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Abstract
Background  Due to individual differences and lack of objective biomarkers, only 30-40% patients with major 
depressive disorder (MDD) achieve remission after initial antidepressant medication (ADM). We aimed to employ 
radiomics analysis after ComBat harmonization to predict early improvement to ADM in adolescents with MDD 
by using brain multiscale structural MRI (sMRI) and identify the radiomics features with high prediction power for 
selection of selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs).

Methods  121 MDD patients were recruited for brain sMRI, including three-dimensional T1 weighted imaging 
(3D-T1WI)and diffusion tensor imaging (DTI). After receiving SSRIs or SNRIs for 2 weeks, the subjects were divided 
into ADM improvers (SSRIs improvers and SNRIs improvers) and non-improvers according to reduction rate of the 
Hamilton Depression Rating Scale, 17 item (HAM-D17) score. Then, sMRI data were preprocessed, and conventional 
imaging indicators and radiomics features of gray matter (GM) based on surface-based morphology (SBM) and 
voxel-based morphology (VBM) and diffusion properties of white matter (WM) were extracted and harmonized 
with ComBat harmonization. Two-level reduction strategy with analysis of variance (ANOVA) and recursive feature 
elimination (RFE) was utilized sequentially to decrease high-dimensional features. Support vector machine with 
radial basis function kernel (RBF-SVM) was used to integrate multiscale sMRI features to construct models for early 
improvement prediction. Area under the curve (AUC), accuracy, sensitivity, and specificity based on the leave-one-out 
cross-validation (LOO-CV) and receiver operating characteristic (ROC) curve analysis were calculated to evaluate the 
model performance. Permutation tests were used for assessing the generalization rate.
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Background
Major depressive disorder (MDD) is the leading cause 
of disability in adolescents and the incidence increases 
dramatically during adolescence [1]. Approximately 70% 
of adolescents with MDD will relapse within five years, 
and early-onset depression is also associated with high 
recurrence rates, poor functional outcomes, and refrac-
tory depression in later years [2, 3]. Therefore, there is 
no doubt about the importance of early and proactive 
treatment for adolescent MDD patients. Antidepres-
sant medication (ADM) remains the preferred treatment 
strategy for MDD, and clinical guidelines recommend 
the selective serotonin reuptake inhibitors (SSRIs) or 
5-hydroxytryptamine and serotonin norepinephrine 
reuptake inhibitors (SNRIs) as the first-line antidepres-
sant agents [4, 5]. However, due to individual differences 
in patients with MDD, less than 50% of patients benefit 
from ADM and only 30-40% achieve clinical remission 
after initial antidepressant treatment [4, 5]. Currently, 
in clinical practice, the selection of drugs for MDD is 
mainly relied on the measurements of symptoms and 
the experience of psychiatrists owing to lack of objective 
biomarkers for selecting antidepressants [4]. This “trial-
and-error” approach takes approximately 4–8 weeks to 
find out whether antidepressant drugs are effective and 
then to develop the follow-up treatment program, which 
not only results in a lower response rate to subsequent 
medications and a waste of medical resources, but also 
prolongs rehabilitation time and increases suicide risk 
[4–7]. Therefore, it is of great significance for optimiz-
ing the way of drug selection if the response prediction 
of individualized treatment can be achieved prior to 
initial ADM [6, 7]. Previous studies suggested that early 

improvement in MDD signified clinical “turning point”, 
stable remission and good prognosis [8–11]. To clarify 
the earliest time point when improvement occurred, a 
meta-analysis and an observational study both stated 
that the response to ADM could occur as early as 2 
weeks after initial ADM [10, 11]. With the help of early 
response prediction, psychiatrists can make decisions to 
continue or change treatment regimens earlier, especially 
to be able to cease ineffective treatment and reduce side 
effect and therapy-related risks. In the past few decades, 
numerous neuroimaging studies have focused on the 
exploration of the pathogenesis of MDD, while little is 
known about the pathophysiological substrate underlying 
the response of some patients to antidepressant medica-
tion while others with difficulty in rehabilitation [9–11].

At present, research with different neuroimaging 
modalities of magnetic resonance imaging (MRI) have 
identified several potential biomarkers associated with 
treatment response to specific therapies in MDD. For 
example, findings have shown that changes of cortex 
thickness and volume of gray matter (GM) in multiple 
brain regions including, but not limited to, the prefrontal 
cortex, hippocampus, anterior cingulate cortex at base-
line can serve as imaging biomarkers to predict remission 
after medication and cognitive behavioral therapy (CBT) 
[12–14]. A recent study found that the anisotropy frac-
tion (FA) of the white matter (WM), the most used met-
ric for diffusion tensor imaging (DTI), could be utilized 
to predict antidepressant response. Increase of FA in the 
superior corona radiata and external capsule was corre-
lating with drug response [15]. FA in the right amygdala, 
cingulate gyrus and terminal fasciculus could also predict 
antidepressant remission at 4–12 weeks [16–18]. One 

