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Abstract 

Background Noninvasive neurostimulation treatments are increasingly being used to treat major depression, which 
is a common cause of disability worldwide. While electroconvulsive therapy (ECT) and transcranial magnetic stimula‑
tion (TMS) are both effective in treating depressive episodes, their mechanisms of action are, however, not completely 
understood. ECT is given under general anesthesia, where an electrical pulse is administered through electrodes 
placed on the patient’s head to trigger a seizure. ECT is used for the most severe cases of depression and is usually 
not prescribed before other options have failed. With TMS, brain stimulation is achieved through rapidly changing 
magnetic fields that induce electric currents underneath a ferromagnetic coil. Its efficacy in depressive episodes 
has been well documented. This project aims to identify the neurobiological underpinnings of both the effects 
and side effects of the neurostimulation techniques ECT and TMS.

Methods The study will utilize a pre‑post case control longitudinal design. The sample will consist of 150 sub‑
jects: 100 patients (bipolar and major depressive disorder) who are treated with either ECT (N = 50) or TMS (N = 50) 
and matched healthy controls (N = 50) not receiving any treatment. All participants will undergo multimodal mag‑
netic resonance imaging (MRI) as well as neuropsychological and clinical assessments at multiple time points before, 
during and after treatment. Arterial spin labeling MRI at baseline will be used to test whether brain perfusion can 
predict outcomes. Signs of brain disruption, potentiation and rewiring will be explored with resting‑state functional 
MRI, magnetic resonance spectroscopy and multishell diffusion weighted imaging (DWI). Clinical outcome will be 
measured by clinician assessed and patient reported outcome measures. Memory‑related side effects will be inves‑
tigated, and specific tests of spatial navigation to test hippocampal function will be administered both before and 
after treatment. Blood samples will be stored in a biobank for future analyses. The observation time is 6 months. Data 
will be explored in light of the recently proposed disrupt, potentiate and rewire (DPR) hypothesis.
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Discussion The study will contribute data and novel analyses important for our understanding of neurostimulation 
as well as for the development of enhanced and more personalized treatment.

Trial registration ClinicalTrials.gov Identifier: NCT05135897.

Keywords Electroconvulsive therapy, Magnetic resonance imaging, Transcranial magnetic stimulation, Major 
depressive disorder, Cognitive deficits

Background
Major unipolar depressive disorder (MDD) and bipolar 
depressive disorder (BDD) are common and serious medi-
cal conditions that may lead to profound suffering, reduced 
quality of life, inability to work and increased risk of mor-
tality (https:// www. who. int/ news- room/ fact- sheets/ detail/ 
depre ssion). These disorders are among the leading causes 
of disability in the world [1–3]. According to the World 
Health Organization, approximately 280 million people are 
living with depression worldwide, and the estimated num-
ber of annual global suicides is 700,000 (https:// www. who. 
int/ news- room/ fact- sheets/ detail/ depre ssion). The Euro-
pean 12-month prevalence is 1 and 7% for BDD and MDD, 
respectively [4], and the annual cost of mood disorders in 
Europe was estimated to be 113.4 Bn Euro [5]. The man-
agement of depression includes psychosocial, cognitive and 
pharmacotherapeutic approaches. However, approximately 
30% of patients do not respond to standard treatments even 
after multiple treatment steps [6].

Cognitive deficits are common in depression [7–9], 
and the occurrence of these impairments has been 
described within the “state”, “scar” and “trait” hypoth-
eses [10, 11]. It is still unclear whether the impairments 
preexist as a “trait” prior to MDD, whether they occur 
as a “state” during a depressive episode or whether 
impairments are caused by depression (“scar”). The scar 
hypothesis suggests that depression is neurotoxic to the 
brain and will cause cognitive impairment over time, 
consistent with studies suggesting that cognitive impair-
ments are related to the duration and number of depres-
sive episodes [7, 12, 13]. The “trait” hypothesis suggests 
that an underlying vulnerability prior to the start of 
depression can contribute to the development of symp-
toms in depression as well as contribute to treatment 
resistance and relapses [11].

Electroconvulsive therapy (ECT)
ECT is a medical treatment in which electric currents 
delivered through scalp electrodes are used to intention-
ally trigger a brief seizure. Patients are under general 
anesthesia and muscular blockade during treatment ses-
sions, which are provided two or three days per week for 

two to four weeks. ECT has remained the most effective 
acute treatment for major depressive episodes [14, 15] 
over the past 80 years. Even for patients with treatment-
resistant, severe and sometimes life-threatening depres-
sive episodes, the remission rates of ECT are up to 75% 
[16]. However, the use of ECT is still debated [17, 18], 
and the lack of an overarching model for the mechanism 
of action of ECT possibly contributes to its public con-
troversy [19]. Considering the large number of people 
suffering from depression, the use of ECT is variable, 
with reported treated person rates (TPR; number of per-
sons treated with ECT per 10,000 resident population per 
year) between 0.11 and 5.1 worldwide [20], possible due 
to worries about side effects.

