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Abstract
Background  Major depressive disorder (MDD) is a prevalent mental health condition characterized by recurrent 
episodes in a substantial proportion of patients. The number of previous episodes is one of the most crucial predictors 
of depression recurrence. However, the underlying neural mechanisms remain unclear. To date, there have been 
limited neuroimaging studies investigating morphological changes of the brainstem in patients with first-episode 
MDD (FMDD) and recurrent MDD (RMDD). This study aimed to examine volumetric changes of individual brainstem 
regions in relation to the number of previous episodes and disease duration.

Method  A total of 111 individuals including 36 FMDD, 25 RMDD, and 50 healthy controls (HCs) underwent 
T1-weighted structural magnetic resonance imaging scans. A Bayesian segmentation algorithm was used to analyze 
the volume of each brainstem region, including the medulla oblongata, pons, midbrain, and superior cerebellar 
peduncle (SCP), as well as the whole brainstem volume. Analyses of variance (ANOVA) were performed to obtain 
brain regions with significant differences among three groups and then post hoc tests were calculated for inter-group 
comparisons. Partial correlation analyses were further conducted to identify associations between regional volumes 
and clinical features.

Results  The ANOVA revealed significant brainstem volumetric differences among three groups in the pons, midbrain, 
SCP, and the whole brainstem (F = 3.996 ~ 5.886, adjusted p = 0.015 ~ 0.028). As compared with HCs, both groups of 
MDD patients showed decreased volumes in the pons as well as the entire brainstem (p = 0.002 ~ 0.034), however, 
only the FMDD group demonstrated a significantly reduced volume in the midbrain (p = 0.003). Specifically, the 
RMDD group exhibited significantly decreased SCP volume when comparing to both FMDD (p = 0.021) group and 
HCs (p = 0.008). Correlation analyses revealed that the SCP volumes were negatively associated with the number of 
depressive episodes (r=-0.36, p < 0.01) and illness duration (r=-0.28, p = 0.035) in patients with MDD.
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Introduction
Major depressive disorder (MDD) is a serious and preva-
lent mental disorder that has become one of the leading 
contributors to the global burden of disease and disability 
[1]. MDD is characterized by a highly variable course and 
inconsistent response to treatment [2]. Recurrent epi-
sodes of depression after remission become a common 
feature of MDD and the number of episodes has been 
demonstrated to be one of the best predictors for the risk 
of recurrence [3, 4]. Previously, a considerable amount of 
research has been conducted to investigate the potential 
mechanisms of MDD, however, the neurobiological alter-
ations underlying depression recurrence remain unclear.

Over the past few decades, neuroimaging has emerged 
as an important approach to discover brain structural 
and functional alterations and subsequently has been 
used to investigate the pathophysiology of MDD since 
its origin. Although not consistent, previous studies per-
formed on patients with single-episode MDD and multi-
ple-episode MDD have identified a number of depression 
relapse-associated neural signatures [5–9]. For example, 
volumetric differences in the amygdala, prefrontal cortex 
(PFC), and habenula have been found in patients with 
recurrent MDD compared with first-episode patients 
[10–12]. The occurrence of depressive episodes has been 
specifically linked to gray matter volume (GMV) changes 
in the insula, hippocampus, and amygdala, as well as cor-
tical thickness decline in the dorsomedial PFC (dmPFC) 
[13–15]. Moreover, disease duration as a clearly dis-
tinguishable marker of MDD recurrence has also been 
proved to be negatively associated with GMV in the 
dmPFC, insula, hippocampus, subgenual anterior cingu-
late cortex (sgACC), thalamus, and nucleus accumbens 
(NAc) [16–18]. Taken together, these findings clearly 
point toward adverse effects of disease progression on 
the morphology of reported brain regions, however, the 
brainstem, a crucial neural node in the neurobiology of 
MDD, has not been specifically investigated in patients 
with first-episode and recurrent MDD.