Results  After 2-week ADM, 121 patients were divided into 67 ADM improvers (31 SSRIs improvers and 36 SNRIs 
improvers) and 54 ADM non-improvers. After two-level dimensionality reduction, 8 conventional indicators (2 VBM-
based features and 6 diffusion features) and 49 radiomics features (16 VBM-based features and 33 diffusion features) 
were selected. The overall accuracy of RBF-SVM models based on conventional indicators and radiomics features 
was 74.80% and 88.19%. The radiomics model achieved the AUC, sensitivity, specificity, and accuracy of 0.889, 91.2%, 
80.1% and 85.1%, 0.954, 89.2%, 87.4% and 88.5%, 0.942, 91.9%, 82.5% and 86.8% for predicting ADM improvers, SSRIs 
improvers and SNRIs improvers, respectively. P value of permutation tests were less than 0.001. The radiomics features 
predicting ADM improver were mainly located in the hippocampus, medial orbitofrontal gyrus, anterior cingulate 
gyrus, cerebellum (lobule vii-b), body of corpus callosum, etc. The radiomics features predicting SSRIs improver were 
primarily distributed in hippocampus, amygdala, inferior temporal gyrus, thalamus, cerebellum (lobule vi), fornix, 
cerebellar peduncle, etc. The radiomics features predicting SNRIs improver were primarily located in the medial 
orbitofrontal cortex, anterior cingulate gyrus, ventral striatum, corpus callosum, etc.

Conclusions  These findings suggest the radiomics analysis based on brain multiscale sMRI after ComBat 
harmonization could effectively predict the early improvement of ADM in adolescent MDD patients with a high 
accuracy, which was superior to the model based on the conventional indicators. The radiomics features with high 
prediction power may help for the individual selection of SSRIs and SNRIs.

Keywords  Major depressive disorder, Antidepressant medication, Magnetic resonance imaging, Radiomics, Machine 
learning
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study identified the hippocampus and amygdala cen-
tered implicit emotion regulation circuitry as a sensitive 
biomarker in predicting early efficacy of SSRIs treatment 
[19]. FA tracts connecting hippocampus and amygdala 
have been reported to predict remission following SSRIs 
treatment [20]. The role of hippocampus in predicting 
4-week SSRIs treatment response was also emphasized 
in functional research [21]. For SNRIs treatment, a neu-
roimaging study highlighted the importance of orbital 
superior frontal gyrus (ORBsup) and putamen centered 
neural circuitry as a biomarker [19]. Positron emission 
tomography / computed tomography (PET/CT) study 
also suggested that the activity of the anterior medial 
orbitofrontal cortex was associated with the remission 
of MDD after treatment with SNRIs [22, 23]. In addi-
tion, SSRI acts by blocking 5-hydroxytryptamine reup-
take, whereas SNRI works by blocking the reuptake of 
5-hydroxytryptamine, norepinephrine and dopamine at 
dendrites and axons, and the SSRI and SNRI neurofibril-
lary projection areas have been reported to be different 
[24]. All these evidence indicate that there may be some 
brain regions in a variety of spatially diverse GM and 
WM in associated with drug efficacy, so it is reasonable 
to explore imaging markers for predicting ADM response 
and assisting drug selection by combining multiscale 
structural imaging features of gray and white matter. 
Moreover, structural MRI (sMRI) is usually part of brain 
routine examination, and structural imaging data are eas-
ily available and relatively stable. However, most of the 
previous studies used only a single imaging modality and 
the results were often inconsistent and difficult to com-
pare [12–17]. Also, these researches mainly focused on 
medium to long-term outcomes (4–12 weeks) [10, 11], 
with less involvement in predicting the earlier response 
to ADM in MDD patients.

Radiomics, a framework that combines machine learn-
ing with medical imaging to quantitatively reveal macro-
scopic heterogeneity that is unrecognizable to the human 
eyes, has greatly expanded the applications of conven-
tional imaging in clinical practice [25, 26] and has been 
employed to investigate imaging biomarkers for neuro-
psychiatric disorders, such as Alzheimer’s disease [27], 
bipolar disorder [28] and attention deficit hyperactivity 
disorder [29]. By extracting and selecting high-weighted 
radiomics features, diagnostic models outperform those 
classifiers based on the routine imaging indicators, 
and the discriminant radiomics features can be used as 
potential markers. However, properties of MRI scanners, 
such as manufacturer, field strength, nonlinear gradient 
fields, and longitudinal drift, increase the bias and vari-
ability of brain sMRI [26, 30], thereby impacting the con-
sistency and reproducibility of downstream analyses [31, 
32], which will hinder the exploration of radiomics mod-
els and their transformation into diagnostic or predicting 

tools [30]. Like the “batch effect” in genomics, the term 
“scanner effect” is used in neuroimaging to refer to such 
abiotic variation [30]. Several methods have been pro-
posed to harmonize CT and PET-CT conventional imag-
ing indicators, such as hybrid white stripe and histogram 
matching, in previous studies on breast phantom [32], 
brain tumor [33], and prostate cancer [30]. Only ComBat 
technique has been validated in radiomics studies [31, 
32], which could effectively address the issues of poor 
reproducibility and stability of the radiomics features.