ECT is associated with cognitive side effects [21, 22]. 
However, the literature is divergent and inconclusive 
regarding the nature and development of the neuropsy-
chological profile of cognitive side effects [23, 24]. Most 
of the cognitive impairments seem to be limited to the 
first three days after ECT [25], and some patients even 
report an improvement in neurocognitive function [23]. 
While reduced autobiographical memory consistency has 
been well documented [26–28], a number of other cog-
nitive functions has been shown to improve one month 
after ECT, compared with pre-ECT [24]. Although sev-
eral guidelines highlight the importance of assessing 
cognitive function during ECT, there is no consensus 
regarding the optimal test battery and study design [24, 
29], thus large well-designed studies investigating broad 
measures of cognition pre-post ECT are warranted.

There is substantial evidence for ECT-induced volu-
metric changes in brain gray matter areas [30, 31], which 
depend on electrode placement [32] and correlate with 
the electrical field strength [33]. Although there are con-
flicting results regarding the clinical relevance of these 
changes, some association with clinical response has 
been found [34, 35], and side effects may relate to hip-
pocampal volume change [36, 37].

Transcranial magnetic stimulation (TMS)
TMS is a form of brain stimulation in which rapidly 
changing magnetic fields induce electric currents under-
neath a ferromagnetic coil [38]. The stimulation comes 
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in the form of pulses and depending on the frequency 
of these pulses, TMS can have excitatory or inhibitory 
effects in cortical regions [39]. TMS is a relatively new 
treatment and was approved by the US Food and Drug 
Administration for medication resistant depression in 
2008. Based on consistent findings that show hypoacti-
vation of the left dorsolateral prefrontal cortex (DLPFC) 
in MDD [40, 41], a high-frequency TMS protocol was 
developed to re-establish normal activity levels within 
this region [42], to reduce symptoms and potentially 
improve aspects of neurocognition [43] not currently 
improved by traditional treatments. The treatment typi-
cally requires daily TMS sessions of up to 3000 pulses 
for four to six weeks [44]. The efficacy of TMS treatment 
has been demonstrated in several meta-analyses as well 
as single- and multisite studies [44, 45]. Approximately, 
two-thirds of patients respond to the treatment and show 
some improvement, while the remission rate is approxi-
mately 30% [46].

Methods
Aim of the study
This project aims to improve our understanding of the 
fundamental, neurobiological underpinnings of the 
response and side effects of ECT and TMS therapy using 
multiple biomarkers, including genetic and biochemical 
markers, brain magnetic resonance imaging (MRI), actig-
raphy, and novel measures of spatial navigation included 
in the neurocognitive test battery. The long-term goal of 
the study is to develop an outcome expectancy score—a 
personalized probability of a good outcome.

Study design
The study is a prospective pre-post longitudinal case–
control observational and “naturalistic” study, i.e., we 

will collect data from patients who receive the standard 
clinical treatment and compare three groups: patients 
receiving ECT, patients receiving TMS, and healthy 
controls who do not receive any treatment (Fig. 1). The 
data collection is broad and comprehensive. This is nec-
essary due to the lack of knowledge in the field; explora-
tory and hypothesis-generating research is important 
and warranted.

MRI, blood samples, neuropsychological assessments 
(including spatial navigation – a function residing in 
the hippocampus), clinical scales and depression scores 
from 100 patients in a major depressive episode will be 
collected. The ECT (N = 50) and TMS (N = 50) study 
groups will be followed over 5 time points (TP): baseline 
(TP1), during (after  1st (TP2) and  6th ECT or  10th TMS 
(TP3)), after treatment series (TP4), and at 6 months fol-
low-up (TP5). Healthy controls (N = 50) will be assessed 
at four time points (corresponding to TP1, TP2, TP4 and 
TP5 to estimate variance due to noise, and to control for 
effects of time. There are comprehensive and in-depth 
assessments of participants, spanning from diagnosis, 
history and imaging to neuropsychological profiling, 
blood biomarkers, genetics, and epigenetics (see Fig.  1 
and Table 1).

Recruitment and eligibility criteria
Patients are recruited when referred to ECT or TMS 
at Haukeland University Hospital, and healthy controls 
are recruited in the same geographical region as the 
patients. Both patients and healthy controls must under-
stand and sign the informed consent form. All study par-
ticipants receive a universal gift card to 200 Norwegian 
kroner (NOK) for each MRI and 300 NOK for each neu-
ropsychological assessment in the study.

