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Abstract
Background The ability to attribute mental states to others is called theory of mind (ToM) and is a substantial 
component of social cognition. This ability is abnormally developed in individuals with autism spectrum disorder 
(ASD). Several studies over the past decade have identified the oxytocin receptor gene (OXTR) and its variants as 
promising components for explaining the molecular mechanisms underlying Theory of Mind (ToM). The main 
aim of this study is to examine the association between rs2268498 and rs53576, two functional single nucleotide 
polymorphisms (SNPs), and verbal and non-verbal ToM in children and adolescents with ASD and a group of typically 
developing youth.

Methods The study involved 44 children and adolescents with high-functioning ASD aged 8 to 18 years old and 44 
TD individuals who were matched on age and sex. In all participants, blood samples were collected and rs2268498 
and rs53576 were genotyped. Happe’s Strange Stories test and the moving shapes paradigm were used to measure 
verbal and non-verbal ToM in all participants.

Results The results of permutation tests and logistic regression suggested that in TD group, rs2268498 AA carriers 
showed significant higher scores in variables representing verbal ToM (ToM stories and appropriateness score) 
whereas, in ASD group, rs53576 AA carriers exhibited significant better performance in parameters related to non-
verbal ToM (ToM general rule and intentionality score). The results of hierarchical clustering in both groups support 
the findings by distinguishing between language-related and language-independent aspects of ToM.

Conclusions In the present study, we examined the association between rs2268498 and rs53576 and social 
functioning in individuals with ASD and TD group. We found preliminary evidence that rs2268498 and rs53576 are 
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Background
As far as social evolution is concerned, Homo sapiens is 
almost universally acknowledged as a highly social spe-
cies capable of complex aspects of social functioning 
[1]. Humans’ ability to perceive social cues, motivation 
to interpersonal interactions, and maintaining relation-
ships with others distinguishes them from other spe-
cies, even the most closely related ones like chimpanzees 
[2–5]. In order to achieve competency in social interac-
tion, we need to have social cognition, social motivation, 
social awareness, and skills in maintaining relationship 
with others. Recently, social cognition has attracted more 
attention and been studied in greater depth due to its 
hierarchical and multidimensional nature [6]. As a basic 
component of social cognition, Theory of Mind (ToM) is 
noteworthy. According to the definition of the ToM, it is 
the ability to attribute others’ behaviors to their mental 
states which are based on social stimuli [7]. Impairment 
in ToM ability may result in neuropsychiatric symptoms, 
with autism spectrum disorder (ASD) standing out as a 
prominent example [8, 9]. According to the Diagnostic 
and Statistical Manual of Mental Disorders, fifth edition 
(DSM-5), ASD is characterized by repetitive behaviors/
restricted interests, as well as social communication dif-
ficulties which reflects ToM dysfunction or “mindblind-
ness” [8, 10].

While ASD is enigmatic in its etiology, there are several 
studies discovering endophenotypes relating to genetic 
markers of this disorder [11]. In this regard, family and 
twin studies as well as genome wide association stud-
ies (GWAS) of human social behavior and social cogni-
tion have helped to clarify the heritability of these traits 
and the contribution of genetics to their development 
[12–15]. In light of these findings, it has become increas-
ingly apparent that oxytocin (OXT) plays a central role 
in many aspects of social behavior, including ToM which 
is impaired in some neuropsychiatric disorder including 
ASD [16–18]. OXT is a 9-amino acid neuropeptide which 
is mediated through the OXT receptor (OXTR) [19, 20]. 
Located on chromosome 3p25, the OXTR gene encodes 
the human OXTR protein-coupled receptor class I G, 
consisting of three introns and four exons. In addition 
to being primarily expressed in the reproductive system, 
OXTR expression can also be detected in several brain 
regions such as the frontal cortex, amygdala, hypothala-
mus, and olfactory nucleus [20–22]. Therefore, it is not 
surprising that several single nucleotide polymorphisms 
(SNPs) within the coding, noncoding, and regulatory 