To date, there has been few radiomics studies on the 
prediction of early improvement to ADM in adoles-
cents with MDD based on harmonized multiscale sMRI 
[34]. As such, in present study, we constructed a predic-
tion model for early improvement (2 weeks) to ADM 
in adolescent MDD patients with radiomics analysis 
after ComBat harmonization based on multiscale sMRI, 
including shape parameters of GM based on surface-
based morphology (SBM) and voxel-based morphology 
(VBM) from the three-dimensional T1 weighted imag-
ing (3D-T1WI), and diffusion properties of WM from the 
diffusion tensor imaging (DTI), and compared it with the 
model based on conventional imaging indicators. We also 
identified radiomics features that might be helpful for the 
objective first-line drugs selection of SSRIs and SNRIs in 
clinical practice.

Methods
Participants
138 patients with MDD, aged between 13 and 18 years, 
all right-handed according to their self-report, were pro-
spectively and consecutively recruited from the Depart-
ment of Psychiatry of the Second Affiliated Hospital of 
Kunming Medical University from December 2021 to 
June 2022. The study was approved by the Ethics Com-
mittee according to the principles of the Declaration of 
Helsinki with approval number KYCS202107. The writ-
ten informed consent was obtained from participants 
and from their parents or legal guardians for subjects 
under 16 years old before enrollment. All participants 
were diagnosed by psychiatrists based on structured 
interviews and neuropsychological measurements and 
met the Diagnostic and Statistical Manual of Men-
tal Disorders, Fifth Edition (DSM-V) criteria, includ-
ing only unipolar and first-episode depression without 
any medication and physical therapy such as repetitive 
transcranial magnetic stimulation (rTMS) and electro-
convulsive therapy (ECT) prior to hospitalization. 17 
item Hamilton Depression Rating Scale (HAM-D17) 
was used to assess the severity of depressive symptoms 
at baseline and after 2-week ADM treatment. Exclusion 
criteria for MDD patients were: ①accompanied with any 
other mental disorders; ②any history of cranial injury; 
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③significant physical diseases undergoing treatment; 
④substance/alcohol abuse or dependence; ⑤MRI scan-
ning contraindicated.

All patients received SSRIs or SNRIs according to 
clinical guideline for the treatment of MDD patients 
(Chinese version) [5]. The doses were as follows: sertra-
line 100 ~ 200  mg/day, escitalopram 10 ~ 20  mg/day, flu-
voxamine 100 ~ 300  mg/day, paroxetine 20 ~ 60  mg/day, 
fluoxetine 20 ~ 60  mg/day, venlafaxine 37.5 ~ 225  mg/
day, and duloxetine 60 ~ 120  mg/day. HAM-D17 score 
was assessed again after 2 weeks of complete ADM. A 
case was defined as early improvement to ADM if the 
HAM-D17 score decreased ≥ 20% compared with the 
baseline [35]. 17 patients were excluded because they 
failed to complete 2-week ADM, including 13 cases 
of medication regimen change and 4 cases with addi-
tional rTMS. Finally, the remaining 121 MDD patients 
were divided into ADM improvers (SSRIs improvers 
and SNRIs improvers) and non-improvers according to 
reduction rate of HAM-D17 score.

MRI protocol
The flowchart of this study is illustrated in Fig.  1. All 
participants underwent MRI scans within one week 
prior to ADM after structured interviews and neuropsy-
chological measurements. 3D-T1WI, fluid attenuation 
inversion recovery (FLAIR), and DTI were performed 
sequentially using two scanners (Philip 3.0T, GE 3.0T), 
and the parameters of scanners and sequences are shown 
in Table S1 and Table S2. Examination of FLAIR was 

to rule out the presence of a substantial lesion, such as 
demyelination, brain tumor, vascular malformation, and 
development abnormalities. All images were reviewed 
immediately after each sequence completing, and those 
with motion artifacts needed to be rescanned and those 
with susceptibility artifacts were excluded. At last, one 
subject with excessive artifacts in sMRI was excluded. 
The final sMRI data of 63 subjects acquired at Philip 
3.0T scanner and 58 subjects examined on GE 3.0T scan-
ner were used for preprocessing, feature extraction and 
ComBat harmonization.

