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Abstract 

Background Attention‑deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmen‑
tal disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its 
etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. 
MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed 
to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their 
biological relevance.

Methods Our study population consisted of 1126 children (aged 5–12 years, 46% female) from the Human Early Life 
Exposome study, a study spanning six ongoing population‑based European birth cohorts. Expression profiles of miR‑
NAs in whole blood samples were quantified by microarray and tested for association with ADHD‑related measures 
of behavior and neuropsychological functions from questionnaires (Conner’s Rating Scale and Child Behavior Check‑
list) and computer‑based tests (the N‑back task and Attention Network Test).

Results We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner’s questionnaire‑
rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological 
relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being 
linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, 
genetic risk, and co‑occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were 
significantly associated with Conner’s‑rated inattention. No associations were found with questionnaire‑rated total 
ADHD index or with computer‑based tests.

Conclusions The large overlap of our hyperactivity‑associated miRNAs with previous studies on ADHD is intriguing 
and warrant further investigation. Though this study should be considered explorative and preliminary, these findings 
contribute towards identifying a set of miRNAs for use as blood‑based biomarkers to aid in earlier and easier ADHD 
diagnosis.
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Background
Attention-deficit/hyperactivity disorder (ADHD) is a 
childhood-onset neurodevelopmental disorder charac-
terized by inattention and/or hyperactivity and impulsiv-
ity to a degree that interferes with normal functioning or 
development [1]. Prevalence in the worldwide popula-
tion is estimated at 5.9% among youths and 2.5% among 
adults [2]. The disorder is associated with e.g., impaired 
social functioning, lower academic achievements, sub-
stance abuse and criminality, as well as an increased risk 
of several somatic illnesses, injury, and comorbid psychi-
atric disorders, leading to increased healthcare costs for 
patients and their family members [2]. Meta-analyses of 
twin studies on ADHD estimate a mean heritability of 
74% [3], indicating substantial genetic involvement. Still, 
no single gene variant has been identified to confer con-
siderable risk of ADHD, instead, several genes each con-
tribute with a small increase in risk and ADHD has been 
noted as a polygenic and biologically complex disorder 
[4, 5]. Studies suggest an interplay of genetic and envi-
ronmental factors, where epigenetic mechanisms have an 
important role [6, 7].

MicroRNAs (miRNA) are a class of small non-coding 
RNAs that regulate gene expression post-transcription-
ally by pairing with target mRNAs to promote cleavage or 
translational repression [8]. They are involved in almost 
every biological processes and have been identified as 
key players in central nervous system development [9], 
prompting interest in exploring their role in the etiology 
of neurodevelopmental or psychiatric disorders, such as 
schizophrenia, autism spectrum disorder (ASD), bipolar 
disorder, and major depression disorder [10, 11]. Efforts 
to investigate their role in ADHD have mainly focused on 
biomarker identification and treatment response moni-
toring [12–14], while some studies have included mRNA 
expression levels, targeting of ADHD related genes iden-
tified from databases, grey matter volume, chronotype, 
and genetic variants, alongside their investigations of 
miRNAs [15–19]. A handful of studies report specific 
miRNAs associated with ADHD as promising biomark-
ers, but so far there is little overlap in results across 
studies, different analysis methods are used without 
standardization, and various sample types are utilized, 
such as whole blood, white blood cells, plasma, serum 
etc. Most studies also have relatively small study popu-
lations and only investigate a few select miRNAs [20]. 
Additionally, blood, or other accessible sample types, 
are needed as proxy for brain tissue in human studies on 
neurodevelopmental disorders. Though the blood–brain 
miRNA expression relationship is not yet well under-
stood, the hypothesis is that peripheral blood is useful to 
reflect states in the brain, and a recent study on baboons 
found significant correlation of several miRNAs between 

brain regions and peripheral blood mononuclear cells 
[21]. Interestingly, the correlates were enriched in miR-
NAs expressed in immune cell types known as markers 
of neuroinflammation, and inflammation has long been 
suspected as part of ADHD pathogenesis [22].

ADHD presents with a heterogeneous phenotype 
across individuals, gender, and age [1, 23], and diagnosis 
can be challenging. This is especially true for early diag-
nosis, as it relies heavily on how the parents perceive 
their child and early presenting ADHD can be misinter-
preted as part of the natural developmental process in 
preschool children [24]. Identifying a set of blood miR-
NAs specific to ADHD would therefore be of great value 
in several ways; as an efficient and minimally invasive 
diagnostic or prognostic biomarker for earlier diagnosis 
and better lifetime prognosis, to help elucidate etiology, 
and perhaps lead to personalized medication and other 
new therapeutic strategies [9, 25].

In this study we aimed to identify blood miRNAs asso-
ciated with ADHD-related traits as possible biomarker 
candidates and further map the biological function of 
those miRNAs. Among challenges mentioned above were 
small study populations and inclusion of very few select 
miRNAs. One possibility to mitigate this is by utilizing 
large population-based cohorts, and for those cohorts 
to include miRNA analysis to their inventory. Here, we 
take the opportunity provided by the Human Early Life 
Exposome (HELIX) study [26], spanning six longitudinal 
population-based European birth cohorts, to investigate 
miRNA expression and ADHD-related traits in a large 
and geographically diverse population.