regions of OXTR have been associated with social cog-
nition deficits as seen in ASD. A significant association 
between rs2254298 and rs53576 with autism in families 
has been found in Chinese Han population [23], Also a 
significant association between rs2268493, rs2254298, 
and rs53576 and high-function autism in Caucasian 
families [24, 25], sheds light on the potential associa-
tion between OXTR SNPs and ASD. Additionally, some 
studies have stepped further and studied the association 
of OXTR SNPs with social endophenotypes underlying 
the autistic symptoms. In this regard, Yang et al. (2018) 
reported a significant association between rs2254298 and 
social deficit in ASD, while Skusea et al. (2014) found that 
rs237887 was significantly associated with human social 
recognition skills among individuals with ASD as well as 
individuals with first-degree relatives with ASD [26, 27].

In the context of different OXTR SNPs, rs2268498 and 
rs53576 appear to be two of the most promising candi-
date SNPs putatively associated with individual differ-
ences in social functioning. rs2268498 is a regulatory 
SNP located on 2 KB upstream of OXTR in promoter 
region. In 2017, Reuter et al. identified the significant 
association of rs2268498 G allele (AG, GG) with higher 
expression of OXTR in human hippocamp tissue and 
HEK-293 cell line [28]. This study suggests that the 
rs2268498 genotype may contribute to the regulation of 
the OXT biological pathway by regulating the expression 
of OXTR in brain. Upon discovering this finding, further 
researches were conducted to determine whether the 
rs2268498 genotype was associated with social cogni-
tion manifestations. The effects of rs2268498 A allele on 
non-verbal social perception [29], facial emotion recog-
nition [30] and empathic concern [31] are a few examples 
of how rs2268498 may influence social cognition. Fur-
thermore, rs53576 is an intronic SNP which is located 
within intron 3. The location of rs53576 raises the pos-
sibility that rs53576 may also play a role in the regulation 
of OXTR expression. A significant association of rs53576 
GG genotype with social auditory processing [32], differ-
ent empathy domains in Asian and European populations 
[33], and higher attachment-related anxiety [34] support 
a possible association of rs53576 with social relationship.

With regard to the above studies, it appears that it has 
largely been neglected in attempts to examine higher 
levels and more complex characteristics of social cogni-
tion. One of the basic components of social cognition 
which has received relatively scant attention is ToM. To 
date, little research has been conducted on OXTR SNPs, 

associated with ToM related abilities in healthy individuals as well as in autistic individuals. Accordingly, rs2268498 and 
rs53576 may play an important role in predicting ToM capabilities. It will be necessary to conduct further research to 
address the association of genetic variants with a deficit in ToM in individuals with ASD.
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including rs2268498 and rs53576, in association with 
some related aspects to ToM. For instance, little informa-
tion is available regarding the association of rs53576 with 
the Reading Mind in the Eyes Test (RMET) and the false-
belief task, both of which are known to be ToM tasks 
[35, 36]. However, the missing link, which has not been 
addressed as it should, is language. Given that language 
plays an influential role in the development of ToM, it 
could be considered to be an important factor. Therefore, 
ToM capabilities can be categorized based on its relation 
with language skills. As of yet, few studies have tried to 
discriminate ToM skills based on the usage of language. 
In this regard, verbal ToM abilities refer to ToM skills 
that directly engage higher level verbal/linguistic abilities. 
For example, according to the findings of Šimleša et al., 
in verbal ToM tasks, individuals must be able to compre-
hend a particular mental state by following narratives and 
vignettes or express others’ mental state by using true 
linguistic expressions [37, 38] In contrast, as Kobayashi 
et al. stated in their study, non-verbal ToM skills require 
minimum verbal demands to understand and express 
abstract subjects’ intentions [39]. As of yet, different cog-
nitive tasks have been developed and measure different 
aspects and components of ToM skills. Some of them 
assess ToM verbally, whereas the others examine non-
verbal ToM abilities. Among ToM tasks, Happé’s Strange 
Stories test is the most prominent test which measures 
verbal ToM in particular [38]. Moreover, although most 
of the cartoon-based ToM tasks are able to measure non-
verbal ToM components, Frith- Happé animation task 
(also known as moving shapes paradigm) can assess both 
verbal and non-verbal components of ToM [40]. It should 
also be noted that Happé’s Strange Stories test and Frith- 
Happé animation task specialized to evaluate verbal and 
non-verbal ToM components in both children and ado-
lescents with high-functioning autism and have been 
validated (normalized) in different languages including 
Persian [41, 42]. So, it seems that these two tasks can 
distinguish ToM abilities based on the usage of language 
in children and adolescents with high-function autism 
as well as typically developing children and adolescents. 
Besides, most previous researches have focused on the 
associations between rs2268498 and rs53576, as well as 
other OXTR SNPs, and social cognition features in typi-
cally developing populations not ASD people. Thus, fur-
ther investigations are required to bridge the gap between 
ToM and the molecular underlying mechanisms from the 
perspective of verbal abilities in both typically developing 
and ASD individuals.

