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Introduction
Psychiatric disorders are complex, with a polygenic 
architecture, and large degree of overlapping symptoms 
and risk factors. Both imaging and genetics studies have 
shown numerous but small associations between brain 
phenotypes, psychiatric disorders, and genetics, such 
as schizophrenia (SCZ) [1–3], bipolar disorder (BIP) [4, 
5], major depressive disorder (MDD) [6, 7], and anxi-
ety disorder (ANX) [8–10]. Interactions between vari-
ous brain phenotypes and genetics have been reported 
across structural [11, 12] and functional [2, 7, 10] imag-
ing modalities.

We have recently deployed a multivariate analysis to 
study the genetic architecture of brain functional con-
nectivity, revealing genetic variants associated with 
functional brain connectivity as well as variance in brain 
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Abstract
Psychiatric disorders are complex clinical conditions with large heterogeneity and overlap in symptoms, genetic 
liability and brain imaging abnormalities. Building on a dimensional conceptualization of mental health, previous 
studies have reported genetic overlap between psychiatric disorders and population-level mental health, and 
between psychiatric disorders and brain functional connectivity. Here, in 30,701 participants aged 45–82 from the 
UK Biobank we map the genetic associations between self-reported mental health and resting-state fMRI-based 
measures of brain network function. Multivariate Omnibus Statistical Test revealed 10 genetic loci associated with 
population-level mental symptoms. Next, conjunctional FDR identified 23 shared genetic variants between these 
symptom profiles and fMRI-based brain network measures. Functional annotation implicated genes involved in 
brain structure and function, in particular related to synaptic processes such as axonal growth (e.g. NGFR and 
RHOA). These findings provide further genetic evidence of an association between brain function and mental 
health traits in the population.
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activity over time [13]. The results showed meaningful 
overlap with psychiatric disorders, pointing at synapse-
related pathways among the biological processes shared 
between disorders and brain function [13].

Previous studies have shown widespread phenotypic 
and genetic overlap between psychiatric disorders [14–
18]. In addition, patients within a diagnostic category can 
display a wide variety of symptoms. This heterogeneity 
complicates both diagnosis and therapeutic response due 
to overlapping symptoms and generally low specificity of 
diagnostic features [19, 20]. While the mental health of 
any individual in the population varies over the course 
of a lifetime, most will not meet diagnostic criteria for a 
psychiatric disorder [21, 22]. In order to capture the vari-
ance encompassing psychiatric symptoms that is lacking 
in traditional case-control studies, one can use popula-
tion-level mental health questionnaires as implemented 
in the UK Biobank [23]. This facilitates analyses using 
the continuous scales which enable data-driven cluster-
ing methods to extract different profiles each capturing 
a separate domain relevant to mental health in a sample 
without individuals diagnosed with a psychiatric disor-
der, taking advantage of larger sample sizes. Using inde-
pendent component analysis (ICA), we have previously 
derived 13 mental health profiles from UK Biobank data, 
and showed that, although phenotypically independent 
(by design) they nonetheless share genetic underpinnings 
[24].

Here, we aimed to uncover the genetic architecture 
of mental symptoms and identify shared genetic loci 
with neurobiological processes related to brain func-
tion. Using multivariate analysis [25], we generated mul-
tivariate genome-wide association statistics across our 
previously identified 13 population-level mental health 
profiles [24]. This allowed us to identify new gene vari-
ants associated with mental health symptoms and traits 
such as psychosis, depression, and anxiety in the UK 
Biobank sample not captured in a univariate analysis. 
Further, we combined this multivariate genetic profile 
of mental health with GWAS summary statistics of 7 
psychiatric disorders and with our previously identified 
multivariate profiles of functional brain connectivity and 
variance in brain activity over time [24]. This research 
aims to provide insight into the biological underpinnings 
of mental health symptoms.

Methods
Sample and exclusion criteria
We utilized data from the UK Biobank [26] with per-
mission no. 27,412. All participants provided signed 
informed consent before inclusion in the study. The UK 
Biobank was approved by the National Health Service 
National Research Ethics Service (ref. 11/NW/0382). 
We previously used data from the online follow-up 

questionnaire on mental health to define 13 phenotypi-
cally independent profiles relevant for mental health [24]. 
We utilized summary statistics from a previous study [13] 
in which we deployed the UK Biobank imaging resource 
with 30,701 participants of White British ancestry aged 
45–82 years (52.8% females). In this study, we performed 
multivariate genome wide association analyses of func-
tional connectivity measures (partial correlations as a 
measure of edge strength between brain networks, and 
temporal node variance as a within network measure) 
using the Multivariate Omnibus Statistical Test (MOST-
est). The resulting summary statistics were used as a 
starting point in the current study. In another previous 
study, we performed an independent component analy-
sis of 136 items from a mental health questionnaire of 
117,611 UK Biobank participants aged 47 to 80 (56.2% 
female) [24]. The derived 13 components reflect mental 
health profiles for different mental health domains and 
were here fed into MOSTest, to derive a multivariate 
GWAS of mental health. For this study we deployed the 
summary statistics from these previous studies.