Fig. 1 Study flow‑chart. Assessments are performed at multiple time points before, during and after treatment as illustrated. CA, Core Assessment 
(includes neurocognitive tests, actigraphy and for the patient groups clinical assessment)
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Table 1 Variable overview 

Abbreviations: TP Timepoint, MADRS Montgomery Åsberg Depression Rating Scale, BDI Beck Inventory test, CGI Global Impression Scale, EMQ Everyday Memory 
Questionary, MMSE Mini Mental Status, RAVLT Rey Auditory Verbal Learning Test, F-A-S Phonemic Fluency, SDMT Symbol Digit Modality Test, TMT Trail Making Test, 
DSB Digit Span Backwards, AMT Autobiographical Memory Test, NART  National Adult Reading Test, QIDS-SR 16 Quick Inventory of Depressive Symptomatology (16-
item) (Self-Report), VAMS Visual Analog Mood Scale, RCFT Rey-Osterrieth Complex Figure Test, CWIT Color Word Interference Test, EEG electroencephalografy, PDQ-5 
Perceived Deficits Questionary – Depression 5-item, ECCA  Electroconvulsive Cognitive Assessment, iDichotic Dichotic listening, EDTA Ethylene Diamine-Tetra-acetic 
Acid, PAX-gen PAXgene Blood RNA tube, Empatica 4 Actigraphy with a wristband; MRS Magnetic Resonance Spectroscopy, ASL Arterial Spin Labeling, DWI Diffusion 
Weighted Imaging, rsfMRI Resting state functional magnetic resonance imaging
a Repeated before and after each treatment
b Repeated at each ECT treatment, TMS patients follow the same timepoints as the ECT patients
c Will not be assessed for healthy controls

Timepoints (TP) for 
analyses

TP1 TP2 TP3 TP4 TP5

Timepoints relative to 
treatment

Baseline, before treatment During treatment After treatment

Timeframe for each test  < 7 d of 
first ECT/
TMS

1–2 h before 
first ECT/TMS

1–2 h after 
first ECT/
TMS

before 7th 
ECT/11th 
TMS

7–14 d after 
last ECT/
TMS

6 mo after 
ECT/TMS 
series

Clinical assessments c Clinical examination x

ECT‑ stimulus specific 
measures b

EEG, pulse width, charge, 
amplitude, frequency, pulse 
train duration, seizure dura‑
tion, electrode placement 
and reorientation time

x x

Current and concomitant 
medication

x x x x

Symptom severity c MADRS [47] x x x x

BDI [48] x x x x

CGI [49] x x x x

EMQ [50] x x x x

MMSE [51]

Radiology MRI: T1, T2, MRS, ASL, DWI, 
rsfMRI

x x x x x

Neurocognitive assessments 
aligned with GEMRIC recom‑
mendation

1. RAVLT [52, 53] x x x

2. Phonemic Fluency [54] x x x

3. Semantic Fluency [54] x x x

4. SDMT [55] x x x

5. TMT A + B [54] x x x

7. DSB [55] x x x

8. AMT [56] x x x

9. MoCa version 7.1 [57] x x x

10. NART [58] x x x

11. QIDS‑SR 16 [59] x x x

Study specific neurocogni‑
tive assessments

1.VAMSa,c [60] x x x

3. Spatial navigation: 
Memory retrieval task [61, 
62], Four Mountain [63], Sea 
Hero [64]

x x x

4. RCFT [65] x x x

5. CWIT [54] x x x

6. PDQ‑5 [66, 67] c x x x

7. ECCA [68] c x x x

Brain laterality, cognitive 
control

iDichotic [69, 70] x x x

Blood samples Serum, EDTA, PAX‑gen x x x x

Actigraphy Empatica 4 [71] b x x x x x
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Inclusion criteria
ECT/TMS: Patients (age > 18 years) referred to ECT or 
TMS and accepted for treatment because of moderate 
and severe depression, fulfilling the criteria for the fol-
lowing ICD-10 diagnoses: F31.3 and F31.4; F32.1 and 
F32.2 and F32.3; F33.1 and F33.2 and F33.3. In addition, 
the symptom intensity must be verified by a Montgom-
ery and Aasberg Depression Rating Scale (MADRS) [47] 
score ≥ 25.

Exclusion criteria
ECT/TMS treatment within the last 12 months. Patients 
unable to give informed consent (according to the 
responsible ECT/TMS clinician).  Patients who cannot 
participate in the MR scanning due to contraindications 
to MRI.