Hence, the purpose of this study is to examine whether 
rs2268498 and rs53576 can be used to model verbal and 
non-verbal ToM abilities as well as other aspects of social 
functioning among typically developing children and 
adolescents and those with high-functioning ASD.

Methods
An overall total of 88 unrelated individuals participated 
in this study. Forty-four individuals with ASD and forty-
four typically developing (TD) individuals were recruited 
in the study. High-functioning ASD individuals were 
patients at the outpatient clinic of Roozbeh Psychiat-
ric Hospital during the last year. The medical records of 
these individuals were made available in full coordination 
with the dean of the hospital, the parents/caregivers of 
these people were contacted and the study was explained 
to them, and the ASD individuals whose parents/caregiv-
ers agreed to participate in the study were included in 
the study and underwent cognitive and genetic measure-
ments. ASD group consisted of 12 females and 32 males 
between the ages of 8 and 18. In the ASD group, partici-
pants were diagnosed as having high-functioning autism 
spectrum disorder (mild to moderate ASD) by an expert 
child and adolescent psychiatrist at the Roozbeh psychia-
try hospital outpatient clinic based on DSM-5 criteria. 
Individuals with ASD had no comorbid neuropsychiatric 
conditions (such as attention-deficit/hyperactivity dis-
order, bipolar disorder, depression, epilepsy, etc.), and 
Intelligence quotient (IQ) scores of 90 or higher at the 
time of participation. The TD participants were recruited 
through online advertisements. Parents of the TD group 
were informed of the study after announcing their will-
ingness to participate. Participants in the study were 
those whose parents consented to their children partici-
pating. The TD group was composed of 18 females and 
26 males of matched ages and sex. Parental reports indi-
cated that the TD participants had no family or personal 
history of psychiatric conditions and a minimum IQ 
score of 90 was obtained by TD individuals. Participants 
in both the ASD and TD groups participated voluntarily, 
had Iranian ancestry, and at the time of the study did not 
have any diseases related to the immune system (cancer, 
autoimmune disorders, etc.).

Procedure
After informed consent was obtained from parents, par-
ticipants were guided to a quiet room between 9:00 AM 
and 11:00 AM in order to complete the tasks. Moving 
shapes paradigm and Happé’s Strange Stories tasks were 
selected as measures of non-verbal and verbal ToM, 
which were administered in a pseudorandom sequence. 
Each participant was administered Raven’s progressive 
matrix test in order to determine their IQ level after 
completing the ToM tasks. A psychiatric examination 
interview was conducted with their parents based on the 
last six- month behaviors of the participants. Following 
the cognitive/ behavioral assessments, further molecular 
tests were conducted. The research has been approved 
by the Tehran University of Medical Sciences Research 
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Ethics Committee, which is in compliance with the Hel-
sinki declaration (IR.KHU.REC.1399.021).

Measurements
Cognitive and behavioral measurements
In order to establish the diagnosis and severity of the 
symptoms parents of individuals with ASD were inter-
viewed using the Childhood Autism Rating Scale 
(CARS). The CARS is comprised of 15 items that assesses 
ASD symptoms. Each item in CARS is scored between 
1 (absence of abnormality) and 4 (severe abnormality). 
A cutoff point of 25.5 is considered to be indicative of a 
high-function ASD, and a score of 25.5 or higher is indic-
ative of a preclinical diagnosis of mild ASD. All individu-
als in the ASD group achieved a CARS score of 25.5 or 
greater [43, 44].