SBM-based 3D-T1WI preprocessing and GM features 
extraction
3D-T1WI preprocessing based on SBM was accom-
plished using the FreeSurfer/ANTs hybrid segmentation 
pipeline [29] with the Desikan-Killiany-Tourville (DKT) 
atlas [36]. After performing the steps of motion correc-
tion, skull stripping, bias field correction, intensity nor-
malization, expansion and smoothing, spherical mapping 
and alignment, and cortical surface reconstruction, the 
hybrid segmentation was achieved by combining the 
FreeSurfer recon-all toolkit (https://surfer.nmr.mgh.har-
vard.edu/) and the ANTsXNet CorticalThickness tool-
box (http://stnava.github.io/ANTs/) introducing new 
gray-white matter boundaries to reduce segmentation 
errors, which has been proven to have superior perfor-
mance over the FreeSurfer package [37]. Then, the fol-
lowing measures were automatically calculated using the 
feature extraction toolkit of Mindboggle (http://www.

Fig. 1  Flowchart of the study. Firstly, sMRI (3D-T1WI and DTI) was performed with two scanners in adolescent MDD subjects. FreeSurfer/ANTs hybrid 
segmentation toolkit of Mindboggle software, CAT 12 suite of SPM software and Diffusion Toolbox of FSL software were used for preprocessing. After 
that, conventional indicators and radiomics features of shape parameters of GM based on SBM and VBM analysis and diffusion properties of WM were 
extracted and then harmonized with ComBat technique. After receiving SSRIs or SNRIs for 2 weeks, the subjects were divided into ADM improvers (SSRIs 
improvers and SNRIs improvers) and non-improvers according to reduction rate of the HAM-D17 score. Finally, the features were decreased and filtered 
based on ANOVA and RFE successively and those with high prediction power were employed to construct models based on RBF-SVM. The performance 
was estimated using LOO-CV and ROC curve. sMRI, structural MRI. 3D-T1WI, three-dimensional T1 weighted imaging. DTI, diffusion tensor imaging. MDD, 
major depressive disorder. SPM, statistical parametric mapping. FSL, FMRIB’s software library. SBM, surface-based morphology. VBM, voxel-based morphol-
ogy. GM, gray matter. WM, white matter. ANOVA, analysis of variance. RFE, recursive feature elimination. SVM, support vector mechanism. RBF, radial basis 
function kernel. LOO-CV, leave-one-out cross-validation. ROC, receiver operator characteristic. ADM, antidepressant medication. SSRIs, selective serotonin 
reuptake inhibitors. SNRIs, serotonin norepinephrine reuptake inhibitors. HAM-D17, Hamilton Depression Rating Scale, 17 item
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mindboggle.info/) [29] software: ①surface area of labeled 
brain; ②surface morphometric measures of cortical mesh 
vertex within labeled brain region and sulci; ③statistical 
metrics for each morphometric measure. In DKT atlas, 
there were thirty-eight cortical/subcortical regions and 
twenty-four sulci in each hemisphere. Therefore, based 
on the SBM method, 344 conventional indicators and 
2,338 radiomics features representing GM surface mor-
phometry were extracted from 3D-T1WI of each subject.

VBM-based 3D-T1WI preprocessing and GM features 
extraction
3D-T1WI preprocessing based on VBM was performed 
using the CAT 12 toolkit [38] of the Statistical Parametric 
Mapping (SPM 12, https://www.fil.ion.ucl.ac.uk/spm/) 
software. The main steps were as follows: ①images were 
registered from the original brain space to a standard 
space coordinate system established by the Montreal 
Neurological Institute (MNI); ②bias field was estimated 
using the N4-Bias-Field-Correction algorithm [39] and 
then overlayed onto the original images to achieve bias 
field correction, thereby reducing the intensity difference 
of the same tissue and facilitating tissue segmentation; 
③after skull stripping, the spatially normalized images 
were segmented into GM, WM, and cerebrospinal fluid 
(CSF). According to the Automated Anatomical Label-
ing Atlas (AAL) atlas, the preprocessed images of each 
subject were labeled into one hundred and sixteen brain 
regions, including ninety cerebral regions and twenty-six 
cerebellar regions. A neuroradiologist with 7-year expe-
rience of neuroimaging used ITK-SNAP 4.0 software 
(http://www.itksnap.org/pmwiki/) to examine and cor-
rect areas of brain tissue that were segmented incorrectly. 
Then, the segmented data were imported into LIFEx soft-
ware (https://www.lifexsoft.org), and a total of sixty-three 
radiomics features of three categories, namely, five shape 
features, twelve first-order histogram features, and forty-
six texture features were extracted from each brain label 
according to the image biomarkers standardization initia-
tive (IBSI) guidelines [40] and radiomics quality scoring 
(RQS) tool [41]. Finally, based on the VBM analysis, 206 
conventional indicators and 10,044 radiomics features 
representing GM density morphometry were extracted 
from 3D-T1WI images of each subject.