Healthy controls
Age and sex, matched to the ECT patient group, with 
no history of mental disorder. There is no contraindi-
cation for MRI scanning. Healthy controls will also be 
screened for medical conditions and drug use.

ECT
ECT will be administered with right unilateral (RUL) 
electrode positioning [72]. On clinical indication, elec-
trode positioning can be switched to bilateral position-
ing (BL). The ECT device used is a Thymatron System 
IV (Somatic Inc.) that provides a brief pulse, square 
wave, and constant current (900 mA). The initial stimu-
lus dose will be determined by an age-based method as 
described in Kessler et al. 2010 [73]. The initial duration 
of the stimulus pulse will be set to 0.5 ms. Treatment 
frequency is thrice weekly until remission or until no 
further improvement is expected, with an upper limit of 
18 sessions. Each seizure will be evaluated on the fol-
lowing variables: duration, δ-waves, reorientation time 
and improvement in depression. The stimulus param-
eters can be adjusted in each session, based on evalua-
tions of previous sessions.

Anesthesia
The anesthetic agent used for induction to ECT will be 
either propofol, etomidate or thiopental, as decided by 
the anesthesiologist. All patients are preoxygenated one 
to two minutes before treatment with oxygen-enriched 
air. All patients will also receive the muscle relaxant 
suxamethonium about 90 s before the stimulus is given. 
Hyperventilation should be maintained during this 
period even with high oxygen saturation. The use of 
other medication deemed necessary during anesthesia 
will be decided by the anesthesiologist.

TMS
Treatment is delivered with a TMS stimulator (MAG & 
More GmbH, München, Germany) using a figure-of-eight 
stimulation coil (Fo8 coil). After determination of the 
motor threshold at the first session, (defined at the point of 
maximal stimulation for the right abductor pollicis brevis 
or other hand muscles, as visually detected, with the pad-
dle axis oriented laterally) the coil is placed over a point 5 
cm anterior to the point at which the motor threshold is 
obtained. Each patient will receive 5 treatment sessions 
per week for 6 weeks (a total of 30 sessions). Each session 
comprises a protocol of 1500 TMS pulses in total, deliv-
ered in 15 trains of 100 pulses per train, with 30 s intervals 
at a frequency of 10 Hz, at 100% of motor threshold on the 
treatment site over the left DLPFC. This corresponds to 9 
min and 30 s stimulation in total per session.

Clinical assessments
The clinical assessment will be performed in accord-
ance with standard clinical protocols at the treatment 
unit. This includes electroencephalography (EEG), ECT 
stimulus specific variables (e.g., pulse width, charge deliv-
ered, amplitude, frequency, pulse train duration, seizure 
duration and electrode placement), reorientation time, 
and anesthetic used for induction. Weekly clinical assess-
ments will include the MADRS [47], Beck Inventory test 
(BDI) [48], Clinical Global Impression Scale (CGI) [49], 
Mini Mental Status (MMSE) [51] and Everyday Memory 
Questionary (EMQ) [50]. Psychiatric history and the 
cause for cessation of ECT will be recorded. Response to 
treatment will be defined as > 50% reduction in MADRS 
score, and remission as a MADRS score ≤ 10.

Radiological assessments
We will follow a comprehensive MRI protocol which is 
in accordance with recommendations from the Global 
ECT-MRI Research Collaboration (GEMRIC) and closely 
follows the standards of the Adolescent Brain Cognitive 
Development (ABCD) study [74, 75]. This includes vari-
ous imaging sequences which will allow investigation of 
brain structure, brain function and metabolic profiles. 
This protocol includes a high resolution T1 and T2 struc-
tural volumes (sagittal 3D MPRAGE T1 with isotropic 
voxel size of 1  mm3, echo time (TE) = 3.1 ms, repetition 
time (TR) = 7.4 ms, flip angel (FA) = 8 deg., time of acqui-
sition (TA) = 6:32  min, and sagittal 3D CUBE T2 with 
isotropic voxel size of 1  mm3, TE = 60 ms, TR = 3200 ms, 
echo train length = 140, TA = 4:46  min respectively), 
MR spectroscopy acquired from the right amygdala 
(20 × 20 × 20 mm single voxel point resolved spectros-
copy, SV-PRESS, TE = 35 ms, TR = 1500 ms, 128 scans of 
4096 samples, spectral width = 5000 Hz, TA = 3:48 min; 
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and a semi-LASER (PROBE-sl) single voxel 20 × 20 × 20 
mm, TE = 30  ms, TR = 2000  ms, VAPOR FA = 65, 64 
scans, TA = 2:28), Arterial Spin Labeling (ASL) MRI (3D 
ASL with effective resolution 3.64  mm, TE = 10.5  ms, 
TR = 4888  ms, TA = 4:39  min), resting state fMRI (rs-
fMRI using 2D echo planar imaging (EPI) with iso-
tropic voxel size of 2.4  mm3, TE = 30  ms, TR = 800  ms, 
TA = 10 min), and multishell diffusion weighted imaging 
(DWI) (1.7 mm isotropic multiband-accelerated DWI 
with a total of 186 diffusion encoding directions meas-
ured across four non-zero b-values (6 at b = 500, 60 at 
b = 1000, 60 at b = 2000, 60 at b = 3000), TA 13:49 min). 
High Order Shim covering the whole brain will be used 
for the resting state magnetic resonance imaging (rsfMRI) 
and diffusion tensor imaging acquisitions, and EPI field 
maps will be generated for each. For magnetic resonance 
spectroscopy (MRS), we used a semi-LASER (PROBE-sl) 
single voxel 20 × 20 × 20 mm, TE = 30 ms, TR = 2000 ms, 
VAPOR flip angle = 65, 64 scans, TA = 2:28.