An adapted version of the moving shapes paradigm 
(aka Frith-Happé animations) [45] and a formerly vali-
dated Happé’s Strange Stories test [46] were used to 
examine the non-verbal and verbal ToM abilities of all 
participants. Each task was displayed on a 17-inch moni-
tor while the responses were recorded. For the verbal 
ToM assessment, three blocks of unlinked, human, and 
ToM stories from Happé’s Strange Stories test were 
utilized. Each block contains eight vignettes and each 
vignette is scored from 0 (irrelevant) to 2 (relevant/spe-
cific). A question was asked after each story about the 
characters’ utterances and the main context in which 
they appeared. After the task was completed, participants 
received three scores, ranging from 0 to 16. The higher 
scores of strange stories test the better performance of 
the participant. Non-verbal ToM was measured using the 
moving shapes paradigm. The paradigm contains three 
blocks of random, goal-oriented, and ToM animations. 
Each block includes four short silent animations with two 
colored triangles as characters. The participants should 
accurately convey the storyline and describe the triangle’s 
intention at the end of each animation. The following 
variables were derived from the participants’ responses: 
(1) general rule (GR) = Correctly describing the anima-
tion’s intentions for each block (Random, Goal-directed, 
ToM), (2) intentionality score (IN) = to determine the 
ToM level of sophistication in the used words (3) appro-
priateness score (AP) = to retell the storyline in the cor-
rect sequence. A validation study of the moving shapes 
paradigm provides more details about the task.

rs2268498 and rs53576 genotyping
Genomic DNA was extracted from 0.5 ml of peripheral 
blood using Salting-out protocol. By UV-spectrophotom-
etry, the quantity of extracted DNA was determined and 
the presence of a sharp and clear band, in line with the 
ladder one kb band, on 1% agarose gel electrophoresis 
gave an indication of DNA quality. DNA contamination 

with other chemical and biological components was also 
measured using the 260/280 and 260/230 ratios of absor-
bance. Both SNPs were genotyped utilizing restriction 
fragment length polymorphism polymerase chain reac-
tion (PCR-RFLP) based on previous researches [47, 48]. 
To digest both rs2268498 and rs53576, BslI (catalog num-
ber: #ER1201) and BamHI (catalog number: #FD0054) 
restriction enzymes were respectively employed, and 
primers were designed and checked for specify leverag-
ing primer-blast’s web-based platform (https://www.
ncbi.nlm.nih.gov/tools/primer-blast/). In the case of 
rs2268498, primers (forward: 5’ TAGGCTGTCTCAC-
GGGCTAC 3’, reverse: 5’ TCGGCCTCGAAAATTA-
CAGA 3’) were designed to anneal the DNA template 
at 58°C during 35 PCR cycles. The 448 bp PCR product 
was digested overnight at 37°C and digested product was 
run on 2% agarose gel electrophoresis for genotyping 
(AA: 266 bp,131 bp, 52 bp/ AG: 266 bp, 229 bp, 131 bp, 
52 bp, 36 bp/ GG: 229 bp, 131 bp, 52 bp, 36 bp). Initially, 
the annealing temperature of primers for rs53576 (for-
ward: 5’ GCCCACCATGCTCTCCACATC 3’, reverse: 5’ 
GCTGGACTCAGGAGGAATAGGGAC 3’) was 58  °C 
[49]. After 35 cycles of PCR, we obtained a 340 bp PCR 
product. A 30-minute digestion at 37 °C was followed by 
2% gel electrophoresis and genotyping (GG: 340 bp/ AA: 
120 bp, 220 bp/ AG: 120 bp, 220 bp, 340 bp).