DTI preprocessing and WM diffusion features extraction
DTI was preprocessed using Diffusion Toolbox v2.0 
[42] of FMRIB’s Software Library (FSL, https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/) for susceptibility-induced distor-
tions, eddy-current and head motion correction, tensor 
fitting and registration to standard space. Diffusion ten-
sors data from all subjects were used to build a template 
specific to this study by using an iterative tensor-based 
registration algorithm combined with local WM fiber 

bundle alignment. Each fraction map of the Johns Hop-
kins ICBM-DTI-81 white matter atlas was registered to 
the study-specific template through deformable align-
ment. Through nearest neighbor interpolation and align-
ment from each subject to the template, the label of the 
WM region in the map was aligned and warped into a 
single space, generating a partial anisotropic map, and 
labeling forty-eight WM regions. The following measures 
were computed, including the anisotropy fraction (FA), 
mean diffusivity (MD), axial diffusivity (AD), radial dif-
fusivity (RD) and their corresponding statistical metrics 
for each WM label. Therefore, 192 conventional indica-
tors and 768 radiomics features were extracted from each 
DTI data.

ComBat harmonization
The extracted features were harmonized between the two 
scanners using the ComBat technique [31–33], which 
was designed to adjust any abiotic differences, i.e., scan-
ner effects, that might be caused by the scanners, coils, 
and/or protocols parameters. The final ComBat-harmo-
nized radiomics features were defined as:

	
Y Combat

ijv =
Yijv − α̂v − Xijβ̂v − γ*

iv

δ*
iv

+ α̂v + Xijβ̂v

In the above function, α̂v  is the overall value at voxel v
, such as cortical thickness, volume, or FA value; Xij  is 
the matrix of covariates (e.g., age, sex); β̂v  represents the 
voxel-based regression coefficients corresponding to the 
X . α̂v  and δ*

iv  denote respectively the additivity and mul-
tiplication effects of site i  on voxel v . The above ComBat 
function assigned a specific transformation to each mea-
sure extracted from T1WI and DTI, respectively.

Reduction of features
In order to eliminate extraneous features which affected 
the fitting efficiency and accuracy of models, a two-level 
selection strategy was used sequentially in this study. 
Firstly, analysis of variance (ANOVA) was applied to filter 
out features with P value less than 0.05. Then, recursive 
feature elimination (RFE) was applied to further reduce 
dimensionality of features by ranking them according 
to their relevance to each other and importance to the 
model in the reverse elimination process [43].

Identification of radiomics features with high prediction 
power
In present study, because of small sample size, LOO-
CV was used to validate the prediction model to avoid 
overfitting while being able to maximize the inclusion of 
samples during model training and testing. In each LOO-
CV iteration of n samples, n-1 samples were used for 
training and one sample was left for testing. RFE process 

http://www.mindboggle.info/
https://www.fil.ion.ucl.ac.uk/spm/
http://www.itksnap.org/pmwiki/
https://www.lifexsoft.org
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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was conducted on the training dataset and selected the 
desired features by recursively and continuously reducing 
the size of the feature datasets. Each feature’s prediction 
power was estimated quantitatively by its weight vector, 
which was the distance from the feature to the separation 
hyperplane or decision boundary in the vector mapping 
space. Then, the prediction power in all LOO-CV itera-
tions were averaged and ranked, and the top 30% were 
identified as the most powerful features.

Prediction model construction and evaluation
When obtaining feature datasets with high predic-
tion power, we used selected conventional indicators 
and harmonized radiomics features to construct sup-
port vector machine with radial basis function kernel 
(RBF-SVM) model on the LIBSVM toolbox (https://
www.csie.ntu.edu.tw/~cjlin/libsvm) for prediction ADM 
non-improvers, SSRIs improvers and SNRIs improv-
ers. All participants were labeled into three types (Label 
1 = SSRIs-improver, Label 0 = ADM-non-improver, 
Label-1 = SNRIs-improver) to identify decision boundar-
ies in the input space. To ensure the accuracy of parame-
ter tuning, the grid search method was used to determine 
the optimal regularization parameter C and the kernel 
function parameter gamma for RBF-SVM model. After 
the tuning range and tuning step were given, the possible 
values of each parameter were calculated. Then all com-
bination situations were traversed, and finally the best 
parameters were returned. Area under the curve (AUC), 
accuracy, sensitivity, and specificity based on LOO-CV 
results of the SVM were computed to evaluate the per-
formance of the models. Permutation tests were used for 
assessing the generalization rate.

Statistical analysis
Statistical analyses were conducted using R 3.5.1 soft-
ware (Comprehensive R Archive Network). Quantitative 
data were summarized as the mean ± standard devia-
tion or median with interquartile range, and categorical 
variables were described as numbers and percentages. 
ANOVA or Chi-square test was used for the univariate 
comparison as appropriate between the groups. AUC, 

sensitivity, and specificity were calculated by analysis of 
receiver operating characteristic (ROC) curve at cut-off 
score corresponding to the highest Youden index. Pair-
wise and multiple AUCs comparisons were performed 
using the DeLong tests. P value less than 0.05 was statis-
tically significant.

Results
Demographic data and clinical information of participants
Results of demographic data and clinical information 
of participants are listed in Tables  1 and 2. There was 
no significant difference between ADM improvers and 
non-improvers, SSRIs improvers and SNRIs improvers 
in terms of age, gender, years of education, and baseline 
HAM-D17 score (P > 0.05).