The brainstem is believed to play a significant role in 
the pathophysiology of MDD. Disturbances of mono-
aminergic neurotransmitters and the hypothalamic-pitu-
itary-adrenal (HPA) axis are proved to be involved in the 
biological mechanisms of MDD [19]. The HPA axis is reg-
ulated by multiple neural systems, including those pres-
ent in the brainstem [20, 21]. Key nuclei in the midbrain 
and pons, such as the nucleus raphes dorsalis (DRN), 

locus coeruleus, and ventral tegmental area (VTA), are 
responsible for the majority of monoamine neurotrans-
mitter synthesis [22]. The DRN, situated in the brainstem, 
has been identified as having a close relationship with 
MDD [23]. These neurochemical transmitter disorders 
of the monoaminergic system are considered to be at the 
root of the underlying pathophysiology of MDD [24].

Brainstem is composed of the medulla oblongata, pons 
and midbrain, having the function of regulation of the 
cardiac, respiratory, and central nervous systems includ-
ing consciousness and the sleep cycle [25]. Different 
sub-regions of brainstem have different connections and 
functions. In MDD patients, it was reported that reward-
related learning deficits was associated with striatal-mid-
brain connectivity [26]. Moreover, a recent meta-analysis 
revealed a marginally significant cluster of altered intrin-
sic activity was found between patients with treatment-
resistant depression (TRD) and health controls in 
the cerebellum and pons [27]. However, morphologic 
changes of the brainstem and the sub-regions includ-
ing oblongata, pons, midbrain and superior cerebellar 
peduncle (SCP), in MDD have rarely been reported in 
neuroimaging studies. About 3 decades ago, in an ultra-
sound study, it was reported that structural disintegra-
tion of the brainstem raphe was observed in patients with 
MDD [28]. In recent years, the midbrain has been found 
to be enlarged in patients with a current depressive epi-
sode [29, 30], and interestingly, this volume may return 
to normal after antidepressant treatment, and is even 
reduced, when the patient is in remission [30]. It has also 
been found that MDD patients exhibited an increased 
white matter volume in the superior brainstem tegument, 
a region containing several nuclei which are associated 
with the pathologic hypothesis of MDD [13]. Therefore, 
exploring the volume changes of brainstem subregions 
can provide greater spatial sensitivity and a wider under-
standing of pathophysiological basis of MDD.

Some studies of the brainstem volume in MDD have 
produced contradictory results. A prior study which 
used voxel-based morphometry (VBM) analysis reported 
decreased gray matter concentrations in areas around the 
DRN in 47 patients with MDD [16]. Meanwhile, a recent 
study revealed that female patients with MDD showed 
non-significant volumetric differences in the subcorti-
cal regions, whole brainstem, and each brainstem region 
compared to healthy controls [31]. It is worth noting that 
the current findings are always inconsistent and various 

Conclusion  The present findings provided evidence of decreased brainstem volume involving in the 
pathophysiology of MDD, particularly, volumetric reduction in the SCP might represent a neurobiological marker 
for RMDD. Further research is needed to confirm our observations and deepen our understanding of the neural 
mechanisms underlying depression recurrence.
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factors may be associated with brain structural changes 
in patients with MDD, for instance, gender, illness 
duration, severity of symptoms, or times of depressive 
episodes.

In this context, the aims of the present study were to 
investigate volume changes in each region of the brain-
stem in patients with first-episode and recurrent MDD, 
and specifically to evaluate the impact of recurrence on 
brainstem volume in MDD patients. Based on previous 
findings, we hypothesized that morphologic changes of 
the brainstem could be involved in the pathophysiology 
of MDD, and depressive recurrence might lead to distinc-
tive deficits of brainstem substructures in MDD patients.