Neuropsychological assessments
A test battery with standardized and normalized neu-
ropsychological tests will be applied to investigate 
aspects of cognitive functioning and possible side effects 
of treatment, including premorbid general abilities, cog-
nitive status, spatial navigation, language learning, ver-
bal- visuospatial and autobiographical memory, working 
memory, processing speed, attention, executive func-
tions and inhibitory control, self-perceived cognitive 
difficulties, and psychomotor tempo. Based on clinical 
observations of spatial navigation complaints after ECT, 
together with the structural changes in the hippocampus 
[32, 76], we have choosen to include specific tests of this 
domain as well. The complete battery has a duration of 
3–4 h and will be administered by healthcare personnel, 
trained in the method and under supervision of a clinical 
neuropsychologist.

The neurocognitive test battery is aligned with the 
recommendations for GEMRIC [77] with the following 
tests: the Rey Auditory Verbal Learning Test (RAVLT) 
[52] where trial 1.-7. is included and delayed recall at 30 
min [53]; Phonemic Fluency (F-A-S) with 60 s of naming 
words on each letter, Semantic Fluency (Animals + Boy’s 
names) with 60 s of naming words in each category, and 
Trail Making Test Part A and B (TMT A + B) [54] with 
seconds to complete and numbers of errors; Symbol 
Digit Modality Test (SDMT) with total numbers of cor-
rect symbols on 120 s and Digit Span Backward [55] 
with a total of 8 digits; Autobiographical Memory Test 
(AMT) [56, 78] with total numbers of specific and cat-
egorical memories retrieved within 60 min, and aver-
age seconds memory retrieval; MoCa version 7.1 [57]; 
National Adult Reading Test (NART) [58] and Quick 

Inventory of Depressive Symptomatology (16-item) (Self-
Report) (QIDS-SR 16) [59]. In addition to this, the fol-
lowing study will include specific neurocognitive- and 
clinical tests: Visual Analog Mood Scale (VAMS) [60] 
with a scale from 0–100 performed with a 1-item ques-
tion: “How depressed do you feel right now?”, which will 
be assessed before and after each TMS/ECT-treatment; 
Spatial memory navigation tests: Memory retrieval task 
[61, 62], Four Mountain [63] and Sea Hero [64], which 
is further described below; Rey—Osterrieth complex 
figure test (RCFT) [65] assessed with copy and delayed 
retrieval; D-KEFS Color Word Interference Test (CWIT) 
[54] included color reading, color recognition, inhibi-
tion, and inhibition-switching, allowing for a separation 
of improvements in processing speed and executive func-
tions respectively [79]; Perceived Deficits Questionary 
– Depression (PDQ-D) 5-item [66, 67] and Electrocon-
vulsive Cognitive Assessment (ECCA) [68].

To assess laterality effects, we adopt a dichotic listen-
ing paradigm, a well-established method to determine 
language specialization [69]. In dichotic listening, two 
different syllables are presented simultaneously to the 
left and right ear (e.g., “ba” to the left and “ta” to the right 
ear). Participants tended to report the right ear stimulus 
because of stronger contralateral connections with the 
language-specialized left hemisphere. The present study 
will employ a dichotic listening paradigm implemented 
as a smartphone app [80].

Spatial navigation
Three tasks for assessing spatial navigation will be used. 
Although spatial navigation is a function known to be 
located in the hippocampal region [81], there is a lack of 
studies investigating spatial navigation in relation to ECT.

