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Abstract
Background  Evidence suggests that alterations in serum trace element concentrations are closely associated with 
mental illness. However, ​studies on the relationship between serum copper, zinc, and selenium concentrations and 
depressive symptoms are limited and with controversial results. We aimed to investigate the association between 
serum concentrations of these trace elements and depressive symptoms in US adults.

Methods  Data from the National Health and Nutrition Examination Survey (NHANES) (2011–2016) were used in 
this cross-sectional study. The Patient Health Questionnaire-9 Items (PHQ-9) was employed to assess depressive 
symptoms. Multiple logistic regression was performed to determine the relationship between the serum 
concentrations of copper, zinc, and selenium and depressive symptoms.

Results  A total of 4552 adults were included. Subjects with depressive symptoms had higher serum copper 
concentrations (123.88 ± 1.87) than those without depressive symptoms (116.99 ± 0.86) (p < 0.001). In Model 2, 
weighted logistic regression analysis showed that the second (Q2) quartile of zinc concentrations (odds ratio 
[OR] = 1.534, 95% confident interval [CI]: 1.018 to 2.313) were significantly associated with an increased risk 
of depressive symptoms. Subgroup analysis revealed that the third (Q3) and fourth (Q4) quartiles of copper 
concentrations (Q3: OR = 2.699, 95% CI: 1.285 to 5.667; Q4: OR = 2.490, 95% CI: 1.026 to 6.046) were also positively 
associated with depressive symptoms in obese individuals after controlling for all confounders. However, no 
significant relationship between serum selenium concentrations and depressive symptoms was observed.

Conclusions  Obese US adults with high serum copper concentrations, as well as US adults in general with low serum 
zinc concentrations, were susceptible to depressive symptoms. Nevertheless, the causal mechanisms underlying 
these relationships need to be further explored.
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Introduction
Depression is a common mental disorder characterized 
by high disability and mortality, with a lifetime preva-
lence of 20% [1, 2]. Notably, the number of individuals 
with depression was estimated to rise by 27.6% glob-
ally in 2020 as a result of the coronavirus disease 2019 
(COVID-19) pandemic [3]. ​Moreover, depression is a 
major contributor to the global burden of diseases [4] 
and is predicted to be the second leading cause of bur-
den of disease by 2030 [5]. The risk of depression in the 
general population is increasing along with the lack of 
response of many patients to antidepressant therapy [6]. ​
It is, therefore, important to identify the underlying fac-
tors associated with depression, which may facilitate the 
early identification of high-risk population.

A growing body of evidence suggests that an imbal-
ance of trace elements was contributed to the patho-
genesis and pathophysiology of multiple mental illness 
including depression [7, 8]. Copper (Cu), zinc (Zn), and 
selenium (Se) are essential trace elements that function 
as cofactors or structural constituents of a large num-
ber of enzymes and other important proteins. ​Copper 
is a key component of ceruloplasmin metalloproteinase 
and copper/zinc superoxide dismutase, which are crucial 
for the antioxidant defense system [9]. Copper imbal-
ance may cause oxidative stress and damage neurons, 
thereby increasing the risk of depression [10]. Addition-
ally, copper influences depression-related neurotrans-
mitters, such as gamma aminobutyric acid (GABA) and 
glutamate [11–13]. Our previous study also identified a 
relationship between serum copper concentrations and 
neurobiochemical metabolism in depressed patients 
[14]. Regarding zinc, it is a modulator of synaptic activ-
ity, neuronal metabolism and plasticity; dysregulated 
zinc homeostasis has been linked to a number of neu-
rological disorders, including depression [15]. Animal 
experiments have shown that zinc deficiency could lead 
to depressive-like behaviors and reduce the antidepres-
sant-like effect, which involved decreased serum zinc 
concentrations [16, 17]. Low serum zinc concentrations 
contributed to elevated serum corticosterone levels in 
rats with depressive-like behaviors, while hyperactiva-
tion of the hypothalamic-pituitary-adrenal (HPA) axis 
seemed to underlie depression [16, 18]. ​Normalizing 
HPA hyperactivity could improve depressive-like behav-
iors in chronic unpredictable mild stress (CUMS) rats 
[19]. Another critical role for zinc is its anti-oxidative and 
anti-inflammatory function in the central nervous system 
[20, 21]. Moreover, zinc regulates glutamate homeostasis 
in a concentration-dependent manner, promoting gluta-
mate release at lower concentrations [22, 23]. It is well 
known that inflammation, oxidative stress and glutamate 
homeostasis are mechanistically linked to depression 
[12, 24]. Furthermore, zinc may also affect depression 

through its interactions with monoamine neurotransmit-
ters (such as dopamine, serotonin, or norepinephrine) 
[25]. It is known that selenium and selenium-containing 
proteins (e.g., glutathione peroxidase) are antioxidants 
[26, 27]. ​Similarly, selenium has anti-inflammatory effects 
[28]. An experimental animal study has revealed that 
selenium-containing protein can ameliorate depressive-
like behavior by abrogating inflammation and oxidative 
stress [29]. ​Furthermore, a recent meta-analysis sug-
gested an inverse association between dietary selenium 
intake and depression [30]. Accordingly, copper, zinc and 
selenium have been implicated in the pathogenesis of 
depression.