Materials and methods
Study population
The Human Early Life Exposome (HELIX) study is a 
collaboration across six established and ongoing longi-
tudinal population-based European birth cohorts [26]: 
the Born in Bradford (BiB) study in the UK [27], the 
Étude des Déterminants pré et postnatals du développe-
ment et de la santé de l’Enfant (EDEN) study in France 
[28], the INfancia y Medio Ambiente (INMA) cohort in 
Spain [29], the Kaunas cohort (KANC) in Lithuania [30], 
the Norwegian Mother, Father and Child Cohort Study 
(MoBa) [31], and the RHEA Mother–Child Cohort study 
in Crete, Greece [32]. HELIX is and expansive cohort 
study focused on environmental exposures together with 
molecular profiles and neurodevelopment in a general 
population. Within HELIX, a subcohort of 1301 children 
was selected to participate in a follow-up examination 
between ages 5–12. These follow-up visits, conducted 
in 2014 and 2015 across all six study centers, included 
questionnaires, clinical examination, neurodevelopmen-
tal tests, and biological sample collection, with miRNA 
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expression profile data available for 1126 children mak-
ing up our study population. For more information on 
HELIX or the subcohort inclusion criteria, see Maitre 
et  al. [26]. Further exclusion criteria were children with 
missing values for our chosen measures of ADHD-related 
traits (described below) and children using ADHD medi-
cation, as ADHD medication use is expected to target 
our chosen measures of behavior and neuropsychological 
functions and has been shown to affect expression lev-
els of miRNAs differentially expressed between ADHD 
cases and controls [12]. Other medication use was not 
excluded, as we do not expect it to systematically target 
ADHD-related behavior or miRNAs specific for ADHD.

Measures of behavior and neuropsychological functions
The HELIX subcohort data includes two computer-based 
tests and two parent-rated questionnaires with informa-
tion regarding ADHD-related traits or symptoms: The 
N-back task, the Attention Network Test (ANT), Con-
ner’s Rating Scale, and Child Behavior Checklist (CBCL). 
The N-back task is a computer-based test to assess work-
ing memory [33]. We chose the 3-back condition with 
numbers as stimuli and used the measure d prime (d’), 
which is the difference in hit rate and false alarm rate, 
allowing a distinction of signal and noise. A higher d’ 
indicates better signal detection, i.e., better working 
memory. ANT measures the cognitive domain attention 
function [33]. Here we chose four measures; i) hit reac-
tion time standard error (HRT-SE), which is response 
speed consistency throughout the test as a measure of 
inattentiveness, ii) incorrect responses (zeroes), as a 
measure of impulsivity, iii) omission errors (failure to 
respond), as a measure of selective attention, and iv) 
conflict score, as a measure of the executive attention 
network, which is involved in solving conflict between 
neural systems and in regulating thoughts and feelings. 
Optimal performance is reflected in low scores for all 
four outcomes. The 27-item short form of Conner’s Rat-
ing Scale [34] provided an ADHD index, along with two 
sub-scores categorized as hyperactivity and cognitive 
problems/inattention. We included these sub-scores in 
our analyses to reflect two of the main ADHD presen-
tations, predominantly hyperactive and predominantly 
inattentive. The 99-item CBCL/6–18 version for children 
also provided a score for total ADHD problems [35]. Low 
scores indicate lighter problem load in both question-
naires. The questionnaires were completed by parents 
within a week of the follow-up visits for the subcohort.

Blood miRNA expression
RNA was extracted from whole blood samples collected 
in Tempus Blood RNA Tubes [36] using the MagMAX 
for Stabilized Blood Tubes RNA Isolation kit (Thermo 

Fisher Scientific, USA). Extraction was done by order 
of arrival, i.e., by cohort. miRNA expression levels were 
quantified with the SurePrint Human miRNA Microar-
ray rel. 21 (Agilent Technologies, USA) in two rounds 
of 1126 and 216 samples (1087 and 180 unique HELIX 
samples), at the Genomics Core Facility at the Centre for 
Genomic Regulation (CRG, Spain). Within each round, 
samples were randomized by sex and cohort. Expression 
levels were normalized using the least variant set method 
[37] with background correction by the Normexp 
method [38], followed by  log2 transformation. miRNAs 
were annotated using Agilent annotation (“Annota-
tion_70156”) combined with additional information from 
miRbase v21. Additional correction of blood cell com-
position and batch effect was done with the surrogate 
variable analysis (SVA) standard method [39]. SVA was 
performed for each neurodevelopmental measure sepa-
rately, and we obtained the residuals of surrogate vari-
ables (SVs) while protecting sex, age, and cohort, with 23 
SVs calculated for the N-back test measure, and 25 for 
all other neurodevelopmental measures. See Additional 
file  2, Fig. S1  for principal component analysis showing 
effect of SVA correction on laboratory processing round. 
After quality control and relevant processing steps the 
dataset consisted of 1436 autosomal miRNAs. We set a 
miRNA call rate of > 70%, resulting in 308 miRNAs for 
subsequent analysis. Detailed information is included in 
Additional file 1. This protocol was previously described 
by Vives-Usano et al. [40] for round 1 samples only.

Statistical analyses
Our nine neurodevelopmental variables were age-
adjusted through linear regression as a function of age 
and using the resulting residuals as replacement values. 
Data from Conner’s and CBCL were heavily right-skewed 
due to the nature of questionnaire data measuring devia-
tions from the average population on only one end of the 
scale and with bounded response. ANT zeros and omis-
sions, being count data with zero-inflation, had similar 
distributions. The residuals were thus transformed closer 
towards normality using Tukey’s Ladder of Power in the 
rcompanion R package and re-scaled with mean = 100 
and a standard deviation (SD) equal to the residuals’ SD 
prior to transformation. Bivariate association analysis 
was performed between the variables age, sex, cohort, 
child’s ancestry, socioeconomic status (SES) (family afflu-
ence scale, FAS II [41], i.e., subjective wealth), maternal 
age and maternal education, and our nine neurodevelop-
mental measures. We used Spearman’s rank correlation 
for all variables except cohort, where one-way Analy-
sis of Variance (ANOVA) was applied. Associations 
with age were investigated using the raw data, prior to 
transformation.
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Linear regression models were applied to investigate 
the relationship between miRNA expression profiles and 
our selected neurodevelopmental variables using the 
limma R package [38], with sex and cohort included in 
the models as covariates. Note that the effect of age was 
already adjusted for. The Benjamini–Hochberg method 
for multiple testing correction was applied with a false 
discovery rate (FDR) < .05. We contrasted our findings 
with previous literature, based on a search in PubMed 
(see Additional file  1), both through direct comparison 
and enrichment analyses using the Chi-square or Fisher’s 
exact test. Sensitivity analyses were performed on the 
models by; i) analyses stratified by cohort, ii) analyses 
stratified by sex, iii) analyses stratified by or with labo-
ratory processing round included as covariate, and iv) 
analyses with SES included as covariate. Missing values 
for SES were replaced by imputation using the R package 
missForest [42].