Image acquisition and pre-processing
The processing pipeline for imaging data used for the 
multivariate GWAS is described in Roelfs et al. [13]. In 
short, images were acquired using 3T Siemens Mag-
netom Skyra scanners with a 32 channel head coil (Sie-
mens Healthcare GmbH, Erlangen, Germany) at four 
different sites in the UK. The fMRI data was recorded 
using a gradient-echo echo planar imaging sequence 
with x8 multislice acceleration (TR: 0.735s, TE: 39ms, 
FOV: 88 × 88 × 64 matrix, FA: 52°) with a voxel size of 
2.4 × 2.4 × 2.4 mm. Data is processed by the UK Biobank 
team following the protocol described in Alfaro-Almagro 
et al. [27].

Multivariate genome-wide analysis
In this study we applied MOSTest to the phenotypic 
data from the ICA decomposition described in Roelfs et 
al. [24]. MOSTest deploys the univariate test-statistics 
for each SNP and computes a multivariate test statistic 
through single random permutations of the genotype 
vector. Standard preprocessing of the genotyping array 
data is described in Bycroft et al. [28] We further pre-
processed the data by filtering out individuals with more 
than 10% missingness rate, SNPs that were missing in 
more than 5% of genomes, and dropping of SNPs failing 
the Hardy-Weinberg threshold of 1 × 10e-9 and remov-
ing variants failing the MAF threshold at 0.005. We 
performed positional gene mapping using Functional 
Mapping and Annotation (FUMA) [29]. We also used a 
built-in tool to follow up these gene mapping analyses 
using MAGMA to connect the identified genes with tis-
sue types [30]. For FUMA we used the default settings 
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with a reference panel from the 1000G Phase3 genome 
project with subjects with a White European ances-
try. The MAF threshold was 0.005, loci were defined as 
at least 250 kb long. A gene was mapped when it was at 
most 10  kb removed from the SNP. We analyzed gene 
sets using the reactome toolbox [31] to identify biological 
processes associated with the genes associated with the 
summary statistics identified by FUMA.

Pleiotropy-informed conjunctional false discovery rate
In order to quantify the degree of genetic overlap and 
identify shared genetic loci between the mental health 
profiles and the imaging features we deployed the plei-
otropy-informed conjunctional false discovery rate 
(conjFDR) through the pleioFDR toolbox [32]. We used 
the default settings for conjunctional FDR. SNPs were 
pruned if they had an LD score higher than 0.2. Cross-
trait enrichment was avoided by ensuring the input 
summary statistics had no sample overlap. For this, we 
removed any individuals included in the fMRI analy-
ses from the MOSTest analysis of mental health. One of 
the advantages of conjFDR is that it can identify shared 
genetic loci regardless of effect direction and effect size, 
a feature that is useful when working with multivariate 
measures where effect direction might be lacking.

Results
MOSTest revealed 10 significant (P < 5e-8) loci across the 
13 previously identified profiles of mental health (Fig. 1). 
FUMA and its positional mapping tool revealed 48 genes 
associated with these loci (See Suppl. Table  1), that 
were linked by MAGMA to (among other anatomical 

structures and tissues) a number of brain structures such 
as the cerebellum and amygdala (Suppl. Figure 1). Among 
the identified genes, those mapped from the strongest 
GWAS loci were ADH1B and ADH5 (chromosome 4) 
and CRHR1 (chromosome 17).

In order to identify shared genomic loci between the 
mental health profiles and psychiatric disorders, we 
used GWAS summary statistics from prior case-control 
studies including schizophrenia (SCZ) [1], bipolar dis-
orders (BIP) [4], major depression (MD) [6], attention-
deficit hyperactivity disorder (ADHD) [33], autism 
spectrum disorder (ASD) [34], post-traumatic stress 
disorder (PTSD) [35], and anxiety (ANX) [8], see also 
Suppl. Table  2. First, we compared the gene set from 
the multivariate mental health genome-wide association 
statistics with the gene set from each of the psychiatric 
disorders. Here we found 35 overlapping genes, 29 with 
SCZ, 7 with BIP, and 1 with ADHD (see Suppl. Table 3). 
It is important to note that the 7 overlapping genes with 
BIP were mapped from only 2 separate loci. Next, we 
extracted the loci from each case-control GWAS (202 in 
total) and assessed whether each locus was significant in 
the multivariate genome-wide association statistics for 
mental health profiles as well. Of the 202 loci significant 
in any of the disorders, one showed genome-wide signifi-
cance at P < 5e-8 and 122 showed nominal significance at 
P < 0.05 only in the multivariate genome-wide association 
statistics for mental health profiles. This may potentially 
indicate shared but small effects, however, caution is 
warranted given the lack of adjustment for multiple com-
parison in these findings.