It is noteworthy that the concentrations of copper [31], 
zinc [32], and selenium [33] in peripheral blood are cor-
related with depression. However, studies on the relation-
ship between peripheral blood concentrations of copper, 
zinc, and selenium and depression are limited, and the 
results are controversial. Besides, most studies have con-
centrated on the relationship between copper and zinc 
concentrations and depression, but few have investi-
gated selenium concentrations. Prior studies found that 
patients with depression tended to have higher serum 
copper concentrations and lower serum zinc concentra-
tions compared to healthy controls [8, 14, 34]. However, 
other researchers established that serum copper concen-
trations in depressed patients were equal or lower than in 
healthy volunteers [35, 36]. Similarly, no significant dif-
ference in serum zinc concentrations was also observed 
between depressed and non-depressed control subjects 
in other studies [37, 38]. With regard to selenium, while 
two studies have found no association between serum 
selenium concentrations and depressive symptomol-
ogy in Iranian adults and Chinese older adults [39, 40], 
a study conducted in Australian young adults found a 
non-linear association [41]. Recently, a meta-analysis 
found no difference in the serum selenium concentra-
tions between depressed and non-depressed participants 
[33]. There is, however, a limitation to these studies in 
terms of sample size. Further, our previous preclinical 
and clinical studies also suggested that copper induced 
depressive-like behaviors in rats [42], and that the 
serum copper concentrations were significantly higher 
in patients with depression than in normal controls [14, 
43]. Nevertheless, external validation by clinical studies 
with large sample sizes is required to confirm our find-
ings. In addition, a large sample study demonstrated that 
dietary copper, zinc, and selenium intake were associated 
with depression [44], and the risk of depression varied by 
intake levels of these trace elements [30, 45]. However, 
it is unknown whether the risk of depression also differs 
by the serum concentrations of these trace elements, as 
studies have shown that dietary intake of trace elements 
does not totally reflect their blood concentrations [46, 
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47]. This means that even though studies have explored 
the dietary intake of these trace elements, further 
research into their serum concentrations is warranted.

To address the aforementioned issues, we conducted a 
population-based cross-sectional study to investigate the 
association between the serum concentrations of these 
trace elements (copper, zinc, selenium) and depressive 
symptoms in the US adults (≥ 20 years) by utilizing data 
from the National Health and Nutrition Examination 
Survey (NHANES) 2011–2016.

Materials and methods
Study design and population
The NHANES is a cross-sectional population-based 
survey that utilizes a complex, stratified, multistage 
sampling design, administered by the National Centers 
for Health Statics (NCHS). Its purpose is to assess the 
health and nutritional status of children and adults in 
the United States. In the NHANES program, household 
interviews and physical examinations are used to collect 
data from a nationally representative sample every two 
years. The survey protocol was approved by the NCHS 
Ethics Review Board; the informed consent of all survey 
participants was obtained (https://www.cdc.gov/nchs/
nhanes/index.htm).

Data from three NHANES cycles (2011–2012, 2013–
2014, and 2015–2016) which contain information on 

demographics, depressive symptoms, and serum trace 
elements were combined and analyzed. A total of 29,902 
participants were involved in the NHANES between 
2011 and 2016. We then removed 12,854 samples under 
the age of 20. The remaining 17,048 adult participants 
aged 20 years and over were selected for analysis. A 
subsample of 5469 adult participants completed both 
household interviews and medical examinations was eli-
gible for this study. Female participants who were preg-
nant (n = 102) were excluded, as pregnancy might have 
an effect on serum copper and zinc concentrations [48]. 
We also excluded participants with incomplete depres-
sive symptoms questionnaire (n = 605), and those with 
missing values of trace elements (n = 316). Finally, 4552 
participants aged 20 years and over (2311 male and 2241 
female) were included in the current study (Fig. 1).

Depressive symptoms assessment
The Patient Health Questionnaire-9 Items (PHQ-9) was 
employed to assess depressive symptoms in NHANES. 
This instrument is widely used to evaluate individuals’ 
mental health and screen for depressive symptoms over 
the past two weeks. The PHQ-9 consists of nine items, 
each of which is scored from 0 (not at all) to 3 (nearly 
every day). The overall PHQ-9 score ranges from 0 to 27, 
with 5, 10, 15, and 20 signifying mild, moderate, mod-
erately severe, and severe depressive symptoms, respec-
tively. The present study defined depressive symptoms as 
a PHQ-9 score of 10 or above. This cut-off value has an 
88% sensitivity and 88% specificity for major depressive 
symptoms [49].

Serum trace elements test
Serum copper, zinc and selenium concentrations were 
measured by inductively coupled plasma dynamic 
reaction cell mass spectrometry (ICP-DRC-MS). The 
NHANES laboratory methodology is described in detail 
at https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/
CUSEZN_I.htm. All results of these serum trace ele-
ments match the Division of Laboratory Sciences’ qual-
ity control and quality assurance performance criteria 
for accuracy and precision, similar to the Westgard rules 
[50]. The lower limit of detection (LLOD) for serum cop-
per, selenium, and zinc are 2.5  µg/dL, 4.5  µg/dL, and 
2.9 µg/dL, respectively. For analytes with analytic results 
below the LLOD, an imputed fill value was placed in the 
analyte results field. The value is the LLOD divided by the 
square root of 2 (LLOD/√2).