Features selection and identification of radiomics features 
with high prediction power
After preprocessing, a total of 742 conventional indica-
tors (344 SBM-based features, 206 VBM-based features, 
and 192 DTI diffusion features) (Table S3) and 13,150 
radiomics features (2,338 SBM-based features, 10,044 
VBM-based features, and 768 DTI diffusion features) 
were extracted from 3D-T1WI and DTI (Table S4). These 
features were harmonized with ComBat technique. Then, 
the two-level dimensionality reduction strategy was per-
formed and only 8 conventional indicators (2 VBM-based 
features, 6 diffusion features) and 49 radiomics features 
(16 VBM-based features, 33 diffusion features) were 
selected (Fig. 2).

A 49-dimensional features dataset with different pre-
diction power was obtained after each LOO-CV iteration 
and 121 49-dimensional feature datasets were achieved 
after 121 iterations, in which the best feature dataset was 
determined when the model reached its highest values 
after feature search completing (Fig.  3, Table S5). The 
prediction power in all LOO-CV iterations were aver-
aged and ranked in descending order, and the top 30% 
were defined as the most powerful features for predicting 

Table 1  Demographic and clinical information of ADM 
improvers and non-improvers
Characteristics ADM 

improvers
(n = 67)

ADM non-
improvers
(n = 54)

t/χ2 P

Age (years) 15.0 ± 2.5 14.7 ± 2.0 -1.017 0.314

Gender (M/F) 31 / 36 24 / 30 0.128 0.722

Education (years) 9.5 ± 1.1 10.1 ± 0.5 0.637 0.530

Baseline HAM-D17 score 23.4 ± 4.5 22.7 ± 5.0 -0.672 0.511

2-week HAM-D17 score 14.9 ± 3.3 18.3 ± 4.7 4.330 0.000
ADM Antidepressant Medication, MDD Major Depressive Disorder, HAM-D17 17-
items of Hamilton Depression Rating Scale, M Male, F Female

Table 2  Demographic and clinical information of SSRIs 
improvers and SNRIs improvers
Characteristics SSRIs 

improv-
ers
(n = 31)

SNRIs 
improv-
ers
(n = 36)

t/χ2 P

Age (years) 15.3 ± 2.3 15.2 ± 2.7 -0.440 0. 
764

Gender (M/F) 15 / 16 16 / 20 1.322 0.082

Education (years) 9.9 ± 1.2 9.1 ± 1.7 -0.689 0.550

Baseline HAM-D17 score 25.4 ± 3.8 24.2 ± 3.5 -0.732 0.490

2-week HAM-D17 score 12.6 ± 2.1 13.0 ± 2.4 0.911 0.362
SSRIs Selective Serotonin Reuptake Inhibitors, SNRIs Serotonin Norepinephrine 
Reuptake Inhibitors, HAM-D17 17-items of Hamilton Depression Rating Scale, M 
Male, F Female

https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/libsvm
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ADM improvers, SSRIs improvers and SNRIs improvers. 
The radiomics features predicting ADM improver were 
mainly located in the hippocampus, medial orbitofron-
tal gyrus, anterior cingulate gyrus, amygdala, superior 

frontal gyrus, cerebellum (lobule vii-b), middle temporal 
gyrus, body of corpus callosum, anterior limb of inter-
nal capsule and anterior corona radiata. The radiomics 
features predicting SSRIs improver were primarily 

Fig. 2  Prediction power of 49 radiomics features for predicting early improvement of MDD patients to ADM with SSRIs and SNRIs for 2 weeks. The gray-
scale bar represents the power, the darker the color, the greater the power; the lighter the color, the smaller the power. MDD, major depressive disorder. 
ADM, antidepressant medication. SSRIs, selective serotonin reuptake inhibitors. SNRIs, serotonin norepinephrine reuptake inhibitors
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distributed in hippocampus, amygdala, inferior temporal 
gyrus, thalamus, cerebellum (lobule vi), fornix, and cere-
bellar peduncle. The radiomics features predicting SNRIs 
improver were primarily located in the medial orbito-
frontal cortex, anterior cingulate gyrus, ventral striatum, 
accumbency area, knee of corpus callosum, internal cap-
sule and anterior corona radiata.

Prediction models performance
RBF-SVM models were constructed by using selected 
conventional imaging indicators and radiomics features. 
The optimal values of the regularization parameter C and 
the kernel function parameter gamma for RBF-SVM by 
the process of tuning and searching were 102 and 10− 1, 
respectively. The detailed results of the SVM based on the 
two types of features are illustrated in Table 3. The over-
all accuracy of SVM based on conventional indicators 
and radiomics features after harmonization were 74.80% 
and 88.19%. The SVM model using ComBat-harmonized 
radiomics features based on the results of LOO-CV and 
ROC analysis had the better performance for predicting 
ADM improvers, SSRIs improvers and SNRIs improv-
ers with the AUC, accuracy, sensitivity, and specificity of 
0.889, 91.2%, 80.1% and 85.1%, 0.954, 89.2%, 87.4% and 
88.5%, 0.942, 91.9%, 82.5% and 86.8%, respectively, which 
was superior to the model based on the conventional 
imaging indicators (Fig. 4). P value of permutation tests 
were less than 0.001.