The memory retrieval task [61, 62] is performed on a 
computer screen, where the participant is moving in a 
virtual grassy plane surrounded by a circular wall. Behind 
the wall, the scenery contains landmarks such as moun-
tains, the sun, and clouds. Objects appear at certain 
spots, and the participant uses the keyboard to navigate 
around the plane and pick up the objects. The task is to 
remember the location and replace the objects back to 
the same location.

The Four Mountains test [63] is administered using 
a tablet computer. First, a picture of a four-mountain 
landscape shows up. After a brief delay, four similar pic-
tures appear, one of which is the same landscape as the 
first one but viewed under different conditions (such as 
a change in viewpoint or season). The task is to choose 
the correct landscape matching the first shown. The test 
includes 15 trials with different mountain landscapes.

Sea Hero Quest is an application from the lab of Hugo 
Spiers, University College London [64]. This test is 
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downloadable to a handheld device, and for the current 
study, we use a tablet computer. The task is to first look at 
a map of a sea landscape with a route to follow. The map 
closes, and the player, which is steering a boat, should 
remember the map and navigate to find the target loca-
tion, as previously illustrated on the map. Another task is 
to remember where you came from, point in that direc-
tion, and shoot a projectile back in the direction of the 
right spot.

Motor activity, distal temperature, and digital biomarker 
registration—actigraphy
A research-grade ambulatory wristband (Empatica 
E4) [71] with sensors that register accelerometric data, 
peripheral body temperature, electrodermal activity, and 
photoplethysmography (PPG) [82–84] is applied. PPG 
employs infrared light to gauge volumetric changes in 
blood circulation, making it a widely used method for 
estimating heart rate and obtaining pulse oximetry read-
ings [85, 86]. Heart rate variability analysis displays the 
function of the autonomic nervous system, and mood 
disorders are linked with autonomic dysfunction [87]. 
Autonomic activity can furthermore be assessed by 
observing electrodermal activity (skin conductance), 
which measures sweating on the skin, a function regu-
lated by the sympathetic branch of the autonomic nerv-
ous system [88]. Accelerometry measures motor activity, 
with recordings of acceleration in three-dimensional 
space over time. The information in motor activity is 
hypothesized to be an objective observation of the inner 
physiological state [89]. Variations in energy-levels and 
activation patterns provide information about mood 
state, as well as circadian rhythmicity, which seems dis-
rupted in depression [90, 91]. Additionally, the peripheral 
body temperature also expresses circadian rhythmic-
ity [92]. These data will be acquired over a 48-h period 
to assess the circadian effects of the heart, electrodermal 
activity, motor activity and body temperature.

Blood sampling and biobank
Blood samples will be stored in a study-specific biobank 
at Biobank Haukeland. If the study participants also 
provide informed consent for prolonged storage of 
the samples, the material will be transferred to the 
ECT research biobank (“Forskningsbiobanken for nev-
rostimulerende behandling i Helse Vest”, Regional Com-
ittee for Medical Research Ethics Western Norway (REK 
West) 2017/925) after the termination of the study. We 
will collect blood in serum tubes, whole blood in EDTA 
tubes (Ethylenediaminetetraacetic acid), and PAX-gen 
tubes (for stabilization of intracellular RNA) for each 
timepoint. In the automated biobank the serum will be 
aliquoted in 6 × 260 µl tubes. The EDTA whole blood 

will be aliquoted and stored in 3 × 2 ml. The samples in 
PAX-gen tubes will be stored as is.

Power analysis
Based on a previous study [93], the first hypothesis of 
this protocol is that baseline global cerebral blood flow 
(CBF) will separate responders (lower CBF) from nonre-
sponders at a threshold of ~ 45 mL/100 g/min, and that 
CBF will increase with ECT. The sample size needed to 
detect a difference at baseline between responders and 
nonresponders based on the data in Fig.  1 in [93] is 14 
per group (1- β = 0.8, α = 0.05). Detection of a treatment-
induced change in the regional hippocampal CBF (paired 
t test) will require a sample of 22 patients. Our sample of 
50 patients should be adequate.

Very large sample sizes are needed to boost statisti-
cal power and close knowledge gaps (e.g., confirm or 
refute results from small studies) and to utilize machine-
learning tools for outcome prediction. Hence, team sci-
ence efforts are important, and parts of the analysis will 
be achieved through data sharing and collaboration with 
consortia such as the Genomics of ECT International 
Consortium [94](Gen-ECT-ic) and GEMRIC [77].