Statistical analysis
Statistical analyses were performed using the R pro-
gramming language version 4.2.2 (R Core Team, 2022) 
in the RStudio environment in accordance with a 95% 
confidence interval (CI). Basic R commands and dplyr 
(https://CRAN.R-project.org/package=dplyr),  tidy-
verse (https://doi.org/10.21105/joss.01686),  vegan 
(https://CRAN.R-project.org/package=vegan),  clus-
ter (Maechler, M., Rousseeuw, P., Struyf, A., Hubert, 
M., Hornik, K.(2022). cluster: Cluster Analysis Basics 
and Extensions. R package version 2.1.4.), StatMatch 
(D’Orazio M (2022). _StatMatch: Statistical Match-
ing or Data Fusion_. R package version 1.4.1, https://
CRAN.R-project.org/package=StatMatch),  factoextra 
(Kassambara A, Mundt F (2020). _factoextra: Extract 
and Visualize the Results of Multivariate Data Analyses_. 
R package version 1.0.7, https://CRAN.R-project.org/
package=factoextra), and dendextend (Tal Galili (2015). 
dendextend: an R package for visualizing, adjusting, and 
comparing trees of hierarchical clustering. Bioinformat-
ics. DOI: https://doi.org/10.1093/bioinformatics/btv428) 
packages were recruited in order to write statistical test 
codes. Additionally, the findings were visualized using 
the ggplot2 package (H. Wickham. ggplot2: Elegant 
Graphics for Data Analysis. Springer-Verlag New York, 
2016.). Pearson’s chi-square test and Wilcoxon test were 
used to compare demographic data including sex and 
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age between ASD and TD groups. The haplotype analy-
sis of rs2268498 and rs53576 was carried out based on 
expectation-maximization (EM) algorithm using Hap-
loview software version 4.2 in order to ensure that there 
was no physical linkage and linkage disequilibrium (LD) 
between rs2268498 and rs53576. Besides, the deviation 
of both rs2268498 and rs53576 from Hardy-Weinberg 
Equilibrium (HWE) was estimated by “genetics” package 
(Gregory Warnes, with contributions from Gregor Gor-
janc, Friedrich Leisch and Michael Man. (2021). genetics: 
Population Genetics. R package version 1.3.8.1.3. https://
CRAN.R-project.org/package=genetics) recruitment. 
With the use of the permutation test, rs2268498 and 
rs53576 associations with Happé’s Strange Stories test, 
moving shapes paradigm, and IQ score were investigated 
within and between groups. Furthermore, hierarchical 
clustering was employed in order to distinguish different 
aspects of ToM based on similarities and differences in 
parameters extracted from Happé’s Strange Stories test 
and moving shapes paradigm. As a final step, in order 
to compare feature detection abilities between SNPs 
(rs2268498 and rs53576) and hierarchical clustering, and 
to investigate the relation between cognitive parameters 
and both rs2268498 and rs53576, a general linear model 
(GLM) with logistic regression was used. Besides, for 
each equation in GLM, odds ratio 

(
OR = log

(
p

1−p

))
 

and p was calculated. It is important to note that, except 
for the within-group analysis, all statistical tests involving 
both ASD and TD groups used regression out method to 
adjust the effect of IQ.

Results
Demographic results
Pearson’s chi-square test indicated that there were no 
significant differences between the two groups based on 
gender (p = 0.260). Additionally, Wilcoxon test results did 
not reveal significant differences in age between indi-
viduals with ASD and TD group (p = 0.391). However, the 
IQ of the TD group was significantly higher than that of 
the ASD group, despite none of the participants attend-
ing exceptional schools (p = 1.883 × 10− 4). Therefore, IQ is 
controlled by regressing it out. A summary of the demo-
graphic results can be found in supplementary material 1 
Table 1.

rs2268498/rs53576 HWE and haplotype analysis
There was no significant deviation from HWE for 
rs2268498 and rs53576 based on Pearson’s chi-square 
test (p rs2268498 = 0.519, p rs53576 = 0.358). Additionally, 
rs2268498 and rs53576 do not exhibit a strong linkage 
based on the statistics and parameters obtained from 
haplotype analysis. In this respect, it could be consid-
ered that these two SNPs may act independently of 
one another. (D’ = 0.436, LOD = 3.070, r2 = 0.143). An 

overview of the HWE and genotype distribution is pro-
vided in supplementary material 1 Table 2.