Discussion
Precision medicine is a long-term goal pursued in psy-
chiatry clinics [44, 45]. Nevertheless, antidepressant drug 
selection is a complex and challenging issue in clinical 
practice [4, 5]. Gradually, neuroimaging studies based on 
radiomics and machine learning are demonstrating an 
important subsidiary role in the personalized diagnosis 
and treatment of psychiatric disorders [15–18, 27–29]. 
In this study, by integrating imaging features of brain 
multiscale sMRI after harmonization and selection, the 
radiomics model performed significantly better than the 
model based on the conventional imaging indicators, 
indicating that the integration and selection of high-
dimensional features improved the predictive efficacy of 
the features, and the outstanding ability to select features 
was just the advantage of machine learning [25–27]. This 
radiomics framework confirmed that there were indeed 
differences in gray and white matter of important brain 
regions involved in early improvement to ADM of MDD 
patients by quantitatively estimating the power of each 
feature contributing to prediction model, which also 
made the results more interpretable.

The predictive ability of imaging markers represents 
the outcome of specific ADM agents to alleviate or elimi-
nate structural or functional pathological changes in gray 
and white matter [25, 26]. The radiomics features identi-
fied in this study for the prediction of early ADM efficacy 
may help to choose SSRIs or SNRIs, thereby improving 
early response and long-term remission rates in patients 
with MDD. Features of the medial orbitofrontal gyrus, 
hippocampus, cerebellum lobule vii-b, corpus callosum, 
anterior limb of internal capsule and anterior corona 
radiata were extremely important in predictive models 

Table 3  Performance of SVM prediction models
Models AUC (95% 

CI)
Sensitiv-
ity (%)

Specific-
ity (%)

Accu-
racy (%)

Model based on conventional indicators
SSRIs improver - ADM 
non-improver

0.776(0.684, 
0.853)

64.3(57.5, 
71.9)

79.5(69.8, 
82.0)

65.3(60.5, 
76.8)

SNRIs improver - ADM 
non-improver

0.796(0.688, 
0.882)

72.4(60.1, 
79.9)

85.0(70.2, 
89.7)

73.0(62.5, 
86.1)

ADM improver -ADM 
non-improver

0.799(0.674, 
0.872)

74.5(62.5, 
83.2)

81.3(69.0, 
88.4)

79.3(70.3, 
89.4)

Model based on radiomics features
SSRIs improver - ADM 
non-improver

0.954(0.912, 
0.980)

89.2(78.8, 
95.2)

87.4(79.4, 
93.1)

88.5(82.4, 
92.5)

SNRIs improver - ADM 
non-improver

0.942(0.897, 
0.971)

91.9(83.2, 
96.6)

82.5(73.8, 
89.3)

86.8(80.5, 
91.1)

ADM improver -ADM 
non-improver

0.889(0.798, 
0.952)

91.2(76.8, 
98.1)

80.1(64.4, 
90.9)

85.1(75.0, 
92.3)

SVM Support Vector Mechanism, AUC Area Under the Curve, CI Confidence 
Interval, MDD Major Depressive Disorder, SSRIs Selective Serotonin Reuptake 
Inhibitors, SNRIs Serotonin Norepinephrine Reuptake Inhibitors

Fig. 3  Learning curve for selection of ComBat-harmonized radiomics 
feature based on RFE. The X- / Y-axes represents the number of ComBat-
harmonized radiomics features selected and the prediction accuracy, 
respectively. The highest overall accuracy (88.19%) of the radiomics pre-
diction model was achieved when based on a minimum number (49) of 
radiomics features, and then the prediction performance did not improve 
as the number of features increased. RFE, recursive feature elimination
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of 2-week ADM improvement. These brain regions are 
essential components of the brain’s emotion network and 
closely related to emotional processing, memory, and 
regulation [46, 47]. Previous studies have demonstrated 
that antidepressants could reverse impaired neuroplasti-
city and neurogenic changes in the hippocampus, such 
as loss of dendritic spines and synapses [48, 49]. Accord-
ing to the recent findings on hippocampal physiologi-
cal function [50], the synergy between the hippocampus 
and other relevant brain regions at baseline could be 

integrated into a holistic feature to predict the benefi-
cial effects of antidepressants on emotional memory and 
regulation. However, this needs to be further validated 
by neuropharmacological and psychological experiments 
after medication administration.