Covariates
The demographics characteristics were obtained from 
household interview and mobile examination center 
(MEC) interview by trained interviewers using Computer-
Assisted Personal Interview (CAPI) system. The present 

Fig. 1  Flow chart for recruiting participants for this study, NHANES (2011–
2016). Abbreviations: NHANES, National Health and Nutrition Examination 
Survey; n, sample size; PHQ-9, the Patient Health Questionnaire-9 Items
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study included age, gender, race (Mexican American, Non-
Hispanic White, Non-Hispanic Black, Other Hispanic, 
and Other race), educational level (less than 9th grade, 
9–11 grade, high school graduate/GED or equivalent, 
some college or AA degree, college or above), marital sta-
tus (married, widowed, divorced, separated, unmarried 
and cohabitation), family size (total number of people in 
the family), annual family income, body mass index (BMI), 
smoking and alcohol drinking, diabetes and hypertension 
condition. Alcohol drinking was defined as having 4/5 or 
more drinks every day. A drink is equivalent to 12 ounces of 
beer, 5 ounces of wine or 1.5 ounces of liquor. Smoking was 
described as smoking at least 100 cigarettes in a lifetime. 
BMI was calculated as weight divided by height squared 
and categorized as not overweight/obese (BMI < 25 kg/m2), 
overweight (BMI ≥ 25  kg/m2 and < 30  kg/m2), and obese 
(BMI ≥ 30  kg/m2). The history of hypertension and diabe-
tes stemmed from participants’ self-reported physician 
diagnoses.

Statistical analysis
We conducted all statistical analyses using R version 
4.1.3 to accommodate the complex sampling design of 
the NHANES. Three 2-year survey cycles of NHANES 
(2011–2012, 2013–2014, and 2015–2016) were com-
bined, with new sample weights constructed before anal-
ysis (see Supplementary Material). New sample weights 
were used in all analyses.

Continuous and categorical variables are expressed as 
mean ± standard deviation (SD) and count (n) with per-
centage (%), respectively. The missing values of covariates 
were imputed using multiple imputation. Comparisons of 
the demographic data between the two groups (depres-
sive symptoms vs. non-depressive symptoms) were 
performed using either Student’s t-test or chi-square 
test. Additionally, serum copper, zinc, and selenium 
concentrations were divided into quartiles (quartile 1 
(Q1): < 25%, quartile 2 (Q2): ≥ 25–50%, quartile 3 (Q3): 
≥ 50–75%, and quartile 4 (Q4): ≥ 75%). Using the low-
est quartile (Q1) as the reference group, univariate and 
multivariate logistic regression models were utilized to 
investigate relationships between these trace elements 
and depressive symptoms. The odds ratio (OR) and 95% 
confidence interval (CI) were provided. We employed 
three models in these analyses: Crude Model, Model 1, 
and Model 2. Crude Model was adjusted for no covari-
ates. Model 1 adjusted for age, gender, and race. Model 2 
adjusted for age, gender, race, educational level, marital 
status, family size, family income, BMI, smoking, alco-
hol drinking, diabetes, and hypertension. We calculated 
P for trend by entering the median value of each cate-
gory of serum copper, selenium, and zinc concentrations 
as continuous variables in the models. As the observed 
association between serum copper concentrations and 

depressive symptoms in both Crude Model and Model 
1 was no longer significant in Model 2, P for interaction 
between serum copper and the covariates in Model 2 was 
performed to identify potential moderating variables. 
Subgroup analyses of these potential moderators would 
then be conducted to more precisely identify the sub-
groups that exhibited an association between serum cop-
per concentrations and depressive symptoms in Model 
2. Moreover, we performed two sensitivity analyses to 
verify the stability of the association between serum zinc 
concentrations and depressive symptoms. First, multi-
linear regression analysis was performed with PHQ-9 
scores as the dependent variable and serum zinc concen-
trations as the independent variable. Second, an E-value 
was computed to estimate the effect of unmeasured con-
founders on the association between serum zinc con-
centrations and depressive symptoms [51]. The lowest 
possible E-value is 1. The higher the E-value, the more 
unmeasured confounding factors are needed to explain 
away the observed association. All P values less than 0.05 
(two-sided) were considered statistically significant.

Results
Basic characteristics of participants
The detailed characteristics of the study samples are pre-
sented in Table  1. Overall, 4552 subjects were included 
in the presents study, of whom 2311 (50.77%) were male 
and 2241 (49.23%) female. All subjects were adults above 
the age of 20: the age of 1986 (43.63%) subjects ranged 
between 20 and 45 years, and the age of 1841 (40.44%) 
subjects ranged between 46 and 69 years; the rest of the 
subjects (15.93%) were over the age of 69. Non-Hispanic 
whites made up the majority of participants (39.81%), 
followed by non-Hispanic blacks (21.33%), other races 
(14.52%), Mexican-Americans (13.55%), and other non-
Hispanic (10.79%). The total numbers of drinkers and 
smokers were 695 (15.27%) and 1994 (43.80%), respec-
tively. In addition, 1678 (36.86%) participants were diag-
nosed with diabetes and 763 (16.76%) participants with 
hypertension. Serum copper, zinc, and selenium concen-
trations were 117.50 ± 28.85  µg/dL, 82.21 ± 15.23  µg/dL, 
and 130.41 ± 18.65 µg/L, correspondingly.