rs2268498/rs53576 and IQ score assessments
Meanwhile, it has been indicated that IQ score was sig-
nificantly associated with rs53576 genotype across ASD 
and TD individuals (p-value = 0.028). Further analysis 
revealed that while there was no significant association 
between rs53576 genotype and IQ score in TD partici-
pants (p-value = 0.647), in ASD group individuals with 
rs53576 GG genotype had significantly lower IQ scores 
than A carriers (p-value = 0.023).

rs2268498/rs53576 and ToM assessments
The differences between ASD and TD group in perform-
ing ToM tasks (Happé’s Strange Stories test and moving 
shapes paradigm) have been indicated in our previous 
finding [50]. In brief, there was no significant differences 
between ASD and TD group in performing unlinked 
(p = 0.841) and human stories (p = 0.784) blocks of Hap-
pé’s Strange Stories test as well as random animations 
GR of moving shapes paradigm (p = 0.853). However, the 
results revealed that in ToM stories blocks of Happé’s 
Strange Stories test (p ≤ 0.001) and other moving shapes 
paradigms components including Goal-directed GR 
(p ≤ 0.001), ToM GR (p ≤ 0.001), IN (p ≤ 0.001), and AP 
(p ≤ 0.001), ASD group have significant lower scores than 
TD group. These findings implicitly revealed that ASD 
individuals could follow the tasks’ instructions as well as 
TD individuals.

In total sample, Happé’s Strange Stories task results 
revealed a significant association of rs2268498 with 
ToM stories, but not with human or unlinked stories 
(p ToM = 0.003, p human = 0.056, p unlinked = 0.883) which 
was replicated in both TD and ASD groups separately 
(p ToM−ASD = 0.018, p ToM−TD = 0.010). In the TD group, 
the rs2268498 AA genotype was significantly associated 
with higher scores in Happé’s Strange Stories task human 
and ToM blocks (p ToM−TD = 0.005, p human = 0.027), while 
in the ASD group, the rs2268498 AA genotype was sig-
nificantly associated with higher performance only in the 
ToM block (p ToM−ASD = 0.019).

In rs53576, there was a significant association between 
rs53576 and ToM stories block in the total sample popu-
lation (p ToM ≤ 0.001, p human = 0.192, p unlinked = 0.527) but 
not in each group separately (p ToM−ASD = 0.081, p ToM−TD 
= 0.094). It shows that this significant difference arises 
from differences in ToM stories residual scores between 
individuals with ASD and TD individuals. Table 1; Fig. 1a 
& 1b provide detailed information regarding the results.

The results of the moving shapes paradigm indicated 
that in total samples, rs2268498 was significantly associ-
ated with ToM and goal-directed GR, as well as IN, but 
not with random animations GR and AP (p ToM ≤ 0.001, 

https://CRAN.R-project.org/package=genetics
https://CRAN.R-project.org/package=genetics
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P goal−directed = 0.002, p IN ≤ 0.001, p random = 0.339, p AP 
= 0.070). In within groups analysis, rs2268498 was only 
marginally associated with AP in the TD group (p ToM−ASD 
= 0.647, P goal−directed−ASD = 0.175, p random−ASD = 0.109, p 
ToM−TD = 0.215, P goal−directed−TD = 0.289, p random−TD = 
0.437, p IN−ASD = 0.444, p IN−TD = 0.627, p AP−TD = 0.047). 
Further analysis showed that rs2268498 G-carriers scored 
significantly lower in the AP variable than AA carriers in 
the TD group (p = 0.032).