Gene targets and KEGG pathways
Mienturnet (microRNA-target enrichment and network-
based analysis) [43] with target validation from miR-
TarBase was used to predict genes targeted by miRNAs 
found significant from limma analyses. We further ana-
lyzed these miRNA-target interactions with the R pack-
age miRmapper to build a clustering dendrogram based 
on gene target similarity [44]. To gain further insight into 
the functional effects of the miRNAs identified in this 
study, we performed functional enrichment analysis with 
DIANA mirPath v.3 [45] using validated targets from 
TarBase v7. Analysis was run as genes union with FDR 
correction and significance set to p < 0.05.

Results
Demographic characteristics
The study population and its characteristics across 
cohorts, including scores for measures of behavior and 
neuropsychological functions, is presented in Table  1. 
There were slightly more male (54%) than female chil-
dren, a trend consistent across cohorts with no signifi-
cant difference (p = 0.9273) and EDEN being the most 
skewed towards male (57.5%). Median child age over-
all was 8.2  years but varied significantly (p < .0001) by 
cohort: BiB = 6.6, EDEN = 10.8, INMA = 9.0, KANC = 6.4, 
MoBa = 8.5, and RHEA = 6.5. With exception to the 
BiB cohort, which had 55.4% children of non-European 
ancestry from mainly Pakistani origins, there was lit-
tle variation in the self-reported ancestry, as 87.9% of 
the study population were of European ancestry. Mean 
maternal age was relatively similar across cohorts, though 
still a statistically significant difference (p < .0001). MoBa 
stood out as the cohort with the highest level of maternal 
education, with 76.7% highly educated vs. 46.7% in the 

total population, and together with EDEN they also had 
the highest SES rating.

Fourteen subjects were removed due to ADHD medi-
cation use: one from EDEN and 13 from INMA. Of these 
14 subjects, 11 were male, and the median age for all 14 
was 9.3  years with a range of 8.1–11.2. For the N-back 
task there was a total of 219 subjects with missing val-
ues, including all participants in KANC due to technical 
issues, leaving a study population of 894 subjects. The 
rest: ANT, Conner’s, and CBCL, together had a total of 
23 subjects with missing values, and thus a study popula-
tion of 1089 subjects.

Bivariate association analysis
Prior to transformation, all measures of behavior and 
neuropsychological functions, except for Conner’s 
inattention, correlated with age at a significant level 
(p < 0.0001). This relationship was moderate in strength 
(correlation coefficient, rs = .40-.59) for ANT HRT-SE, 
zeros, and omissions; weak (rs = .20-.39) for ANT con-
flict, N-back, and Conner’s hyperactivity; and very 
weak (rs < .20) for Conner’s ADHD index and CBCL 
ADHD problems (Additional file 2, Fig. S2). After age-
adjusting and Tukey transformation, the variable cohort 
correlated most with our measures of behavior and neu-
ropsychological functions (Table  2). Only ANT con-
flict and N-back were not significantly correlated with 
cohort. Sex, SES, maternal age, and maternal education 
were all significantly correlated with only half or less 
of our measures of behavior and neuropsychological 
functions, child’s ancestry with none, and the strength 
of these relationships were all very weak. Notably, the 
strongest relationships with sex were observed for the 
three measures from Conner’s, and in questionnaire 
data, female subjects were consistently rated with fewer 
ADHD-related problems compared to male subjects 
(Additional file 2, Fig. S3).

miRNA expression profiles and neuropsychological 
functions
Linear regression models in limma identified statistically 
significant associations with the Conner’s sub-scores for 
hyperactivity and inattention, while no significant results 
were achieved for its ADHD index, CBCL, or measures 
from ANT and N-Back. Conner’s hyperactivity score 
was significantly associated with expression levels of 29 
miRNAs (Table  3). All 29 miRNAs had lower expres-
sion levels for higher hyperactivity scores and effect sizes 
were small, with a  log2 fold-change (defined here as the 
change in expression per unit of increase in the predic-
tor variable) in the range -0.011 to -0.036. Three miRNAs 
were significantly differentially expressed for Conner’s 
inattention score: miR-4257 had lower expression levels 
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for higher inattention scores, while miR-4443 and miR-
3180-3p had higher expression levels (Table 3). Also here, 
effect sizes were small, with a  log2 fold-change of -0.016, 
0.020, and 0.020, respectively. Note that interpretation 

of effect sizes needs to account for the data having been 
transformed and re-scaled. Effect sizes will also appear 
smaller due to our measures of behavior and neuropsy-
chological functions being on a continuous scale, as 

Table 1 Study population characteristics and neuropsychological function scores for the HELIX subcohort

Presented are N (%) or median [min, max]. Measures of behavior and neuropsychological function are presented after transformation of raw data

BiB Born in Bradford (UK), EDEN Étude des Déterminants pré et postnatals du développement et de la santé de l’Enfant (France), INMA INfancia y Medio Ambiente 
(Spain), KANC Kaunas cohort (Lithuania), MoBa Norwegian Mother, Father and Child Cohort Study, RHEA Mother–Child Cohort study in Crete (Greece), SES 
Socioeconomic status, CBCL Child Behavior Checklist, ANT Attention Network Test, HRT-SE Hit reaction time standard error