Fig. 1  Manhattan plot of multivariate genome-wide association statistics for mental health. Manhattan plot showing the multivariate genome-wide 
association of our multivariate measure of mental health. We identified 10 loci associated with the multivariate genome-wide association statistics for 
mental health.
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Next, we explored the genetic overlap between the 
mental health profiles and the psychiatric disorders 
through the conjunctional false discovery rate (conjFDR) 
[32, 36] which leverages pleiotropy between two pheno-
types to estimate shared genetic determinants. ConjFDR 
allows for the discovery of shared genetic determinants 
even when those loci are not genome-wide significant in 
either of the traits in the analysis. Through conjFDR we 
identified 35 overlapping loci in total between the mul-
tivariate genome-wide association statistics for mental 
health profiles and psychiatric disorders. We found 10 
overlapping loci between the multivariate measure of 
mental health profiles and BIP, 8 overlapping loci with 
both MD and ADHD, 5 overlapping loci with SCZ, and 4 
overlapping loci with autism (see Suppl. Figure 2). FUMA 
identified 89 genes associated with these loci (See Suppl. 
Table  4). We found no overlapping loci between the 
mental health profiles and ANX or PTSD, which may be 
related to the limited power in these GWASs (see Suppl. 
Table 2).

We then calculated the number of shared genetic loci 
between the multivariate genome-wide association sta-
tistics for mental health profiles and the two multivari-
ate measures of the brain functional connectome using 
conjFDR. The GWAS summary statistics from our pre-
vious study of brain function [13]. In short, these two 
summary statistics reflect the multivariate genetic fin-
gerprint of the partial correlation matrix of the connec-
tion strength between different areas of the brain and 
temporal variance inside each brain network [13]. In 
contrast to the prior study in which we identified genetic 

overlap between brain function and psychiatric disor-
ders, we here investigated overlaps with the multivari-
ate genome-wide association statistics for mental health 
to investigate if this approach captures associations not 
revealed through case-control GWAS approaches. Fig-
ure  2 shows two Manhattan plots of the conjunctional 
FDR analyses between both functional connectivity and 
node variance with the multivariate GWAS on the mul-
tivariate genome-wide association statistics for mental 
health profiles. Genetic signal was adequate (See Suppl. 
Figure 3). The multivariate genome-wide association sta-
tistics for mental health profiles shared 18 loci with func-
tional connectivity and 5 with node variance. A full list 
of genes associated with the (in total) 23 unique shared 
loci between the multivariate summary statistics and FC 
is presented in Suppl. Table 5. The number of overlapping 
loci between the brain functional connectome and the 
multivariate genome-wide association statistics for men-
tal health profiles (18 for FC, 5 for node variance) was 
generally larger than the number of shared loci between 
the brain functional connectome and the psychiatric dis-
orders (with the exception of SCZ) identified in our pre-
vious study [13]. When we mapped the genes from these 
loci using FUMA and tested for enrichment in gene-sets 
using the reactome toolbox [31] we found that the genes 
associated with these shared loci are involved in a num-
ber of neurobiologically relevant processes such as axo-
nal growth regulation (NGFR and RHOA) and regulation 
of transcription factors related through MECP2 (MEF2C, 
see Suppl. Table 6).

Fig. 2  Manhattan plot of conjFDR between multivariate genome-wide association statistics for mental health and the brain functional connectome 
Association strength per locus is depicted as q-value from the conjunctional FDR. Values for FC and node variance are shown in the same figure with 
separate colors
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Discussion
In this study we identified a number of loci associated 
with multivariate genome-wide association statistics for 
mental health profiles and found overlapping loci with 
the measures of brain function and psychiatric disorders. 
Using MOSTest we were able to leverage the phenotypic 
overlap between different mental health profiles to iden-
tify new loci associated with a multivariate measure of 
mental health. Genes associated with these loci showed 
regional expression in different parts of the brain (e.g. 
cerebellum, amygdala).