Methods
Participants
In this study, 61 patients diagnosed with MDD, includ-
ing 36 patients with first-episode MDD (FMDD) and 25 
patients with recurrent-episode MDD (RMDD), were 
recruited from Department of Psychiatry, The First Affili-
ated Hospital, Zhejiang University School of Medicine. 
All subjects satisfied the Diagnostic and Statistical Man-
ual of Mental Disorders, IV Edition (DSM-IV) criteria 
for MDD and met the following criteria: (1) aged 18–45 
years; (2) drug-naïve patients with first-episode depres-
sion or recurrent depression with continued withdrawal 
of more than 3 months; (3) total score of the 17-item 
Hamilton Depression Scale (HAMD-17) [32] ≥ 17; and 
(4) right-handedness. Meanwhile, a total of 50 age- and 
sex-matched healthy controls (HCs) were recruited from 
local residents, hospital staffs and students. All HCs were 
thoroughly interviewed and were free from any cur-
rent or lifetime history of psychiatric disorders accord-
ing to the DSM-IV criteria. According to the number of 
depressive episodes, MDD patients were grouped into 
two groups: first episode depressed individuals (FMDD 
group) and recurrent-episode depressed individuals 
(RMDD group). Patients with FMDD met the criteria that 
the total number of depressive episodes (including cur-
rent episode) = 1, duration of current depressive episode 
is over than 2 weeks and no history of drug treatment. 
And patients with FMDD met the criteria that the total 
number of depressive episodes (including current epi-
sode) > 1, duration of current depressive episode is over 
than 2 weeks and withdrawal time over three months. 
The general exclusion criteria for all subjects were as fol-
lows: (1) existence of any major medical disease including 
cardiovascular, respiratory, endocrine and neurologi-
cal diseases (e.g., epilepsy, brain trauma, and stroke); (2) 
current use of any medication that might affect the cen-
tral nervous system, (3) drug or alcohol dependence or 
abuse; (4) female with pregnancy; (5) with histories of 
psychotherapy and physical therapy, such as transcranial 
direct current stimulation (tDCS), transcranial magnetic 

stimulation (TMS), and electroconvulsive therapy (ECT); 
6) contraindications to MRI scan, including retractors 
or braces, metallic implants, and claustrophobia. The 
present study is one of our serial investigations focusing 
on MDD and the recruitment of participants has been 
described in our previous studies [33–35]. This study was 
approved by the local Medical Ethics Committee of The 
First Affiliated Hospital, Zhejiang University School of 
Medicine. Prior to commencement of the study, all par-
ticipants provided written informed consent.

Clinical assessments
Clinical assessments were conducted by two highly quali-
fied psychiatrists. The demographic and clinical data 
including age, sex, years of education, medical history 
(previous history of depression, disease duration, number 
of episodes and onset age) and medication use was col-
lected by a self-designed questionnaire from all the par-
ticipants. The Structured Clinical Interview for DSM-IV 
(SCID) consisting of 11 modules is a standard interview 
for evaluating psychiatric diagnoses. It was used in this 
study for the diagnostic assessment of MDD and further 
psychiatric disorders, which was also administered to 
each subject. The severity of depression was evaluated by 
using HAMD-17 [32], which has been demonstrated to 
have a good interrater reliability and internal reliability. 
It is the most commonly used clinician rating of depres-
sive symptom severity and higher scores indicated more 
severe depression.

MRI acquisition
Imaging data were acquired on a 3.0-T scanner (Signa, 
HDxt, GE healthcare, USA) with a standard birdcage 
head coil in the Magnetic Resonance Center belong-
ing to The First Affiliated Hospital, Zhejiang University 
School of Medicine. All participants were instructed 
to lie still with their eyes closed and to avoid falling 
asleep. The protocol in this study involved Sagittal 3D 
T1-weighted structural images, which were acquired 
by a brain volume (BRAVO) sequence with the follow-
ing parameters: TR = Minimum (7.3 ms), TE = Minimum 
(3.0 ms), TI = 1100 ms, flip angle = 7, FOV = 256 * 256 
mm2, Matrix = 256 * 256, slice thickness = 1  mm, band-
width = 31.25 kHz, NEX = 1, slices = 192.

Image processing
The volumes of 4 brainstem substructures, including, 
midbrain, pons, medulla oblongata, and superior cerebel-
lar peduncle (SCP), and the whole brainstem were cal-
culated from T1 images from each participant by using 
the automated procedure for volumetric measures in 
the FreeSurfer version 6.0 (Massachusetts General Hos-
pital, Boston, U.S., http://surfer.nmr.mgh.harvard.edu). 
The subregional brainstem segmentation technique, 