P-values for significant difference between cohorts
a p-values from chi-square test of homogeneity
b p-values from one-way ANOVA

BiB EDEN INMA KANC MoBa RHEA Total P
(N = 166) (N = 87) (N = 314) (N = 153) (N = 249) (N = 157) (N = 1126)

Child sex
 Male 91 (54.8%) 50 (57.5%) 164 (52.2%) 84 (54.9%) 131 (52.6%) 88 (56.1%) 608 (54.0%) 0.9273a

 Female 75 (45.2%) 37 (42.5%) 150 (47.8%) 69 (45.1%) 118 (47.4%) 69 (43.9%) 518 (46.0%)

Child age
 Years 6.64 [6.15, 7.33] 10.8 [9.28, 12.0] 8.99 [7.56, 10.7] 6.41 [5.44, 7.81] 8.45 [6.92, 9.80] 6.46 [6.02, 7.54] 8.17 [5.44, 12.0]  < .0001b

Child ancestry
 European 74 (44.6%) 87 (100%) 281 (89.5%) 153 (100%) 238 (95.6%) 157 (100%) 990 (87.9%)  < .0001a

 Non‑European 92 (55.4%) 0 (0%) 33 (10.5%) 0 (0%) 11 (4.4%) 0 (0%) 136 (12.1%)

SES
 Low 47 (28.3%) 0 (0%) 30 (9.6%) 20 (13.1%) 3 (1.2%) 27 (17.2%) 127 (11.3%)  < .0001a

 Medium 73 (44.0%) 18 (20.7%) 115 (36.6%) 84 (54.9%) 69 (27.7%) 76 (48.4%) 435 (38.6%)

 High 46 (27.7%) 69 (79.3%) 166 (52.9%) 48 (31.4%) 177 (71.1%) 54 (34.4%) 560 (49.7%)

  (Missing) 0 (0%) 0 (0%) 3 (1.0%) 1 (0.7%) 0 (0%) 0 (0%) 4 (0.4%)

Maternal age
 Years 28.0 [16.0, 42.0] 30.1 [20.2, 40.8] 32.1 [18.2, 43.0] 28.5 [19.2, 43.5] 32.0 [24.0, 43.0] 30.9 [17.0, 42.3] 31.0 [16.0, 43.5]  < .0001b

Maternal education
 Low 76 (45.8%) 8 (9.2%) 75 (23.9%) 9 (5.9%) 0 (0%) 7 (4.5%) 175 (15.5%)  < .0001a

 Medium 21 (12.7%) 33 (37.9%) 117 (37.3%) 56 (36.6%) 48 (19.3%) 90 (57.3%) 365 (32.4%)

 High 51 (30.7%) 44 (50.6%) 97 (30.9%) 85 (55.6%) 191 (76.7%) 58 (36.9%) 526 (46.7%)

  (Missing) 18 (10.8%) 2 (2.3%) 25 (8.0%) 3 (2.0%) 10 (4.0%) 2 (1.3%) 60 (5.3%)

Conner’s
 ADHD Index 98.2 [66.4, 134] 99.5 [82.1, 135] 104 [74.9, 136] 107 [65.2, 130] 91.8 [70.8, 132] 104 [67.5, 136] 101 [65.2, 136]  < .0001b

 Hyperactivity 97.8 [65.9, 134] 102 [92.3, 127] 101 [84.8, 134] 107 [54.5, 135] 89.3 [74.5, 122] 102 [63.7, 130] 98.7 [54.5, 135]  < .0001b

 Inattention 91.6 [79.4, 135] 93.6 [82.4, 133] 105 [80.7, 134] 111 [78.7, 131] 92.3 [80.1, 134] 98.4 [79.4, 134] 99.3 [78.7, 135]  < .0001b

  (Missing) 0 (0%) 0 (0%) 3 (1.0%) 0 (0%) 0 (0%) 4 (2.5%) 7 (0.6%)

CBCL
 ADHD Problems 102 [73.0, 126] 101 [82.1, 136] 105 [77.6, 135] 107 [70.5, 130] 90.2 [75.6, 129] 102 [73.5, 134] 101 [70.5, 136]  < .0001b

  (Missing) 0 (0%) 0 (0%) 2 (0.6%) 1 (0.7%) 0 (0%) 2 (1.3%) 5 (0.4%)

ANT
 HRT‑SE 104 [66.1, 126] 106 [79.7, 141] 99.2 [64.5, 142] 105 [68.7, 132] 95.0 [63.6, 136] 99.8 [61.5, 129] 100 [61.5, 142]  < .0001b

 Zeros 96.6 [58.2, 143] 106 [98.2, 139] 100 [82.8, 128] 91.5 [28.7, 148] 99.6 [78.0, 141] 97.5 [57.3, 147] 100 [28.7, 148]  < .0001b

 Omissions 96.8 [59.6, 145] 111 [102,126] 102 [84.1, 145] 103 [40.8, 167] 96.4 [73.6, 132] 91.3 [45.3, 150] 100 [40.8, 167]  < .0001b

 Conflict 99.3 [51.0, 172] 100 [45.1, 134] 99.2 [58.8, 149] 99.8 [27.0, 136] 98.9 [69.8, 204] 97.9 [‑5.19, 172] 99.3 [‑5.19, 204] 0.7730b

  (Missing) 3 (1.8%) 6 (6.9%) 3 (1.0%) 0 (0%) 0 (0%) 0 (0%) 12 (1.1%)

N-back
 d’ 98.3 [68.5, 147] 95.9 [62.8, 131] 101 [60.8, 142] NA 102 [63.6, 139] 102 [68.4, 149] 101 [60.8, 149] 0.0864b

  (Missing) 26 (15.7%) 7 (8.0%) 8 (2.5%) 153 (100%) 10 (4.0%) 15 (9.6%) 219 (19.4%)
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compared to a case–control study. Sensitivity analysis 
resulted in changes to significance, mainly loss of signifi-
cance, as detailed in Additional file 3, Table S1. miRNAs 
retained as significant were the same as the 32 identified 
in our original models, with only a few exceptions.