For rs53576, it was indicated that rs53576 was signifi-
cantly associated with goal-directed and ToM animations 

GRs, IN, and AP but not random animations GR in the 
total sample (p ToM = 0.002, P goal−directed = 0.004, p IN ≤ 
0.001, p AP = 0.031, p random GR = 0.370). Within group 
analysis indicated that rs53576 was significantly asso-
ciated with the goal-directed animations and the ToM 
animations GRs and IN scores in the ASD group but not 
in the TD group (p ToM−ASD = 0.039, P goal−directed−ASD = 
0.006, p random−ASD = 0.279, p AP−ASD = 0.698, p IN−ASD 
= 0.013, p ToM−TD = 0.356, P goal−directed−TD = 0.695, p 
random−TD = 0.402, p AP−TD = 0.571, p IN−TD = 0.265). Addi-
tional investigations revealed that in the ASD group, 

Table 1 Association analysis of rs2268498/rs53576 × ASD/TD with Happé’s strange stories test variables
SNP Variable Mean (± SD) Df Sum of Squares R2 F p-value*

ASD TD
rs2268498 Unlinked stories 6.886 ± 3.828 9.977 ± 2.592 1 0.004 9.800 × 10− 4 0.093 0.833

Human stories 5.386 ± 4.166 11.659 ± 2.010 1 0.173 0.039 3.816 0.057

ToM stories 5 ± 4.393 13.204 ± 2.097 1 0.364 0.083 8.014 0.003
Residual 84 3.819 0.875

Total 87 4.361 1.000

rs53576 Unlinked stories 6.886 ± 3.828 9.977 ± 2.592 1 0.016 0.003 0.463 0.527

Human stories 5.386 ± 4.166 11.659 ± 2.010 1 0.058 0.012 1.611 0.196

ToM stories 5 ± 4.393 13.204 ± 2.097 1 1.619 0.342 44.821 ≤ 0.001
Residual 84 3.034 0.641

Total 87 4.728 1.000
SD = standard deviation, df = degree of freedom

Note: Significant p-values (p-values which are less than 0.05 with 95% CI are highlighted in bold)

Fig. 1 Association of rs2268498 with verbal ToM in both groups. NS refers to non-significant. (*): p-value ≤ 0.05, (**): p-value ≤ 0.01, (***): p-value ≤ 0.001
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individuals with rs53576 AA genotype scored signifi-
cantly higher in goal-directed and ToM animations GRs 
(p ToM = 0.039, P goal−directed = 0.027, p random = 0.636), 
while carriers of rs53576 GG genotype scored higher 
in IN variable but not AP (p AP = 0.310, p IN = 0.014). 
Figs.  1c, 2a, 2b, 2c and Table  2 provide additional 
statistics.

Hierarchical clustering results
Using hierarchical clustering of dissimilarity matrix dis-
tances and for both ASD and TD groups, four clusters 
of cognitive parameters were found. According to the 
dendrograms, the cognitive variables were classified into 
four clusters based on the distance matrix: (1) General 
non-verbal characteristics regardless of ToM sophistica-
tion (random, goal-directed, and ToM GR), (2) The abil-
ity to consume verbally regardless of ToM sophistication 
(unlinked, human, and ToM stories), (3) The capability of 
acquiring non-linguistic ToM (IN), and (4) The ability to 
acquire verbal ToM (AP). Fig. 3a and 3b present ASD and 
TD clustering results. As a result of visualizing 2-dimen-
sional K-means clustering, it was revealed that in the TD 
group, the parameters representing similar ToM features 
(verbal/non-verbal) have a relatively smaller distance 
from one another than other variables. Meanwhile, the 
parameters illustrating verbal and non-verbal ToM were 

visually farther apart from each other in the ASD and TD 
groups. Fig. 3c and 3d illustrate 2-dimensional clustering 
in more detail.