The prevalence of depressive symptoms (PHQ-9 ≥ 10) 
among all participants was 8.63%. Participants who 
were female (10.44%), smoker (12.29%), alcohol drinker 
(17.41%), and had a history of diabetes (14.29%) or 
hypertension (12.28%), were more likely to suffer from 
depressive symptoms. In addition, depressive symp-
toms were most prevalent among participants aged 
46–69 (11.79%), followed by those aged 20–45 (6.70%) 
and over 69 (5.93%), with a statistically significant dif-
ference (p < 0.001). In terms of race, non-Hispanic 
whites (8.89%) had lower rates of depressive symptoms 
than non-Hispanic blacks (9.17%) and other Hispanics 
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n (%) Non-depressive group
(PHQ-9 < 10, %)

Depressive group
(PHQ-9 ≥ 10, %)

P value

All participants 4552 (100.00) 4159 (91.37) 393 (8.63) ——

Gender 0.001
  Male 2311 (50.77) 2152 (93.12) 159 (6.88)

  Female 2241 (49.23) 2007 (89.56) 234 (10.44)

Age, years < 0.001***

  20–45 1986 (43.63) 1853 (93.30) 133 (6.70)

  46–69 1841 (40.44) 1642 (89.19) 217 (11.79)

  > 69 725 (15.93) 682 (94.07) 43 (5.93)

Age, years (SD) 48.22 (17.03) 48.21 (17.14) 48.32 (15.72) 0.918

Race 0.028*

  Mexican American 617 (13.55) 572 (92.71) 45 (7.29)

  Other Hispanic 491 (10.79) 433 (88.19) 58 (11.81)

  Non-Hispanic White 1812 (39.81) 1651 (91.11) 161 (8.89)

  Non-Hispanic Black 971 (21.33) 882 (90.83) 89 (9.17)

  Other Race 661 (14.52) 621 (93.95) 40 (6.05)

Educational level, years < 0.001***

  < 9 438 (9.62) 377 (86.07) 61 (13.93)

  9–11 575 (12.68) 491 (85.39) 84 (14.61)

  12 987 (21.68) 896 (90.78) 91 (9.22)

  > 12 2552 (56.06) 2395 (93.85) 157 (6.15)

Marital status < 0.001***

  Married 2275 (49.98) 2141 (94.11) 134 (5.89)

  Widowed 335 (7.36) 298 (88.96) 37 (11.04)

  Divorced 496 (10.90) 421 (84.88) 75 (15.12)

  Separated 134 (2.94) 110 (82.09) 24 (17.91)

  Unmarried 927 (20.36) 842 (90.83) 85 (9.17)

  Cohabitation 385 (8.46) 347 (90.13) 38 (9.87)

Family size 0.125

  1 1071 (23.53) 950 (88.70) 121 (11.30)

  2–4 2536 (55.71) 2340 (92.27) 196 (7.73)

  > 4 945 (20.76) 869 (91.96) 76 (8.04)

Family income ($) < 0.001***

  < 15,000 732 (16.08) 602 (82.24) 130 (17.76)

  15,000–44,999 1823 (40.05) 1639 (89.91) 184 (10.09)

  45,000–99,999 1247 (27.39) 1186 (95.11) 61 (4.89)

  ≥ 100,000 750 (16.48) 732 (97.60) 18 (2.40)

Body mass index (BMI) 0.029*

  < 25 kg/m2 1321 (29.02) 1232 (93.26) 89 (6.74)

  25 to < 30 kg/m2 1476 (32.43) 1373 (93.02) 103 (6.98)

  ≥ 30 kg/m2 1755 (38.55) 1554 (88.55) 201 (11.45)

Smoking < 0.001***

  Yes 1994 (43.80) 1749 (87.71) 245 (12.29)

  No 2558 (56.20) 2410 (94.21) 148 (5.79)

Alcohol drinking < 0.001***

  Yes 695 (15.27) 574 (82.59) 121 (17.41)

  No 3857 (84.73) 3589 (93.05) 268 (6.95)

Diabetes < 0.001***

  Yes 763 (16.76) 654 (85.71) 109 (14.29)

  No 3789 (83.24) 3505 (92.50) 284 (7.50)

Hypertension < 0.001***

  Yes 1678 (36.86) 1472 (87.72) 206 (12.28)

  No 2874 (63.14) 2687 (93.49) 187 (6.51)

Trace element (SD)

Table 1  Characteristics of participants by depressive status, NHANES (2011–2016). Weighted
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(11.81%) (p = 0.028). Besides, participants with poor 
education (< 9 years, 13.93%; 9–11 years, 14.61%), low 
family income (< 15,000 $, 17.76%; 15,000–44,999 $, 
10.09%), divorce (15.12%), separation (17.91%), or obesity 
(11.45%) exhibited statistically significant higher rates 
of depressive symptoms. The subjects in the depressive 
group (123.88 ± 26.05  µg/dL) had higher serum copper 
concentrations than those in the non-depressive group 
(116.99 ± 29.00 µg/dL) (p < 0.001). However, no significant 
between-group differences (depressive group vs. non-
depressive group) were observed in serum zinc and sele-
nium concentrations.