A literature search in PubMed identified 56 miRNAs 
whose expression levels have been previously linked with 
ADHD using various sample matrices [15, 19, 46–49] 
(Additional file 3, Table S2), and 36 of these were present 
in our 308-miRNA expression matrix. Our set of 29 miR-
NAs differentially expressed for hyperactivity included 
15 of those from previous literature (Table 3). Addition-
ally, three others belong to families of miRNAs associ-
ated with ADHD. From direct comparison alone this is 
more overlap than we expected from random chance. 
Chi-square (p = 5.9e-14) and Fisher’s exact tests (p = 9.6e-
10) confirmed this, and the expected overlap would be to 
find three of our 29 significant miRNAs in the literature 
list.

In the clustering dendrogram based on gene target 
similarity for the 29 miRNAs identified for hyperactivity, 
miRNA-families clustered together (Fig.  1). These fami-
lies are based on ancestors in the phylogenetic tree, sug-
gesting a common sequence or structure configuration, 
and thus also similar physiological functions. The easily 

identifiable family clusters in the dendrogram are mem-
bers of the let-7, miR-19, miR-181, and miR-29 families. 
Additionally, there were two members of the mir-15/107 
family: miR-103a-3p, and miR-107.

Functional enrichment analysis of the genes targeted 
by our 29 miRNAs identified for hyperactivity revealed 
involvement in several KEGG pathways [50] relevant to 
neurodevelopment and function, such as axon guidance, 
neurotrophin signaling, and sphingolipid signaling; fatty 
acid metabolism, degradation, and biosynthesis; signaling 
pathways for the hormones insulin, prolactin, estrogen, 
and thyroid hormone; steroid biosynthesis, and glycosa-
minoglycan biosynthesis for keratan sulfate (Additional 
file  3, Table  S3). We also performed functional enrich-
ment analysis for genes targeted by the 15 miRNAs previ-
ously implicated in ADHD. In addition to the pathways 
mentioned above, the highly relevant pathway circadian 
rhythm was significant for this smaller set of gene targets, 
along with the vitamin B6 metabolism pathway (Addi-
tional file 3, Table S4).

Discussion
In this study we have identified several miRNAs asso-
ciated with hyperactivity, that have also been linked 
to ADHD in previous studies, as possible biomarker 

Table 2 Bivariate association between measures of behavior and neuropsychological functions and selected variables describing 
study population characteristics

BiB Born in Bradford (UK), EDEN Étude des Déterminants pré et postnatals du développement et de la santé de l’Enfant (France), INMA INfancia y Medio Ambiente 
(Spain), KANC Kaunas cohort (Lithuania), MoBa Norwegian Mother, Father and Child Cohort Study, RHEA Mother–Child Cohort study in Crete (Greece), ANT Attention 
Network Test, HRT-SE Hit reaction time standard error, N-back The N-back task with 3-back numbers, CBCL Child Behavior Checklist, SES Socioeconomic status, SD 
Standard deviation
a  For cohort, p-values from one-way ANOVA; mean (SD) are shown

p-values based on Spearman rank coefficient; correlation coefficient is shown. * p < .01. ** p < .001. *** p < .0001

Variable ANT Conner’s Rating Scale CBCL

HRT-SE Zeros Omissions Conflict N-back ADHD index Inattention Hyperactivity ADHD 
problems

Cohorta

 BiB 101.9 
(14.1)***

98.9 (20.2)*** 97.6 (19.4)*** 100.9 (18.2) 97.9 (15.4) 96.1 (17.1)*** 96.0 (15.4)*** 95.9 (18.4)*** 97.8 (16.1)***

 EDEN 107.4 (15.6) 107.5 (6.5) 111.9 (3.9) 101.2 (9.4) 97.1 (14.5) 103.9 (11.9) 99.1 (13.0) 106.6 (9.7) 103.7 (11.8)

 INMA 99.7 (15.1) 100.5 (8.2) 102.3 (6.4) 99.1 (10.2) 100.5 (15.6) 102.2 (15.1) 104.5 (14.8) 103.9 (13.0) 104.0 (14.1)

 KANC 104.1 (12.4) 94.4 (20.7) 104.5 (21.4) 98.8 (16.2) NA (NA) 104.3 (14.4) 107.9 (13.0) 105.2 (17.1) 104.5 (15.8)

 MoBa 94.8 (15.1) 101.4 (10.9) 97.2 (7.5) 100.8 (13.8) 101.2 (13.9) 93.9 (13.9) 94.7 (13.3) 92.8 (8.7) 91.9 (12.8)

 RHEA 99.1 (14.8) 99.5 (18.5) 91.9 (19.8) 100.1 (20.9) 100.6 (15.3) 103.5 (11.8) 96.9 (14.8) 100.1 (16.8) 101.6 (14.1)

Child sex 0.06 ‑0.12** 0.06 ‑0.11** 0.01 ‑0.15*** ‑0.15*** ‑0.14*** ‑0.07

Child ancestry 0.07 0.05 0.04 0.06 ‑0.03 ‑0.02 ‑0.04 ‑0.02 0.02

SES ‑0.06 ‑0.01 0.00 ‑0.01 0.04 ‑0.11** ‑0.05 ‑0.07 ‑0.12**

Maternal age ‑0.10** 0.01 ‑0.06 ‑0.04 0.07 ‑0.10* ‑0.05 ‑0.10* ‑0.13***

Maternal 
education

‑0.14*** ‑0.05 ‑0.10* 0.00 0.10* ‑0.10* ‑0.06 ‑0.14*** ‑0.20***
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candidates. This large overlap, without pre-selection of 
miRNAs from literature, is an important contribution to 
the field. In addition, our study population was geograph-
ically diverse, spanning six European countries, with a 
relatively wide age-span. The results also highlight some 
of the challenges in the search for biomarkers of ADHD, 
surrounding the different presentations of the disorder, 
age of noticeable symptoms, and gender differences com-
bined with societal expectations and masking.