Discussion
The study described in this protocol will provide a com-
prehensive dataset with opportunity for multiple future 
analyses that can cast light on the mechanisms of action 
for ECT and TMS. At the time of submission of this 
manuscript, the study included 11 ECT patients, 10 
TMS patients and 12 healthy controls. We will explore 
the underlying mechanisms for both the therapeutic 
and adverse effects of ECT and TMS. Our translational 
goal is to select the right patients for treatment, also 
addressing the primary concerns of our patient repre-
sentatives who ask for personalized recommendations 
with respect to the likelihood of good outcome versus 
cognitive side effects. Ultimately, knowledge from the 
project should also be communicated broadly to inform 
the public, in order to dispel remaining myths and 
stigma, surrounding ECT.

Hypotheses
The response to ECT/TMS can be predicted by (low) 
pretreatment CBF
Neuroimaging studies found abnormal brain functioning 
in depression [95, 96]. Although several machine-learn-
ing algorithms for predicting treatment outcome based 
on functional [97] or structural [34, 98, 99] neuroimaging 
have been developed, to date, none of these algorithms 
have been translated to clinical practice. Hence, a broad 
approach including novel methods to tackle the predic-
tion challenge is warranted. A promising recent study 
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found that (CBF) before treatment could distinguish 
responders (lower global CBF) from nonresponders by 
using ASL-MRI [93]. We hypothesize that responders 
will have lower pre-ECT global CBF than nonresponders.

By using ASL-MRI, absolute CBF can be estimated 
without use the of contrast agent – making eventual 
clinical implementation affordable and free from the 
risks associated with intravenous injection of gadolinium 
contrast.

The cognitive side‑effects of ECT are correlated 
with treatment‑related increases in gray matter
We will investigate the biological mechanisms behind 
the ECT/TMS response (and side effects) through a 
combination of imaging, epigenetics, genetics, and prot-
eomics in the framework of the disrupt, potentiate, and 
rewire (DPR) hypothesis [30]. The mechanisms of ECT 
are to be understood as a sequence of events where neu-
ronal circuits are disrupted, potentiated, and ultimately 
rewired. For the TMS patient group, we do not expect the 
same extent of the disruptive effects but will investigate 
changes that can explain the efficacy in terms of poten-
tiation and rewiring. The TMS group will also provide a 
possibility of comparing treatment-related effects across 
treatment modalities.

Research questions
In addition to the two primary hypotheses, several analy-
ses can be performed that can shed light on the mecha-
nisms of action suggested by the DPR hypothesis.

Neuroimaging
We predict that neuroimaging results in general will be 
in line with the DPR hypothesis: Disruption will mainly 
be seen at TP2 and TP3, to a lesser degree at time TP4 
and will not be evident at TP5 (Table 1). Signs of poten-
tiation are expected at TP3 and TP4, and rewiring is 
expected mainly at TP5 (some at TP4). Volume changes 
at TP3 and TP4 are expected to relate to side effects. We 
expect some signs of edema indicative of immediate dis-
ruption at two hours after the first ECT session, as meas-
ured by advanced DWI. Changes in diffusion properties 
at TP3 and TP4 will reflect potentiation, and changes at 
follow-up TP5 will reflect rewiring compared to baseline. 
Resting-state fMRI at follow-up will show connectome 
stabilization differing from baseline but will be disrupted 
after the 1st and 6th ECT session.

Based on previous proton magnetic resonance spec-
troscopy (1H-MRS) investigations in ECT, summarized 
in Erchinger et al. [100], we propose that N-acetylaspar-
tate (a proposed marker of neuronal integrity), will tem-
porarily decrease after ECT, reflecting the disruption in 

the DPR hypothesis. We also hypothesize that depressed 
patients will display lower glutamate levels at baseline 
compared to controls [101] and that an increase in gluta-
mate levels from baseline to after treatment will be asso-
ciated with positive treatment outcomes for both TMS 
[102] and ECT patients [103–107].

Clinical outcomes
Both ECT and TMS will reduce MADRS scores at TP4, 
and we expect ECT to be more efficient with a higher 
proportion of responders and remitters compared to 
TMS. In patients treated with ECT, we hypothesize a 
symptom fluctuation following the trajectory of the dis-
ruption and symptom load curves [30].

Neuropsychological outcomes
We expect group differences between depressed patients 
and controls at baseline explained by the “state”, “scar”, 
and "trait" hypotheses [11]. We expect processing speed 
and attention to improve following remission of depres-
sive symptoms, explained by the “state” hypothesis. Fur-
ther we expect executive functions to remain relatively 
stable, as suggested by the “trait” and “scar hypotheses” 
[11, 108].