Our analysis using conjFDR revealed a number of 
shared loci and genes between the multivariate genome-
wide association statistics and the psychiatric disorders. 
This demonstrates the shared genetics between psychiat-
ric symptoms regardless of clinical diagnosis, emphasizes 
the utility of using population-level phenotypes to inves-
tigate variance in mental health profiles, and highlights 
the advantage in leveraging pleiotropy between complex 
phenotypes to boost discovery. We found shared genes 
with all but two case-control GWAS (ANX, PTSD), 
which also had the two smallest sample sizes, which may 
reflect insufficient power to detect an effect [37], or may 
indicate the absence of an effect with those disorders. 
The largest overlap was with SCZ, which shared 29 genes 
in the geneset with the multivariate measure. Future 
sample increases in the case-control GWAS may reveal 
shared genetics with other complex traits, including pop-
ulation based mental health phenotypes and brain imag-
ing features.

We also identified a number of overlapping loci 
between mental health profiles and fMRI measures of 
brain function, including 18 shared loci with functional 
connectivity and 5 shared loci with node variance. The 
higher number of shared loci for functional connectiv-
ity might be partially explained by the number of pheno-
types in each composite measure. While the functional 
connectivity GWAS comprises 210 measures, i.e. par-
tial correlations between 21 brain nodes, the node vari-
ance GWAS encompasses only the temporal variance in 
each node. It is possible that the number of phenotypes 
included in the multivariate analysis can affect the dis-
covery [25]. Both the functional connectivity and node 
variance summary statistics had the same sample size 
(N = 30.701). For our analyses this means that the differ-
ence in their overlap with the multivariate genome-wide 
association statistics for mental health is due to either the 
discrepancy in the number of features contained within 
the composite measure, or alternatively because of differ-
ent biological processes underlying both measures. The 
measures differ in that functional connectivity refers to 
the correlation between brain networks (edge strength), 
which is possibly governed by different processes than 
the temporal variance in activity within brain networks. 

Overall, we found a number of genes associated with the 
shared loci that are involved in biologically relevant pro-
cesses such as axonal growth and energy transport (See 
Suppl. Table 6). Although more thorough functional anal-
ysis is necessary, this could suggest that axonal growth 
processes is a shared feature between brain connectivity 
and mental disorders, which would be in line with previ-
ous evidence linking axonal growth with both processes 
independently [38–40].

The two conjunctional analyses with fMRI measures 
and the multivariate genome-wide association statistics 
for mental health each showed a number of overlapping 
loci. Not all shared loci were unique, this can be partially 
explained by the definition of the brain networks in our 
analyses. The functional connectivity and the node vari-
ance measures use the same 21 nodes, and, ultimately, 
the two measures reflect different properties of the same 
time series. We found that the number of overlapping 
loci between the multivariate genome-wide associa-
tion statistics for mental health and the brain functional 
connectome was generally larger than findings from our 
previous study highlighting shared genetic loci between 
psychiatric disorders and the brain functional connec-
tome. This may partly be due to the larger sample size of 
the multivariate measure of mental health, but it could 
also reflect that the multivariate genome-wide associa-
tion statistics capture genetic variance more generally 
related to the brain functional connectome. We found 
little direct overlap between loci of these two GWAS’ 
separately, which highlights the discovery boost advan-
tage of using conjFDR in phenotypes with generally low 
heritability.

The main implication from our findings is that we can 
identify shared genetic variants between a multifactorial 
measure of mental health in an undiagnosed population 
sample and fMRI-based measures of brain functional 
connectivity. Several limitations should be considered. 
First, the data were obtained from a middle-aged and 
older White British population, which limits the general-
izability of the findings. Further, the mental health ques-
tionnaires are self-administered, so the data is vulnerable 
to various response and self-selection biases [41]. We 
excluded individuals with a psychiatric diagnosis in our 
independent component analysis in order to maximalize 
the population variance and to mitigate the influence of a 
smaller number of individuals with a (diagnosed) psychi-
atric condition. This results in a healthier sample, lower 
variance on a number of severe symptom domains and 
possible survivor biases [24]. This bias also extends to the 
imaging data, where participants are reportedly healthier 
than the general population [42]. Further, MOSTest cur-
rently lacks effect direction. This complicates further 
analyses such as genetic correlations that require reli-
able effect directions. Nonetheless, FUMA and MAGMA 
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revealed brain structures associated with these mapped 
genes, such as the cerebellum, amygdala, and various 
parts of the cortex, which have been linked to psychiat-
ric disorders and symptoms. To what degree these shared 
genes can explain shared clinical characteristics such as 
symptoms is an important and relevant issue that needs 
to be answered in future studies.

In conclusion, our multivariate GWAS on 13 men-
tal health symptom profiles showed a number of shared 
genetic loci with two fMRI-measures reflecting brain 
function and connectivity. This research shows that 
genetic overlap between mental health symptom pro-
files and brain functional connectivity can be linked 
to, among other processes, axonal growth regulation 
(through NGFR and RHOA) and regulation of MECP2 
transcription factors (through MEF2C). This provides 
further genetic evidence of an association between brain 
function and mental health traits in the population.
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