http://surfer.nmr.mgh.harvard.edu
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developed by JE Iglesias, K Van Leemput, P Bhatt, C 
Casillas, S Dutt, N Schuff, D Truran-Sacrey, A Boxer and 
B Fischl [36] was applied to estimate the volumes of 4 
brainstem substructures for all participants. This method 
allows for brainstem substructure segmentation using 
a robust and accurate Bayesian algorithm and has been 
specifically described in a previous publication [36]. In 
brief, the preprocessing procedures included skull strip-
ping, bias field correction [37], automated Talairach 
transformation to the standard space of each subject’s 
brain [38, 39], intensity normalization, and the segmen-
tation of subcortical structures [38]. After the above-
mentioned procedures were performed, the preprocessed 
brain images were fed into the fully automatic segmen-
tation algorithm implemented in the FreeSurfer and the 
volumes of the midbrain, pons, medulla oblongata, and 
SCP, and the entire brainstem were calculated. The auto-
mated parcellation of brainstem regions in our analysis is 
shown in Fig. 1.

Statistical analyses
All statistical analyses were performed using Statistical 
Package for the Social Sciences (SPSS) version 27.0 (IBM 
Corp., Armonk, NY, USA). For categorical and continu-
ous variables, the Chi-square tests (χ2) and analyses of 

variance (ANOVAs) were used for statistical analyses 
respectively. The volumes of the whole brainstem and its 
substructures in three groups were tested using ANOVAs 
and LSD method was used for post-hoc between-group 
comparison analyses. All volumetric analysis statistics 
were corrected for multiple comparison problems using 
the false discovery rate (FDR) method by Benjamini and 
Hochberg (BH). Finally, the association analyses between 
brainstem volumes and clinical features in all MDD 
patients were further performed with age, sex and educa-
tional level as covariates. The level of two-tailed statisti-
cal significance was set at p < 0.05 for all tests.

Results
Demographic and clinical characteristics
Demographic and clinical features of MDD patients 
and HCs in the sample are listed in Table 1. No signifi-
cant difference was found in age (F = 0.033, p = 0.967), sex 
(χ2 = 1.576, p = 0.455), and educational level (F = 1.122, 
p = 0.329) among three groups of individuals. The two 
groups of MDD patients did not differ with respect to 
onset age (F = 3.251, p = 0.076) and scores of HAMD-17 
(F = 0.021, p = 0.886). As we would expect, the RMDD 
group showed significantly prolonged illness duration 
(F = 34.20, p < 0.01) and increased times of depressive 
episodes.

Brainstem volume differences among groups
The ANOVA revealed significant brainstem volumet-
ric differences among three groups in the pons, mid-
brain, SCP, and the whole brainstem (F = 3.996 ~ 5.886, 
adjusted p = 0.015 ~ 0.028). As compared with HCs, both 
groups of MDD patients showed decreased volumes in 
the pons as well as the entire brainstem (t = 2.151 ~ 3.196, 
p = 0.002 ~ 0.034), however, only the FMDD group dem-
onstrated a significantly reduced volume in the mid-
brain (t = 2.996, p = 0.003). Specifically, the RMDD group 
exhibited significantly decreased SCP volume when 
comparing to both FMDD (t = 2.347, p = 0.021) group 
and HCs (t = 2.685, p = 0.008). The detailed information 

Table 1  Demographic and clinical characteristics for all subjects (n = 111)
FMDD
n = 36 means(SD)

RMDD
n = 25 means(SD)

HCs
n = 50 means(SD)

Analysis
F/χ2

p-values

Age 29.1(7.68) 28.8(6.81) 29.3(8.56) 0.033 0.967
Gender (Male/Female) 11/25 6/19 19/31 1.576 0.455
Education years 14.0(3.34) 14.3(2.54) 14.9(2.51) 1.122 0.329
Illness duration (months) 10.33(10.81) 46.6(32.9) / 34.20 < 0.01
Number of episodes / 2.64(0.86) / / /
Onset age 28.5(7.84) 24.9(7.31) / 3.251 0.076
HAMD 24.9(3.70) 25.0(3.72) / 0.021 0.886
FMDD, First-episode Major Depressive Disorder; HAMD, Hamilton Depression Scale; HCs, Healthy Controls; RMDD, Recurrent Major Depressive Disorder; SD, 
Standard Deviation

Fig. 1  Automated brainstem parcellation. T1 brain MRIs were automati-
cally parcellated by the brainstem procedure of FreeSurfer. The green label 
represents midbrain, red is pons, blue is superior cerebellar peduncle, and 
light bule is medulla oblongata
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for brainstem volumes of each group is summarized in 
Table 2; Fig. 2.

