifier ROC (95%CI) F-Measure G-Mean Accuracy Sensitivity Specificity PPV NPV
Without RFE Logistic 0.524 (0.502–0.546) 0.661 0.432 0.544 0.720 0.259 0.612 0.363

Rpart 0.530 (0.517–0.542) 0.677 0.472 0.569 0.731 0.305 0.630 0.411

SVM-RBF 0.516 (0.503–0.528) 0.762 0.045 0.615 0.994 0.002 0.618 0.171

LogitBoost 0.571 (0.559–0.583) 0.691 0.536 0.599 0.717 0.401 0.660 0.466

RF 0.590 (0.578–0.603) 0.750 0.407 0.628 0.901 0.184 0.642 0.534

With RFE Logistic 0.519 (0.498–0.540) 0.710 0.378 0.580 0.831 0.172 0.619 0.386

Rpart 0.568 (0.556–0.581) 0.683 0.522 0.588 0.716 0.381 0.652 0.453

SVM-RBF 0.526 (0.514–0.539) 0.760 0.160 0.617 0.981 0.026 0.620 0.458

LogitBoost 0.608 (0.596–0.620) 0.725 0.574 0.638 0.756 0.436 0.685 0.524

RF 0.666 (0.654–0.678) 0.763 0.558 0.670 0.859 0.363 0.686 0.614

Fig. 2  ROC curves of different classifiers based on clinical data a) ROC curves without RFE. b) ROC curves with RFE.
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TPH2 CpGs data were illustrated in Fig.  4, suggesting 
that SVM-RBF obtained F-measure above 75% and sen-
sitivity above 91%.

RF was established as the optimal performing model 
(72.9% AUC, 78.5% F-Measure, 59.8% G-Mean, 70.0% 
accuracy, 88.2% sensitivity, 0.706 PPV and 0.679 NPV), 
with 23 features selected by RFE. RF was thus used 
to estimate the variable importance of these 23 fea-
tures for classification. The top-15 variables and vari-
able importance were shown in Table 3 of Supplemental 

Material. Top-10 variables are TPH2-10-60 (rs2129575), 
TPH2-2-163 (rs11178998), TPH2-7-170 (rs34115267), 
TPH2-8-237 (rs10784941), TPH2-1-77 (rs7305115), 
TPH2-2-133 (rs11178998), TPH2-2-139 (rs11178998), 
TPH2-8-106 (rs10784941), age of first onset and TPH2-
2-159 (rs11178998).

Table 5  Averaged prediction metrics for each classifier based on clinical characteristics and TPH2 CpGs
Feature selection Classifier ROC (95%CI) F-Measure G-Mean Accuracy Sensitivity Specificity PPV NPV
Without RFE Logistic 0.504 (0.482–0.525) 0.660 0.472 0.554 0.700 0.318 0.625 0.395

Rpart 0.530 (0.518–0.543) 0.669 0.486 0.566 0.710 0.332 0.633 0.414

SVM-RBF 0.508 (0.496–0.521) 0.759 0.094 0.613 0.985 0.009 0.617 0.270

LogitBoost 0.570 (0.558–0.582) 0.690 0.537 0.598 0.712 0.405 0.660 0.464

RF 0.611 (0.599–0.623) 0.744 0.431 0.625 0.880 0.211 0.644 0.520

With RFE Logistic 0.590 (0.569–0.611) 0.707 0.446 0.589 0.799 0.249 0.633 0.433

Rpart 0.559 (0.547–0.572) 0.708 0.506 0.605 0.775 0.331 0.653 0.476

SVM-RBF 0.630 (0.625–0.635) 0.753 0.378 0.627 0.918 0.156 0.638 0.540

LogitBoost 0.617 (0.612–0.623) 0.717 0.583 0.635 0.742 0.458 0.689 0.523

RF 0.729 (0.718–0.740) 0.785 0.598 0.700 0.882 0.405 0.706 0.679

Fig. 4  ROC curves of different classifiers based on clinical and CpGs data a) ROC curves without RFE. b) ROC curves with RFE.

 

Fig. 3  ROC curves of different classifiers based on CpGs data a) ROC curves without RFE. b) ROC curves with RFE.

 



Page 7 of 9Chen et al. BMC Psychiatry          (2023) 23:299 

Discussion
Given the phenotypic complexity of the antidepressant 
response, clinical data are insufficient to guide the treat-
ment selection for each patient [27]. Methylation marks are 
potential biomarkers reflecting variation within the central 
nervous system [28] and they are very stable in bio-samples. 
TPH2 contributes to altered neuronal serotonin (5-HT) 
function, which are associated with MDD or suicidal behav-
ior. Methylation of CpGs in the TPH2 promoter area affects 
gene expression [29]. TPH2 is therefore considered as a can-
didate gene for MDD and the pharmacogenetics of the anti-
depressant reaction [30]. However, the precise mechanism 
of the serotonin system in MDD remains to be clarified [31, 
32]. In the present study, clinical features and information 
on TPH2 methylation were gathered to establish predic-
tion models for the early-stage antidepressant response in 
the Chinese Han population, leading to the identification of 
important CpGs as potential biomarkers in the early MDD 
treatment.