Regression analysis of the association between serum 
trace elements and depressive symptoms
The results of the multiple logistic regression analysis of 
the association between serum copper, zinc, and selenium 

concentrations and depressive symptoms are displayed in 
Table  2. Serum copper concentrations in Q3 (OR = 2.070, 
95% CI: 1.312 to 3.264) and Q4 (OR = 2.193, 95% CI: 1.320 
to 3.645) were significantly related to an increased risk of 
depressive symptoms in Crude Model (P for trend < 0.001). 
The results remained robust and significant after adjust-
ments for age, gender, and race in Model 1(Q3: OR = 1.925, 
95% CI: 1.186 to 3.124; Q4: OR = 1.932, 95% CI: 1.090 to 
3.424; P for trend = 0.002). However, after adjusting for all 
covariables in Model 2, these associations vanished (all 
p > 0.05). Surprisingly, we discovered that serum zinc con-
centrations in Q2 were positively associated with depressive 
symptoms in all three logistic regression models, with signif-
icant and stable results (Crude Model: OR = 1.577, 95% CI: 
1.078 to 2.307; Model 1: OR = 1.593, 95% CI: 1.089 to 2.329; 
Model 2: OR = 1.566, 95% CI: 1.037 to 2.363). In Model 2, 
the OR for depressive symptoms gradually decreased from 

Table 2  Weighted odds ratios (95% confidence intervals) for depressive symptoms across quartiles of copper, zinc, and selenium, 
NHANES (2011–2016)

Crude Model Model 1 Model 2
Cu (µg/dL)

  Q1 (< 99.20) ref ref ref

  Q2 (99.20–114.55) 1.137 (0.631, 2.046) 1.099 (0.595, 2.033) 0.876 (0.449, 1.711)

  Q3 (114.56–133.60) 2.07 (1.312, 3.264)** 1.925 (1.186, 3.124)** 1.149 (0.676, 1.955)

  Q4 (>133.60) 2.193 (1.32, 3.645)** 1.932 (1.090, 3.424)* 1.037 (0.539, 1.993)

  P for trend < 0.001 0.002 0.716

Se (µg/L)

  Q1 (< 118.40) ref ref ref

  Q2 (118.40–128.40) 0.866 (0.608, 1.232) 0.894 (0.625, 1.281) 1.003 (0.679, 1.483)

  Q3 (128.41–139.80) 0.727 (0.459, 1.151) 0.768 (0.481, 1.226) 0.9 (0.544, 1.489)

  Q4 (>139.80) 0.91 (0.655, 1.265) 1 (0.705, 1.418) 1.201 (0.817, 1.765)

  P for trend 0.548 0.924 0.430

Zn (µg/dL)

  Q1 (< 71.30) ref ref ref

  Q2 (71.30–80.40) 1.577 (1.078, 2.307)* 1.593 (1.089, 2.329)* 1.566 (1.037, 2.363)*

  Q3 (80.41–90.40) 0.961 (0.562, 1.644) 0.992 (0.583, 1.686) 1.012 (0.564, 1.816)

  Q4 (> 90.40) 0.870 (0.581, 1.301) 0.942 (0.623, 1.424) 0.871 (0.555, 1.369)

  P for trend 0.129 0.285 0.221
Crude Model is the unadjusted model

Model 1 adjusted for age, gender and race

Model 2 adjusted for age, gender, race, educational level, marital status, family size, family income, BMI, smoking, alcohol drinking, diabetes and hypertension
*p < 0.05, **p < 0.01, ***p < 0.001

Abbreviations: Q1, the first quartile; Q2, the second quartile; Q3, the third quartile; Q4, the fourth quartile; Cu, copper; Zn, zinc; Se, selenium; NHANES, National Health 
and Nutrition Examination Survey; ref, reference

n (%) Non-depressive group
(PHQ-9 < 10, %)

Depressive group
(PHQ-9 ≥ 10, %)

P value

  Copper (Cu, µg/dL) 117.50 (28.85) 116.99 (29.00) 123.88 (26.05) < 0.001***

  Selenium (Se, µg/L) 130.41 (18.65) 130.55 (18.64) 128.75 (18.71) 0.122

  Zinc (Zn, µg/dL) 82.21 (15.23) 82.32 (15.35) 80.85 (13.60) 0.158
*p < 0.05, **p < 0.01, ***p < 0.001

Abbreviations: SD: Standard deviation; n, sample size; NHANES, National Health and Nutrition Examination Survey; PHQ-9, the Patient Health Questionnaire-9 Items

Table 1  (continued) 
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the lowest to the highest serum zinc quantiles, but this ten-
dency was not statistically significant (P for trend = 0.221). 
In contrast, no correlations were observed between serum 
selenium concentrations and depressive symptoms.

Subgroup analysis
To analyze for the potential factors influencing the corre-
lation between serum copper concentrations and depres-
sive symptoms, we conducted subgroup analysis. First of 
all, the interactions between serum copper concentra-
tions and all covariates included in Model 2 were calcu-
lated, and the results are shown in Table S1. In Model 2, 
we found that the interactions between copper and BMI, 
smoking, or hypertension were related to depressive 
symptoms. Therefore, we further conducted subgroup 
analysis of the association between depressive symptoms 
and serum copper concentrations stratified by the BMI, 
smoking, and hypertension. In the subgroup analysis of 
BMI, individuals with serum copper concentrations in 
Q3 and Q4 had the highest OR of depressive symptoms 
when their BMI was higher than 30  kg/m2 in Model 2 
(Q3: OR = 2.699, 95% CI: 1.285 to 5.667; Q4: OR = 2.490, 
95% CI: 1.026 to 6.046; P for trend = 0.028) (Table  3). 
However, no significant results were observed in Model 

2 in the subgroup analysis of the smoking and hyperten-
sion (all p > 0.05) (Table S2, S3). These findings suggested 
that BMI might mainly affect the copper-depressive 
symptoms relationship.