Hyperactivity measured by the parent-rated question-
naire Conner’s Rating Scale was found associated with 29 
miRNAs, 15 of which had already been linked to ADHD 
by other studies on blood-based samples or target pre-
diction. In alignment with our findings, miR-106b-5p, 
miR-107, miR-24-3p, and miR-148b-3p have all been 
identified as downregulated in whole blood of ADHD 
cases compared to controls in previous studies [15, 51]. 

Table 3 MiRNAs statistically significant for Conner’s hyperactivity 
or inattention score

Significance at FDR < .05. Table sorted by  log2FC.  log2FC,  log2 fold-change 
defined as change in expression per unit of increase in the predictor variable; 
95% CI 95% confidence interval for  log2FC, Adj. p value P value adjusted by FDR 
correction
a  miRNAs associated with ADHD in previous literature
b  miRNAs belonging to miRNA-families associated with ADHD in previous 
literature

miRNA log2FC 95% CI Adj. p value

Hyperactivity hsa‑miR‑144‑3p ‑0.0361  ± 0.0220 0.0240

hsa‑miR‑19a‑3pa ‑0.0278  ± 0.0155 0.0148

hsa‑miR‑142‑3pa ‑0.0268  ± 0.0152 0.0154

hsa‑miR‑101‑3pa ‑0.0252  ± 0.0130 0.0148

hsa‑miR‑29c‑3p ‑0.0251  ± 0.0139 0.0148

hsa‑miR‑29b‑3p ‑0.0244  ± 0.0133 0.0148

hsa‑miR‑29a‑3p ‑0.0222  ± 0.0135 0.0240

hsa‑miR‑19b‑3pa ‑0.0211  ± 0.0133 0.0299

hsa‑miR‑148b‑3pa ‑0.0192  ± 0.0107 0.0148

hsa‑miR‑30e‑5pa ‑0.0190  ± 0.0105 0.0148

hsa‑miR‑130a‑3pa ‑0.0185  ± 0.0110 0.0224

hsa‑miR‑150‑5pa ‑0.0182  ± 0.0123 0.0423

hsa‑let‑7i‑5pb ‑0.0175  ± 0.0096 0.0148

hsa‑miR‑181b‑5p ‑0.0168  ± 0.0094 0.0148

hsa‑miR‑186‑5p ‑0.0164  ± 0.0091 0.0148

hsa‑miR‑146b‑5p ‑0.0161  ± 0.0102 0.0299

hsa‑miR‑106b‑5pa ‑0.0157  ± 0.0101 0.0300

hsa‑miR‑942‑5pa ‑0.0156  ± 0.0076 0.0148

hsa‑miR‑107a ‑0.0149  ± 0.0085 0.0161

hsa‑miR‑27a‑3pa ‑0.0144  ± 0.0093 0.0300

hsa‑miR‑140‑3pa ‑0.0136  ± 0.0081 0.0225

hsa‑miR‑181a‑5p ‑0.0135  ± 0.0087 0.0300

hsa‑miR‑24‑3pa ‑0.0127  ± 0.0083 0.0322

hsa‑miR‑92a‑3pa ‑0.0127  ± 0.0076 0.0225

hsa‑let‑7c‑5pb ‑0.0127  ± 0.0081 0.0300

hsa‑miR‑103a‑3pb ‑0.0123  ± 0.0084 0.0461

hsa‑miR‑342‑5p ‑0.0121  ± 0.0083 0.0458

hsa‑miR‑324‑5p ‑0.0119  ± 0.0075 0.0299

hsa‑miR‑378i ‑0.0112  ± 0.0074 0.0354

Inattention hsa‑miR‑4257 ‑0.0159  ± 0.0080 0.0282

hsa‑miR‑4443 0.0197  ± 0.0103 0.0282

hsa‑miR‑3180‑3p 0.0198  ± 0.0107 0.0287

Fig. 1 Clustering dendrogram of differentially expressed miRNAs 
significantly associated with the hyperactivity score. Based 
on the similarity of the miRNAs’ Jaccard index values to each other. 
Analyzed by the R‑package miRmapper, see Da Silveira et al. (2018) 
[44] for calculations
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Another study on plasma samples identified miR-142-3p 
as downregulated in ADHD cases with psychiatric disor-
der history in their immediate family [17]. Recently, in a 
study based on literature and publicly available databases, 
we identified a set of ADHD-related genes along with 20 
miRNAs as potential regulators of those genes, including 
miR-19a-3p, miR-19b-3p, and miR-24-3p [19]. This rep-
lication of results is especially exciting as our previous 
study was based on target-prediction, not analysis of bio-
logical samples from subjects. Analysis of publicly availa-
ble data of expression in brain tissue for this ADHD-gene 
and -miRNA set also revealed that their expression pat-
terns were dependent on developmental stage [19].