Finally, correlation analyses revealed that the SCP vol-
umes were negatively associated with the number of 
depressive episodes (r=-0.36, p < 0.01) and illness dura-
tion (r=-0.28, p = 0.035) in patients with MDD. In addi-
tion, we found that the SCP volumes were still negatively 
associated with the number of depressive episodes 
(adjusted p = 0.025) after BH correction.

Discussion
In this study, regional volumetric alterations of the 
brainstem were investigated in patients with FMDD and 
RMDD. The current findings revealed that decreased 
regional and entire volumes of the brainstem were 
involved in the pathophysiology of MDD, and the volume 
of SCP might be specifically influenced by disease dura-
tion of recurring episodes of depression.

The brainstem, a crucial relay for motor and sensory 
pathways, also plays a role in regulating various physi-
ological processes, such as cardiorespiratory control, 
arousal, and sleep [40]. The midbrain is a key area impli-
cated in the brainstem and is believed to be associated 

Table 2  Differences of volumes of brainstem regions among three groups
Brainstem regions FMDD vs. RMDD vs. HCs

FMDD
(n = 36)

RMDD
(n = 25)

HCs
(n = 50)

FMDD vs. RMDD vs. HCs FMDD vs. HCs RMDD vs. HCs FMDD vs. RMDD

F p adjusted p p p p
Medulla oblongata 4377.79±

317.10
4417.05±
482.00

4559.47±
531.60

1.827 0.166 0.166 0.074 0.210 0.744

Pons 13228.29±
1008.35

13407.05±
1335.38

14246.53±
1755.68

5.886 0.004 0.020 0.002 0.021 0.639

SCP 307.19±
46.08

276.87±
47.84

309.51±
52.82

3.996 0.022 0.028 0.831 0.008 0.021

Midbrain 5274.79±
417.13

5431.14±
520.15

5626.28±
614.90

4.566 0.012 0.020 0.003 0.141 0.266

Whole brainstem 23188.05±
1579.86

23532.11±
2115.81

24741.79±
2764.38

5.368 0.006 0.015 0.002 0.034 0.566

Data are mean ± standard deviation (mm3)

The adjusted p values were obtained using Benjamini and Hochberg (BH) correction

FMDD, First-episode Major Depressive Disorder; HCs, Healthy Controls; RMDD, Recurrent Major Depressive Disorder; SCP, Superior Cerebellar Peduncle

Fig. 2  Comparisons of volumes of brainstem regions among three groups. FMDD, First-episode Major Depressive Disorder; HCs, Healthy Controls; RMDD, 
Recurrent Major Depressive Disorder; SCP, Superior Cerebellar Peduncle. *p < 0.05, **p < 0.01
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with the development of MDD [16]. The pons is adjacent 
to the midbrain, which may be functionally linked to 
the midbrain. In the midbrain and pons, several nuclei, 
such as the VTA, DRN, and locus coeruleus, are associ-
ated with important monoaminergic neurotransmitters 
(dopamine, serotonin, and norepinephrine) in MDD [22, 
41]. Our study found that depressive individuals exhib-
ited decreased volumes of the pons, midbrain, as well 
as the entire brainstem when comparing to HCs, which 
might reflect altered functioning of the monoaminergic 
transmitters in MDD.

The current study is in parallel with previous research 
findings which showed significant structural alterations 
in the brainstem regions in MDD patients compared to 
HCs [28, 42, 43]. Consistently, a study in geriatric depres-
sion evaluating deep brain structures with transcra-
nial sonography (TCS) found that reduced echogenicity 
(interrupted/invisible echogenic line) of brainstem raphe 
was significantly higher in the depressed group [44]. For 
sub-region studies, it has been reported that adults diag-
nosed with MDD showed significantly smaller volumes 
in the midbrain, relative to non-depressed adults [16, 
45]. In a recent study, maternal antenatal depression was 
elucidated to be associated with decreased volumes in 
infant midbrain in early postnatal life, and that this was 
not accounted for by medication exposure [46]. More-
over, in patients with acute ischemic stroke, experienc-
ing brainstem and deep cerebral microbleeds were more 
likely to be associated with the development of post-
stroke depression (PSD) [47]. Taken together, our find-
ings extend existing research to suggest that alterations 
in brainstem anatomy may play an important role in the 
pathophysiology of MDD.