The response rate (a 50% reduction of HAMD-17 
scores at 2 weeks relative to baseline) is 61.9% in our 
study. All patients were treated with a single antidepres-
sant appropriate to the clinical indication. Specifically, 
the antidepressants include Selective Serotonin Reuptake 
Inhibitors (SSRI) (n = 177) and non-SSRIs (n = 114). The 
non-SSRIs include serotonin and nor-epinephrine reup-
take inhibitors (SNRI) (n = 94), noradrenergic and selec-
tive serotonergic antidepressants (NaSSA(s) (n = 13), and 
serotonin antagonists and reuptake inhibitors (SARI) 
(n = 7). Antipsychotics and mood stabilizers were not 
used for concomitant treatment, except for a low dose of 
benzodiazepine anxiolytic for the treatment of insomnia 
in some cases. In contrast, the response rate reported 
in the literature is 36.5% for the MDD patients treated 
with fluoxetine [33]. Our response rate is indeed higher 
than that described in the literature. The relatively higher 
response rate in our study is probably caused by: (1) sam-
ples that we collected from in-patients who might have 
received better care and support from clinic staff at the 
hospital; (2) the baseline HAMD-17 of in-patients was 
22.95 in this study, indicating that the symptoms of these 
in-patients were mild and not refractory; and (3) the 
patients were discharged at 2 weeks. They might expect 
to be discharged, which could cause a bias in the evalu-
ation at 2 weeks. The treatment rebound may occur in 
patients after discharge from the hospital. Lacking follow 
up is the limitation of this study. This study more focuses 
on the short-term effect in 2 weeks, from the perspec-
tive of machine learning to analyses its impact factors. 
Additionally, antidepressant drug dosage was adjusted as 
needed during the study.

Our findings suggest the better prediction performance 
of the models with the selected features. The prediction 
model can synergize clinical data with DNA methylation 

data to improve the prediction power of our classifi-
ers and clinical prognostic evaluation [34]. RF with RFE 
in this study outperformed the other reported models 
according to the clinical features (AUC = 61.2%, 95%CI: 
60.1-62.4%) / TPH2 CpGs features (AUC = 66.6%, 95%CI: 
65.4-67.8%) / both clinical and TPH2 CpGs features 
(AUC = 72.9%, 95%CI: 71.8-74.0%). Compared with the 
other three evaluated models, logistic and rpart classi-
fier have the relatively lower values of ROC-AUC and are 
less accurate. The sensitivity and specificity were asso-
ciated with optimal threshold. For example, the classi-
fier’s Youden index gets maximum value at a threshold of 
0.581, the sensitivity and specificity of RF with RFE based 
on clinical and TPH2 CpGs features are 0.882 and 0.405. 
If we reduce threshold, the sensitivity will decrease and 
the specificity will increase. In our study, the specificities 
of all models are not high, which means the classifiers are 
better at identifying likely responders than at identifying 
likely non-responders. We also chose AUC to represent 
the performance of models because AUC combines sen-
sitivity and specificity under different thresholds and it is 
more often to evaluate for model performance.

Encouraged by the good performance of the RF model, 
we further investigated the contribution from TPH2 meth-
ylation. RFE helped us to identify a small subset of discrimi-
native and predictive CpGs in SNP TPH2 sites. These SNP 
sites with high importance values have been demonstrated 
to have a connection with neuropsychiatric conditions, and 
our research results are consistent with those reported data. 
A recent research has shown that rs2129575 might be a sus-
ceptibility gene underlying heroin addiction [35]. A meta-
analysis of the studies in BD showed that the fixed summary 
OR for rs11178998 (1184 cases and 1585 controls) was 
1.33 (95% CI: 1.09–1.61) [36]. Another systematic review 
and meta-analysis showed that TPH2 SNPs rs11178998 is 
associated with one or more psychopathological conditions 
[37]. Also, a significant association with schizophrenia for 
rs10784941 (p = 0.009, OR minor G-allele 0.82 [0.71–0.95]) 
was observed in the discovery sample consisting of 788 
schizophrenia patients and 688 controls [38]. Moreover, 
meta-analysis results based on nine SNPs in the TPH2 gene 
revealed that rs7305115 was associated with suicidal behav-
ior under a fixed effect model [39]. Additionally, rs34115267 
was selected into its cohort study due to its risk patterns and 
processes for psychopathology emerging in adolescence 
(ROOTS) project [40]. Collectively, in this study, the good 
performance of ML implied its potential to predict MDD 
and to assist clinicians in making more objective and effi-
cient decisions. Even though we cannot advocate the appli-
cability of these clinical prediction models at this moment, 
our study provided the probability of exploring more blood-
based biomarkers for MDD prediction, serving as a step 
towards precision medicine in psychiatry. These predictive 
SNPs in early-stage treatment response could be utilized in 
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many contexts, such as fundamental research, drug devel-
opment and clinical practice.

Besides, demographic and clinical variables (e.g., age 
of first onset, age) were considered important features 
for early-stage treatment response prediction. Further 
evidence was provided that age and gender moderate 
response to antidepressants [41]. In actual statistical 
analyses, most research on MDD included age and gen-
der as key covariates [42, 43].

However, the following limitations should be con-
sidered when interpreting the findings of this study. In 
view of the relatively small sample size, 5-fold CV was 
employed to avoid overfitting of the models, and future 
prospective studies utilizing larger sample sizes are 
warranted to confirm our findings. Also, the following 
predictors could be selected to reduce the uncertainty 
associated with the prediction of the early-stage antide-
pressant response: electroencephalogram (EEG) [44] and 
environmental factors [45], such as diet, alcohol con-
sumption, stress and smoking status.

Conclusion
In conclusion, the effects of TPH2 on the early-stage anti-
depressant response was explored by supervised machine 
learning algorithms. On the basis of the baseline depres-
sion severity and the TPH2 CpG sites, machine learn-
ing approaches can enhance our ability to predict the 
early-stage antidepressant response. Some potentially 
important predictors (e.g., TPH2-10-60(rs2129575), TPH2-
2-163(rs11178998), age of first onset, age) in early-stage 
treatment response could be utilized in future fundamental 
research, drug development and clinical practice.
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