Further, we identified three miRNAs associated with 
the inattention trait of Conner’s Rating Scale, while no 
miRNAs were significantly differentially expressed for 
the total ADHD index. This highlights the importance 
of including ADHD presentation, as more and more 
research now explores the heterogeneity of ADHD, 
its varying presentations, or whether adult-persistent 
ADHD could be a separate subtype. The differences 
between the distinct presentations of ADHD have shown 
to contribute to poor separation of ADHD cases from 
neurotypical controls in performance on neuropsycho-
logical tests, and separation was greater when splitting 
cases into groups depending on type of presentation [52]. 
Findings of genetic associations with different presenta-
tions of ADHD further strengthens the hypothesis that 
there is a biological difference, and again, highlights the 
need to include this information in studies [53, 54].

The concordance of the hyperactivity trait with previ-
ous findings on miRNAs in ADHD, and not the inatten-
tive trait, could in part be due to the higher likelihood of 
individuals with the combined or hyperactive presenta-
tion, with evident hyperactivity, to be referred for clinical 
evaluation, and thus having higher prevalence in clinical 
research [55]. More importantly, symptoms of hyperac-
tivity and impulsivity can typically be observed as early 
as four years of age, and peak in severity at 7–8  years, 
while symptoms of inattention in general only becomes 
noticeable later, around 8–9 years of age [56, 57]. Symp-
toms of inattention could also go unnoticed by parents 
until demands put on the child increase and cause them 
to fail at school or in social interactions, as compared to 
high levels of hyperactivity and impulsivity that are more 
immediately troubling to caretakers at home. This delay 
in noticeable symptom impact is even more predominant 
in children with high IQ-scores or living in a highly struc-
tured environment [58]. As the median age of this study 
was eight years, and with relatively high SES-rating, one 
explanation could be that the parent-rated hyperactivity 
measure is more relevant and accurate for this popula-
tion when compared to the inattention measure.

Limitations in the use of parent-rated questionnaires 
could also be relevant to the results seen in sensitiv-
ity analysis stratified by sex. There were no significant 
associations in the female population, while the male 
population retained two and four significant miRNAs 
for inattention and hyperactivity, respectively. Prosocial 
and compensatory behavior to mask impairments is to 
a greater extent seen in girls and women, and combined 
with gender biases due to stereotypical expectations, 
this could lead to underreporting or inconsistencies 
from parental observation of girls [59, 60]. This trend is 
observed in our questionnaire data, where female sub-
jects were consistently rated with fewer ADHD-related 
problems compared to male subjects (Additional file  2, 
Fig. S3A-D), however we cannot conclude whether this is 
due to real differences between the sexes in this popula-
tion or from bias in parental observation.

Efforts to identify a miRNA-based biomarker of ADHD 
have not yet produced robust findings validated by sev-
eral studies, and most studies have used small popula-
tions, such as those already mentioned, with N = 29–104 
[15, 17, 51]. ADHD and its traits, as well as other neu-
rodevelopmental and psychiatric disorders, are complex 
and polygenic, so it can be hypothesized that a set of sev-
eral miRNAs contributes to, or are an effect of, the overall 
etiology through small changes in each one, as opposed 
to monogenic conditions where there is great contribu-
tion and effect from one single source. Our findings and 
the large overlap with previous work are in line with this 
hypothesis and the feasibility of then building a multiple-
miRNA model. One attempt at such a prediction model 
for ADHD was based on 13 miRNAs measured in white 
blood cell samples. They used a small study popula-
tion as a training set (N = 122, AUROC (Area Under the 
Receiver Operating Characteristics): 0.94) and showed 
satisfactory results in classifying subjects in a testing set 
(N = 40, AUROC: 0.91) [61]. Six of our miRNAs were also 
included in this model. Later they replicated their results 
with 12 of the original 13 miRNAs, where all were differ-
entially expressed at a significant level between ADHD 
cases and controls (N = 228) and their model attained 
an AUROC of 0.97, but without a testing set [48]. Wang 
et  al. also raised concerns regarding their studies not 
accounting for different ADHD presentations and the 
limitation in their study population being selected from a 
small geographical area with no ethnic diversity.

This latest work by Wang et al. also included a follow-
up after 12 months of methylphenidate treatment that 
identified miR-140-3p and miR-27a-3p as potential bio-
markers of remission state during MPH treatment. Fur-
ther, in a previous study they found gray matter volume 
to be negatively correlated with expression levels of 
miR-140-3p and miR-30e-5p [16], and followed this up 
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now by observing that miR-140-3p facilitated growth 
of the HCN-2 human neuronal cell line by repressing 
apoptosis [48].

Several of our 29 hyperactivity-associated miRNAs 
belong to miRNA-families relevant for neurodevelop-
ment and/or brain function. The ten members of the 
highly conserved miR-15/107 family includes miR-
103a, and miR-107, and have, among other things, been 
implicated in cell division, stress response, and neuro-
degenerative disease [62]. Members of the miR-17 fam-
ily, with miR-106b, have been identified as regulators 
of early development and stem cell differentiation [63]. 
Among some of the first discovered and most highly 
expressed miRNAs, are the let-7 family members, 
including let-7c and let-7i. Though most of our knowl-
edge of their function is related to cancers, they also 
regulate important functions in the developing brain 
[64]. Let-7c regulates synaptic and neuronal function 
and is associated with major depression disorder [64, 
65]. This family has also been associated with ADHD, as 
let-7d and let-7g have been implicated in several stud-
ies [12, 13, 61, 66]. Another interesting family of four 
is the miR-181 family, with miR-181a and miR-181b, 
implicated in embryo and CNS development and sev-
eral neurodegenerative diseases [67]. Our miRNA-set 
also includes the 3p mature form of all three members 
of the miR-29 family, which are associated with neuro-
degenerative disease, as responders to environmental 
stress factors, mediators of the antidepressant effect of 
ketamine, and as essential regulators of brain matura-
tion [68, 69].