The present study showed that radiomics features of 
some brain regions for implicit emotion regulation such 
as hippocampus and amygdala play a prominent role in 
predicting 2-week improvement of SSRIs treatment. Sev-
eral neurophysiological studies revealed that SSRIs had an 

Fig. 4  Performance of the SVM models predicting early improvement of MDD patients to ADM. (A) SVM model based on the conventional imaging 
indicators; (B) SVM model based on the ComBat-harmonized radiomics features

 



Page 10 of 13Ma et al. BMC Psychiatry          (2023) 23:466 

acute neurological effect on emotion regulation by affect-
ing 5-hydroxytryptamine reuptake and thus increasing 
5-hydroxytryptamine concentrations in the synaptic space 
to regulate activity in relevant brain regions, especially in 
the hippocampus and amygdala [50–52]. There were also 
imaging studies showing that FA values of the WM fiber 
tract conjoining hippocampus and amygdala could predict 
long-term remission after receiving SSRIs [53], and the 
fornix connecting the hippocampus was an important pre-
dictor of early response to SSRIs [16, 17]. SSRIs are known 
to mediate hippocampal responsiveness to treatment by 
increasing neural progenitor cells, and a functional MRI 
study predicting 4-week efficacy also highlighted the hip-
pocampal response to SSRIs therapy [54]. As for the amyg-
dala, one study showed higher FA values in the amygdala of 
remitters compared to non-remitters after treatment with 
SSRIs [15, 16], which might be related to the 5-hydroxy-
tryptamine-mediated amygdala response pattern as a key 
pathway for the antidepressant effects of SSRIs. MDD is a 
kind of psychiatric disorder with impaired emotion regu-
lation, and habitual use of emotion regulation strategies 
plays an important role in MDD episodes [46, 47]. There-
fore, based on our results and the known mechanisms of 
action of SSRIs, it is reasonable to use imaging features of 
emotional regulation-localized brain regions as markers to 
predict the early efficacy of SSRIs in MDD patients.

The present study also identified the radiomics fea-
tures of some brain regions such as the medial orbito-
frontal cortex, anterior cingulate gyrus, ventral striatum, 
accumbency area, knee of corpus callosum, internal 
capsule and anterior corona radiata as imaging markers 
for 2-week improvement of SNRIs. This was consistent 
with the results of previous neuropharmacological stud-
ies showing that the brain regions associated with SNRIs 
response were mainly located in the emotional regulation 
and reward circuits [50, 52]. The medial orbitofrontal cor-
tex and anterior cingulate gyrus are involved in learning, 
motivation, and reward behavior in MDD patients [55, 56], 
while the ventral striatum is engaged in reward signaling 
in the neural system, and abnormalities in these regions 
can lead to anhedonia [46, 55–57]. SNRIs increase activity 
in the medial orbitofrontal cortex and ventral striatum by 
affecting norepinephrine reuptake and dopamine release 
to alleviate the pleasure deficit in MDD patients [52]. Posi-
tron emission tomography (PET) study also suggested that 
the activity of the anterior medial orbitofrontal cortex was 
associated with the remission of MDD after treatment 
with SNRIs [22, 23]. Meanwhile, our study indicated that 
DTI-related diffusion features of white matter in brain 
regions associated with emotional regulation and reward 
circuits were important biomarkers for predicting early 
improvement to SNRIs. Therefore, the results of this study 
were consistent with the above theoretical perspective.

Previous neuroimaging studies revealed that morpho-
logical features of the brain surface based on SBM analy-
sis had a high weight in the diagnostic model of MDD [34] 
and could be used as predictive markers of response to 
antidepressant treatment [12–14]. For example, structural 
abnormalities accompanied by decreased functional con-
nectivity at baseline in the hippocampus, superior frontal 
gyrus, middle temporal gyrus, cingulate gyrus, and amyg-
dala associated with processing emotional processing were 
better predictors of antidepressant response [12–14, 16, 
17]. However, the results of the present study showed that 
none of SBM-based features were selected in the radiomics 
prediction model, which might be related to the select-
ing strategy of imaging features by ranking them accord-
ing to their relevance to each other and importance to the 
model in the reverse elimination process during machine 
learning, so the relationship between SBM-based imag-
ing indicators and MDD drug efficacy needs to be further 
investigated.

Several limitations are certainly needed to be considered 
in our study. First, due to small sample size, we used the 
leave-one-out cross-validation and failed to use external 
samples for validation, which might affect the reliability of 
the prediction model. Second, the brain multiscale sMRI 
were obtained using different scanners, and although the 
radiomics features were harmonized by using the ComBat 
technique, it might also affect the model prediction per-
formance. Third, the MDD patients were simply grouped 
using only scale scores and medication types, without con-
sidering the heterogeneity associated with different sub-
types of depression and various biological entities, which 
may affect the effectiveness of the model.

Conclusions
In summary, our findings suggest that the radiomics model 
based on brain multiscale sMRI after ComBat harmoni-
zation could effectively predict the early improvement of 
ADM in adolescent MDD patients with a high accuracy, 
which was superior to the model based on the conven-
tional imaging indicators. The radiomics features with 
high prediction power may help for the individual SSRIs 
and SNRIs selection.
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