Cognitive side effects seen with ECT (disruptive treat-
ment) are not expected to be seen with TMS (nondisrup-
tive treatment). The cognitive tests of spatial navigation 
will be used to assess specific hippocampal functions, 
and we expect the results to be in line with the DPR 
hypothesis, hence a reduction in performance after end 
treatment (TP4) and normalization at TP5. Moreover, we 
expect the hippocampal volume change to correlate with 
a reduction in performance. Reduced spatial navigation 
performance will also correlate with increased cortical 
thickness (broadly distributed volume change) for ECT 
patients. However, improvements relative to baseline 
are expected (TP5) for hippocampal functions, i.e. func-
tions that are impaired from a “scar perspective”, such as 
category fluency, memory and language, in line with the 
concept of the DPR model. Finally, existing differences 
between the TMS and ECT groups pre- treatment could 
elucidate on the cognitive profile in treatment resistant 
MDD and could be explored.

Activity monitoring
Patients are expected to show increased daytime activity, 
decreased variability in activity levels, decreased night-
time activity and improved quality of sleep after ECT 
treatment [109, 110]. Motor activity will be assessed by 
both linear and nonlinear analyses of variability and 
complexity [111]. Furthermore, stabilization of the circa-
dian rhythmicity should be observable in motor activity, 
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as well as in the peripheral body temperature [90, 112]. 
Sympathetic activation will fluctuate (disrupt and poten-
tiate); however, it will subsequently decrease, alongside 
an increase in para-sympathetic activation after ECT, 
observable in digital biomarkers (heart rate, heart rate 
variability and electrodermal measures) [88]. Finally, a 
machine learning-based multisensory approach, com-
bining the digital biomarkers and motor activity record-
ings of Empatica E4, could be an interesting alternative 
method for analyzing these data [113].

Blood biomarkers
Several treatment-response predictors for MDD have 
been proposed in recent years, but there are currently 
no blood-based disease progression or therapy-response 
biomarkers in clinical use [114]. We aim to advance our 
understanding of the molecular mechanisms underly-
ing both the pathogenesis of severe MDD and the treat-
ment response to ECT by using a multiomics approach 
on patient blood and serum samples. By using proteom-
ics, genomics, transcriptomics, and epigenetics to gener-
ate multiomics profiles of individual patients we hope to 
identify biological predictors of treatment outcome that 
can help guiding personalized, interventional strategies.

Previous research has indicated that depression is 
accompanied by increased levels of inflammatory mark-
ers, such as C-reactive protein (CRP) and interleukin-6 
[115], which could be particularly relevant for treatment-
resistant depression [116]. It has also been suggested 
that acute ECT sessions transiently increase inflamma-
tion, while full treatment series may reduce inflammation 
[117]. To elucidate the effect of ECT on neuroinflamma-
tory markers and other relevant blood biomarkers, blood 
samples will be collected at all timepoints. We expect 
increased levels of neuroinflammatory markers immedi-
ately after treatment and in the short term but not at TP4 
and TP5 [117].

Large collaborative studies, including the psychiatric 
genomics consortium (PGC), have recently identified 
many common genetic risk variants and rare copy num-
ber variants in MDD [118]. Treatment-resistant, severe 
depression is a clinical subgroup that may have a distinct 
genetic risk profile [119]. We hypothesize that a joint 
analysis of patients recruited for ECT treatment across 
the PGC sites will reveal common and rare genetic risk 
variants. Moreover, we hypothesize that it will also be 
possible to detect genetic markers of treatment response 
using this collaborative framework. Clinical data, and 
data from genome-wide genotyping will be analyzed 
locally, also shared, and meta-analyzed within interna-
tional consortia, such as GenECT-ic [94].

Epigenetic markers will be investigated, both to find 
markers to predict treatment response and markers that 
change during the treatment.

We expect changes specific to ECT and will test 
hypotheses from published reports as well as investigate 
effects related to Brain-Derived Neurotrophic Factor 
activation, markers of neurogenesis and immunoactivity. 
As described previously [120], we aim to supplement the 
measurements of peripheral biomarker levels by periph-
eral blood messenger ribonucleic acid (mRNA) levels 
(array-based genome-wide DNA genotyping, methyla-
tion profiling of target genes and real-time reverse 
transcription polymerase chain reaction mRNA meas-
urements) and genome-wide methylation studies.

In summary, the study will provide a comprehensive 
dataset, that will be used for specific hypothesis testing 
and explorative investigations to improve our under-
standing of depression and neurostimulation treatments. 
The putative biomarkers will be evaluated for inclusion 
in a future algorithm for the outcome expectancy score. 
Such a tool could be used for clinical decision support 
and would provide patients with evidence-based likeli-
hood estimates for clinical outcomes and provide oppor-
tunities for more personalized treatment choices.
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