Sensitivity analysis
To validate the robustness of the relationship between 
serum zinc concentrations and depressive symptoms, 
two sensitivity analyses were performed. The main rea-
sons for these analyses were as follows. On the one hand, 
dichotomizing PHQ-9 scores into depressive symptoms 
and non-depressive symptoms just demonstrated a sen-
sitivity of approximately 88%. However, utilizing a linear 
regression model with PHQ-9 scores as a continuous 
variable may enhance the reliability of the outcomes. On 
the other hand, despite controlling for numerous covari-
ates in Model 2, the potential influence of unmeasured 
covariates on the outcomes remained unclear. To esti-
mate the effect of unmeasured or unknown confounders, 
the E-value was calculated. Controlling for all covari-
ates, there was an inverse correlation between PHQ-9 
scores and serum zinc concentrations (ß = -0.013, 95% 
CI: -0.022 to -0.005, p = 0.004) (Table S4), demonstrat-
ing that depressive symptoms might be more likely to be 

Table 3  Weighted odds ratios (95% confidence intervals) for depressive symptoms by subgroup of BMI according to quartiles of 
serum copper concentrations, NHANES (2011–2016)

Crud Model Model 1 Model 2
< 25 kg/m2

Cu (µg/dL)

  Q1 (< 99.20) ref ref ref

  Q2 (99.20–114.55) 2.028 (0.878, 4.687) 2.609 (1.076, 6.327)* 1.825 (0.703, 4.732)

  Q3 (114.56–133.60) 1.230 (0.483, 3.133) 1.730 (0.624, 4.797) 0.735 (0.228, 2.365)

  Q4 (> 133.60) 1.377 (0.611, 3.104) 2.020 (0.769, 5.309) 0.877 (0.325, 2.363)

  P for trend 0.683 0.221 0.348

25 to < 30 kg/m2

Cu (µg/dL)

  Q1 (< 99.20) ref ref ref

  Q2 (99.20–114.55) 0.656 (0.293, 1.470) 0.616 (0.269, 1.409) 0.446 (0.185, 1.075)

  Q3 (114.56–133.60) 1.572 (0.720, 3.432) 1.422 (0.622, 3.252) 0.799 (0.355, 1.798)

  Q4 (> 133.60) 1.139 (0.525, 2.475) 0.928 (0.365, 2.361) 0.528 (0.212, 1.311)

  P for trend 0.336 0.728 0.313

≥ 30 kg/m2

Cu (µg/dL)

  Q1 (< 99.20) ref ref ref

  Q2 (99.20–114.55) 1.216 (0.601, 2.460) 1.089 (0.531, 2.236) 0.979 (0.437, 2.196)

  Q3 (114.56–133.60) 4.032 (2.186, 7.438)*** 2.997 (1.535, 5.849)** 2.699 (1.285, 5.667)*

  Q4 (> 133.60) 4.779 (2.558, 8.930)*** 3.113 (1.410, 6.869)** 2.490 (1.026, 6.046)*

  P for trend < 0.001 0.004 0.028
Crude Model is the unadjusted model

Model 1 adjusted for age, gender and race

Model 2 adjusted for age, gender, race, educational level, marital status, family size, family income, smoking, alcohol drinking, diabetes and hypertension
*p < 0.05, **p < 0.01, ***p < 0.001

Abbreviations: BMI, body mass index; Q1, the first quartile; Q2, the second quartile; Q3, the third quartile; Q4, the fourth quartile; Cu, copper; NHANES, National 
Health and Nutrition Examination Survey; ref, reference
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detected in subjects with low serum zinc concentrations. 
In addition, the E-value for the effect estimate (confi-
dence interval) of the relationship between low serum 
concentrations of zinc (Q2) and depressive symptoms in 
Model 2 was 1.81 (1.15). The E-value suggested that our 
results were robust unless an unmeasured confounder 
had a relative risk greater than 1.81 with both serum zinc 
concentrations and depressive symptoms.

Discussion
To our best knowledge, few studies have investigated the 
associations between serum copper, zinc, and selenium 
concentrations and depressive symptoms. This is the first 
study to investigate the association of these serum trace 
elements with depressive symptoms in US adult popula-
tion using NHANES data (2011–2012, 2013–2014, and 
2015–2016). Our results demonstrated two main find-
ings. First, serum copper concentrations were elevated in 
US adults with depressive symptoms, and only in obese 
individuals were the two highest quartiles (Q3 and Q4) 
of copper concentrations associated with an increased 
risk of depressive symptoms. Second, lower serum zinc 
concentrations (Q2) were also consistently and positively 
associated with depressive symptoms, although no differ-
ences were found in serum zinc concentrations between 
the depressive and non-depressive groups. These findings 
provide evidence for the relationships of serum copper 
and zinc concentrations with depressive symptoms.