Another noteworthy finding of this study was smaller 
SCP volumes of patients with RMDD compared to both 
FMDD and HCs. The SCP is a crucial pathway connect-
ing the cerebellar cortex, especially the posterior cerebel-
lar lobes, the deep cerebellar nuclei and the whole brain 
[48]. It is a critical structure in the prefrontal-thalamic-
cerebellar circuit and disconnection in this brain net-
work is thought to be associated with both cognitive and 
affective functions [49, 50]. Additionally, the SCP may 
have direct and indirect connections to the vagus nerve 
through the parabrachial nucleus that surrounds it, and 
thus has direct and indirect connections to depression-
related cortical-limbic-thalamic-striatal neural circuits, 
which are key brain regions for RMDD [51, 52]. In this 
context, prior studies have already demonstrated the rela-
tionship between SCP and depressive symptoms in both 
MDD and bipolar disorder-II (BD-II) patients [31, 53].

Our study further revealed that decreased volumes of 
the SCP in MDD might be a biological marker of depres-
sive relapse specifically. The current finding was sup-
ported by a previous diffusional kurtosis imaging (DKI) 

study in patients with MDD and BD. It was found that 
patients with MDD, but not BD exhibited significant dif-
ferences from controls for DKI measures and cerebral 
blood flow (CBF) in bilateral SCP, suggesting that micro-
structural abnormality in the SCP might be a key neu-
robiological feature of MDD. Interestingly, correlation 
analysis showed there were associations between illness 
duration and DKI measures in the right SCP in MDD 
[54]. These findings might provide indirect evidence to 
confirm the relationship between SCP abnormalities and 
depressive relapse since long illness duration usually rep-
resented recurrence. Moreover, we also found significant 
negative associations of SCP volumes with illness dura-
tion and number of depressive episodes in MDD patients, 
which further suggested that volumetric reduction in the 
SCP might be a neurobiological marker for RMDD.

Several limitations of our study should be men-
tioned. First, the subregional brainstem segmentation 
technique developed by JE Iglesias, K Van Leemput, P 
Bhatt, C Casillas, S Dutt, N Schuff, D Truran-Sacrey, 
A Boxer and B Fischl [36] was the only method used in 
the present study, it will be better to combine multiple 
modalities in brainstem subregions to capture more 
information related to MDD in future studies. Sec-
ond, we were unable to elucidate the precise structural 
changes in various subregions associated with the mono-
aminergic system, such as the DRN, VTA, or locus coe-
ruleus. We also could not distinguish alterations of gray 
or white matter volumes in our analysis. Thus, the exact 
origins of the volume changes in the brainstem could not 
be identified. Third, previous studies have shown that the 
use of antidepressants may affect brainstem volume. Lai 
et al. observed that duloxetine, a kind of serotonin and 
norepinephrine reuptake inhibitor, possibly contrib-
uted to modest increases in the volumes of the brain-
stem, nucleus accumbens, putamen and hippocampus in 
MDD patients [55]. Meanwhile, Han et al. reported that 
greater brainstem volumes in drug-naïve MDD patients 
and found that the midbrain volume returns to normal 
after antidepressant treatment, and is even reduced, 
when the patient is in remission, which suggested the 
possible associations between midbrain volume changes 
and antidepressant medication in patients with MDD 
[30]. Therefore, although we recruited the patients with 
drug-naïve patients with first-episode depression or 
recurrent depression with continued withdrawal of more 
than 3 months, the changes of midbrain volumes in 
RMDD patients may be associated with previous use of 
anti-depression medication. Moreover, this study was a 
cross-sectional design, the causal relationship of altered 
brainstem volumes with MDD could not be directly 
determined.
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Conclusion
The present findings provided evidence of decreased 
brainstem volume involving in the pathophysiology of 
MDD, particularly, volumetric reduction in the SCP 
might represent a neurobiological marker for RMDD. 
Further research is needed to confirm our observations 
and deepen our understanding of the neural mechanisms 
underlying depression recurrence.
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