miRNAs are also grouped by genome location, as phys-
ically adjacent clusters transcribed together, but not nec-
essarily with similar targets. One of the most well-known 
miRNA clusters is the miR-17/92 cluster. The main miR-
17/92 cluster includes miR-19a, miR-19b, and miR-92a 
from our hyperactivity-associated miRNA-set, while its 
paralogue cluster, miR-106b/25, also includes miR-106b. 
A second paralogue cluster, miR-106a/363, holds sec-
ond loci for miR-19b and miR-92a. The miR-17/92 clus-
ter is highly expressed in embryonic cells and is essential 
for normal development [70]. It has been implicated in 
immunity, neurodegenerative diseases, neuronal plastic-
ity, as well as axonal outgrowth and guidance through 
modulation of PTEN protein levels [71]. Notably, these 
four miRNAs, plus miR-130a, are located together at the 
top of our clustering dendrogram, and they have all been 
previously linked with ADHD. Functional enrichment 
analysis also revealed that all five miRNAs target genes 
in almost all the pathways mentioned earlier as relevant 
to neurodevelopment and ADHD, including circadian 
rhythm and axon guidance. This group is of particular 
interest for further validation of the results in this study.

Neurodevelopmental and psychiatric disorders are 
known to overlap, both in symptomology, genetic risks, 
and co-occurrence [72, 73]. ASD, schizophrenia, bipolar 
disorder, and major depression disorder are all exam-
ples of diagnoses showing such overlap with ADHD, and 
almost all our 32 miRNAs are associated with one or 
more of these disorders (see Additional file 3, Table S5). 
ASD is especially well known for co-occurring with 
ADHD, and it has been reported that 1 in 8 youths with 
ADHD had co-occurring ASD [74]. Conversely, in ASD, 
ADHD is one of the most common comorbid disorders, 
with comorbidity rates around 60% [75]. The high num-
ber of previous associations to these related disorders 
further indicates that these miRNAs could have promi-
nent roles in the etiology of ADHD, while the challenge 
then becomes finding an ADHD-specific signature.

The results of this study should be interpreted while 
considering its limitations. First, comparing or transfer-
ring our findings to studies on clinically assessed ADHD 
could be muddled by our lack of diagnosis. Here we sepa-
rate and look at individual traits on a continuous scale in 
a general, healthy population, and these miRNAs may not 
be of the same importance for the full disorder presen-
tation. In addition, while the separated Conner’s scores 
for hyperactivity and inattention contain several facets 
of these traits and to some extent represent main driv-
ers in two of the three defined presentations of ADHD, 
the lack of full disorder evaluation may also be contrib-
uting to the small effect sizes. Secondly, due to sample 
size limitations we did not achieve robust findings, and in 
sensitivity analyses stratified by cohort or sex, the already 
relatively small population is split into even smaller 
groups. The combination of geographical diversity, age 
differences between cohorts, the expectation of our neu-
rodevelopmental measures being associated with small 
changes in miRNA levels, and the temporally dynamic 
nature of miRNA expression driven by both internal and 
external environment, creates a need for larger study 
populations. In addition, it is warranted to consider the 
lack of consistency across cohorts. Despite great efforts 
to harmonize protocols across cohorts, there will always 
be some effects from sample and data collection at differ-
ent labs, cultural differences, meals prior to testing etc. 
The study population characteristics, such as age, ances-
try, SES, and maternal education were also inconsistent 
across cohorts, as previously mentioned (Table 1). Addi-
tionally, ratings for ADHD symptoms varied between 
cohorts. Comparing Conner’s scores between INMA and 
MoBa, two cohorts with similar median age, the median 
scores in MoBa are below the HELIX subcohort median, 
while INMA scores are above (Table  1). This, together 
with small sample size, may be contributing to what is 
observed in sensitivity analyses, with cohorts possibly 
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driving results differently (Additional file 3, Table S1). For 
instance, when INMA is removed from the model all sig-
nificance is lost, and it is the only cohort with significance 
remaining when analyzed separately. INMA is the largest 
of the six cohorts and it’s Conner’s scores are higher com-
pared with the second largest cohort, MoBa. The results 
in this study should thus be considered exploratory and 
preliminary.

With these limitations taken into consideration, the 
lack of significant findings for the computer-based test 
measures could be related to the three main points listed 
above; lack of diagnosis, sample size limitations, and lack 
of consistency across cohorts. From the computer-based 
tests we isolate and evaluate one single continuous meas-
ure of a trait in a general healthy population. The changes 
in miRNA levels are thus expected to be very small, an 
effect further compounded by peripheral blood samples 
as a surrogate for brain tissue. In comparison, the ques-
tionnaires combine several measures, i.e., questions, to 
describe a somewhat broader behavior with limitations 
in many facets at the same time, possibly making it a 
stronger candidate for analysis in this context.

In conclusion, here we identified 32 miRNAs signifi-
cantly associated with the ADHD-related traits hyper-
activity (29 miRNAs) or inattention (3 miRNAs), but 
most importantly, 15 of these had already been linked 
to ADHD, an exciting overlap across studies. This study 
also highlights the usefulness of including information 
on distinct ADHD presentation. Further investigation 
of expression levels for these miRNAs in a case–control 
study, preferably with information about ADHD presen-
tation, to validate our findings using quantitative PCR, 
is warranted. Future work should aim to identify a set of 
miRNAs to be used as biomarkers separating subjects 
with ADHD from neurotypicals, and such a signature will 
need to be robust against other co-occurring neurode-
velopmental or psychiatric disorders. We are currently 
working on a case–control study investigating expression 
levels of selected miRNAs in cord blood plasma from 
children who have later been diagnosed with ADHD, 
along with samples collected from mothers and fathers 
during pregnancy. A selection of our 32 miRNAs will 
now be included. Investigating expression levels of these 
miRNAs at birth, by using cord blood, is important in the 
search for persistent biomarkers and to identify devel-
opmental processes regulated by these miRNAs during 
early development.
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