Our study revealed that the serum copper concentra-
tions in the depressive group were higher than those in the 
non-depressive group, which was consistent with our ear-
lier finding [14]. Similarly, a recent meta-analysis based on 
observational research also established higher serum cop-
per concentrations in patients with depression [31]. Besides, 
copper exposure could induce depressive-like behavior in 
rat model [42, 52]. A complex mechanism of interaction 
might exist between serum copper and depressive symp-
toms. On the one hand, depression has been identified as a 
pro-inflammatory state [53]. It activates the inflammatory 
response system [54] and may further promote elevated 
levels of serum copper [55, 56]. On the other hand, depres-
sion is strongly associated with oxidative stress. Evidence 
implies that patients with depression have excessive levels 
of reactive oxygen species (ROS), accompanied by elevated 
superoxide dismutase (SOD) activity [10]. ​Besides, copper is 
not only a component of copper-zinc superoxide dismutase 
(Cu/Zn-SOD), but also can regulate Cu/Zn-SOD activity 
[57]. Meanwhile, copper and its complexes are also known 
to have antioxidant activities [58]. Thus, elevated serum 
copper concentrations may be related to increased antioxi-
dant activity in depressed patients. In addition, our previ-
ous investigation showed that the mRNA expression levels 
of ATPase copper-transporting alpha (ATP7A) decreased 
in patients with major depression [59]. ​ATP7A is known 

to regulate copper homeostasis, and its abnormal expres-
sion may increase serum copper concentrations. In con-
trast, excessive copper exposure could also alter the levels 
of many cytokines and cause inflammatory responses [60]. 
Notably, peripheral inflammation was found to increase the 
permeability of the blood-brain barrier (BBB) [61], resulting 
in disrupted brain homeostasis and depression. Otherwise, 
excessive peripheral blood copper could directly destroy 
BBB [62], increasing brain copper levels as copper enters 
the brain mainly through BBB [63]. In turn, excessive brain 
copper catalyzed the formation of ROS [9, 64], increased 
the neurotoxic effects of oxidative stress, and induced neu-
ronal oxidative damage [65], which could contribute to 
depression [10]. Additionally, copper release was associ-
ated with N-methyl-D-aspartate (NMDA) receptor activa-
tion [66]. Our previous research showed that memantine 
(NMDA receptor antagonist) treatment not only decreased 
serum copper levels, but also improved the depressive-like 
behaviors induced by corticosterone and copper [42]. That 
is, glutamine activity may partially explain the relation-
ship between elevated serum copper concentrations and 
depressive symptoms. Copper also binds to serotonin and 
induces oxidation and structural modification in serotonin, 
especially at its high concentrations, ultimately resulting in 
neurotoxicity and serotonergic dysfunction [67–69]. Hence, 
serotonergic system dysregulation may be related to depres-
sive symptoms induced by high copper concentrations [70]. 
High serum copper concentrations may also induce depres-
sion by influencing neurobiochemical metabolism [14].

Moreover, this study revealed that obese individu-
als with high copper concentrations were more likely to 
have depressive symptoms. Previous studies have found 
that obesity was associated with higher depression preva-
lence [71, 72] and obesity prevalence was associated with 
depression severity [73, 74]. In addition, BMI was posi-
tively linked not only to depression [75] but also to serum 
copper concentrations [76], especially in regards to the 
association of the increased odds of obesity with elevated 
serum copper concentrations [77]. Taken together, obe-
sity may be a moderator in the relationship between 
depression and high copper concentrations. Notably, 
depression was accompanied by inflammation [54]; 
inflammatory processes could also lead to copper accu-
mulation [78]. Whereas, obese individuals tended to be 
in an inflammatory state [79]. Obesity, thus, may induce 
depression by affecting copper metabolism through 
inflammation [71, 80]. Meanwhile, the interaction of 
inflammatory and oxidative stress may play an important 
role in this process. Copper, increased by obesity, could 
directly raise the levels of reactive oxygen species (ROS) 
and reduced the activities of antioxidant enzymes, fur-
ther activating the microglial ROS/nuclear factor-kappa 
B (NF-κB) pathway to secrete inflammatory products, 
leading to neuroinflammatory response and neuronal 
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apoptosis [81, 82], thereby inducing depression [83]. ​Fur-
thermore, cortisol reactivity mediated the depression-
obesity relationship [84]. The interplay between cortisol 
and inflammation might also be the underlying mecha-
nism for the relationship between copper and depression 
in obese subjects [85]. Thus, it is possible that maintain-
ing relatively low serum copper concentrations in obese 
populations may be beneficial for reducing the risk of 
depressive symptoms, but further investigations are 
needed to provide evidence to this speculation. However, 
weight control may be more conducive to physical and 
mental health. Nevertheless, the underlying causal mech-
anism of depressive symptoms in association with serum 
copper concentrations in obese subjects is still unclear.

In addition, the current study suggested that depressed 
subjects appeared to have lower serum zinc concentra-
tions than non-depressed subjects, but this difference 
was not statistically significant. This observed trend was 
similar to previous findings of a significant decrease in 
serum zinc levels in patients with depression [35, 86, 
87]. There are several possible reasons for this unre-
markable discrepancy of the current study. First, there 
was a difference in the study subjects. In the present 
study, participants with depressive symptoms were not 
depressed patients; their depressive symptoms might be 
milder in severity and shorter in duration than patients 
with depression. A negative correlation was also found 
between serum zinc concentrations and depressive 
symptoms severity in the present study. Therefore, we 
speculated that serum zinc concentrations did not fall 
significantly because the present study subjects were not 
patients diagnosed with major depression with major 
depression with severe depressive symptoms. Second, 
there might be regional and ethnic differences in subjects 
between studies. Only US populations were included in 
the present study. Genetic differences might exist among 
races, and differences in dietary structure and risk of zinc 
exposure might exist among regions. Third, the sample 
size in the present study varied widely between depres-
sive group and non-depressive group.

Furthermore, we noticed that lower serum zinc con-
centrations were associated with depressive symptoms. 
This result was robust in all three regression models. Our 
findings were consistent with the ones of previous stud-
ies [86, 87], which indicated that individuals ​with lower 
serum zinc concentrations within the physiologic range 
may be more susceptible to depressive symptoms. Col-
lectively, lower serum zinc concentrations may be a risk 
factor of depressive symptoms. Zinc was considered to 
interact with the serotonin system [88] and BDNF [89]. 
Hence, lower serum zinc concentrations could compro-
mise serotonin and BDNF activity and diminish neuro-
genesis, which may be the pathophysiology of depression 
[25]. Zinc is a modulator of excitatory (glutamate) and 

inhibitory (GABA) neurotransmitters [90]: zinc binds 
to GluN2A subunit via zinc transporter 1 and inhibits 
N-methyl-d-aspartic acid (NMDA) receptor function 
[91]; zinc activates the zinc-sensing receptor GPR39 to 
regulate glutamate and GABA, maintaining the brain’s 
excitatory-inhibitory balance [23]. Consequently, ​reduced 
zinc concentrations may trigger glutamate release and 
elicit neuronal excitotoxicity, which contributes to 
depression [92]. Notably, the synergistic interaction 
among low serum zinc concentrations, GPR39, BDNF, 
and serotonergic system may be an underlying mecha-
nism of depression [88, 89]. Additionally, it has been 
demonstrated that inflammation and oxidative stress are 
implicated in the pathophysiology of depression [24, 93]. 
Zinc deficiency could activate the immune-inflammatory 
response system. Low serum zinc concentrations were 
usually accompanied by raised immuno-inflammatory 
indicators like CD4+/CD8 + T-cell ratio and interleu-
kin 6 in depressed patients [94, 95]. Zinc deficiency also 
triggered oxidative stress, further activating oxidant-
sensitive transcription factors such as NF-κB and acti-
vator protein-1 (AP-1), thereby causing DNA damage 
and neuronal apoptosis, ultimately leading to depression 
[96–98]. Therefore, low serum zinc concentrations may 
cause depression through the interaction of inflamma-
tory cytokines and oxidative products. ​Moreover, HPA 
axis hyperactivity has been demonstrated in depression 
and is associated with decreased serum zinc concentra-
tions [16, 99]. There is also a close association between 
cortisol concentrations and immune/inflammatory 
markers in patients with depression [100, 101]. ​Thus, 
low zinc concentrations may promote depression via 
the interplay between immune/inflammatory and HPA 
axis functions. Besides, an animal study found that zinc 
deficiency caused phospholipid-protein imbalance lead-
ing to depression due to the effect on phospholipids and 
proteins [102]. Thus, maintaining relatively high serum 
zinc concentrations within the normal range may be 
associated with a decreased risk of depressive symptoms. 
Dietary zinc intake or zinc supplementation may also 
help improve depressive symptoms risk [103, 104]. How-
ever, the causal mechanisms connecting low serum zinc 
concentrations and depressive symptoms remain elusive.

The present study did not find group differences in 
serum selenium concentrations between individuals 
with and without depressive symptoms, nor an asso-
ciation between serum selenium concentrations and 
depressive symptoms. These findings were in agreement 
with previously reported results [33, 105]. Accordingly, 
there is insufficient evidence to support an association 
between selenium status and depressive symptoms, and 
further studies are needed. Nevertheless, selenium, serv-
ing as an antioxidant, can help protect the central ner-
vous system from free radical damage [106]; selenium 
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supplementation could alleviate depressive symptoms 
[107].

Several limitations exist in this study. First, this study was 
cross-sectional, and, therefore, causal conclusions could not 
be drawn. Although we provided explanations of the bio-
logical mechanisms in the discussion section, animal trials 
and prospective cohort studies should be conducted to con-
firm the causal direction of the relationship between serum 
copper or zinc levels and depressive symptoms. Second, it is 
still possible that residual confounding factors (e.g., dietary 
or physical activity) have influenced our results, although a 
large number of covariates have been controlled. Third, no 
multiple comparisons correction was applied to the copper 
interaction test as the analyses were exploratory in nature. 
Finally, the PHQ-9 is a depression measurement scale rather 
than a diagnostic instrument, which can be employed for 
the assessments of depressive symptoms rather than the 
diagnosis of depression. We also could not exclude the pres-
ence of individuals diagnosed with depression, nor did we 
know the course of depressive symptoms over time. Future 
studies could confirm our findings by recruiting large 
samples of participants with depression as well as using a 
depression assessment scale with better reliability and valid-
ity, such as the Hamilton Depression Rating Scale.

Conclusions
In conclusion, our results suggested that serum cop-
per concentrations were elevated among US adults with 
depressive symptoms. ​Meanwhile, serum copper concen-
trations above the general adult population mean were 
associated with an increased risk of depressive symp-
toms in obese adults. Additionally, US adults in general 
with low serum zinc concentrations were more prone to 
have depressive symptoms. However, direct evidence on 
the relationship between serum selenium concentrations 
and depressive symptoms was lacking. Causal associa-
tions between the serum copper or zinc concentrations 
and depressive symptoms and their detailed mechanisms 
require further prospective human and animal studies.
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