General linear model and logistic regression
None of the ToM parameters in the ASD group was 
predicted by the rs2268498 AA genotype. However, 
in the TD group, the rs2268498 AA genotype was sig-
nificantly associated with AP, human, and ToM sto-
ries, which are partially associated with verbal ToM and 
verbal skills (βhuman = 1.423, p human = 0.019, OR human 
= 4.150; βToM = 2.286, p ToM = 1.440 × 10− 4, OR ToM = 
9.838; βAP = 2.333, p AP = 0.023, OR AP = 10.312). Using 
GLM results for rs53576 in both groups, it was found 
that in ASD group, rs53576 AA genotype significantly 
predicted GR of goal-directed and ToM animations, 
and GG genotype significantly predicted IN responses 
(βgoal−directed = 1.583, p goal−directed = 0.047, OR goal−directed = 
4.870; βToM = 1.532, p ToM = 7.270 × 10− 3, OR ToM = 4.631; 
β IN = -7.324, p IN = 0.016, OR IN = 6.596 × 10− 4). The 
rs53576 AA genotype was also found to be a significant 
predictor of ToM animations GR in individuals who were 
TD (βToM = 1.699, p ToM = 0.035, OR ToM = 5.470). There is 
a detailed presentation of GLM results in supplementary 
material 1 Table 3.

Fig. 2 Association of rs53576 with non-verbal ToM in both groups
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Discussion
In this study, we examined the association of two OXTR 
non-coding SNPs, rs2268498 and rs53576, with verbal 
and non-verbal ToM abilities and model ToM skills in 
ASD and TD participants independently. Based on the 
convergence of results from permutation tests and GLM 
analysis, it was determined that rs2268498 AA genotype 
was significantly associated with verbal ToM in the TD 
group, whereas rs53576 AA genotype was significantly 
associated with non-verbal ToM in the ASD group. 
Moreover, it has been suggested that rs53576 was signifi-
cantly associated with IQ score in ASD patients.

This finding could be attributed to the evolutionary role 
that OXT and OXTR play in the social perception of ver-
tebrates, particularly mammals. In 2022, it was demon-
strated that homozygous deletion of the Oxtr could result 
in social isolation in eight-week-old zebrafish [51]. Also, 
earlier in 2016, it was suggested that OXTR expression 
changes in the Nucleus Accumbens (NAcc) play a sig-
nificant role in the regulation of social behavior in prai-
rie voles. According to the results of this study, there are 
several non-coding polymorphisms in the OXTR regula-
tory and intronic regions that are associated with altered 
OXTR expression in the NAcc [52]. This may lend sup-
port to the contention that OXTR plays a significant role 
in social perception in mammals.

As discussed earlier, due to the complexity of social 
cognition processes in humans, OXTR has a much 
broader and more complex impact on humans than it 
does on other species. As a result, the effects of OXT and 
OXTR variants can be observed in humans from prenatal 

development to adulthood, as well as in daily social inter-
actions seen in individuals with social cognition impair-
ment such as ASD. As an example of the effect of OXTR 
variation during infancy, it was reported in 2015 by 
Unternaehrer et al. that maternal behaviors in childhood 
have a significant impact on OXTR methylation pattern 
during adulthood. The study discovered that individuals 
who received less maternal care during childhood exhibit 
significantly higher methylation of OXTR during adult-
hood, which is significantly associated with the incidence 
of psychiatric disorders [53].

Particularly in the case of ASD, several studies tried 
to shed light on the association of OXTR with ASD and 
its related phenotypes. The association of SNPs linked 
to OXTR with ASD likelihood according to meta-anal-
yses results [54], the correlation of genetic and epigen-
etic modifications of OXTR with aberrant social behavior 
[55], the association of ASD clinical features (e.g. sei-
zures, panic, and aggressive behaviors) with OXTR SNPs 
[56], the association of rs53576 with social, emotional or 
behavioral functioning in children and adolescents [57], 
and the relation of OXTR polymorphisms with social 
impairment in children with and without ASD [58] are 
illustrations of studies that find significant associations of 
OXTR variants with ASD and its correlated traits.

The results of this study (association of rs53576 with 
non-verbal ToM performance in ASD group) are largely 
explained by this previous evidence. While different stud-
ies have demonstrated the association between various 
variants of OXTR and maternal behavior effects on tod-
dlers, rs2268498 and rs53576 stand out in this field due to 

Table 2 Association of moving shapes paradigm variables’ residuals with “rs53576/rs2268498 × grouping”
SNP Variable Mean (± SD) df Sum of Squares R2 F p-value

ASD TD
rs2268498 GR – random animations 3.045 ± 2.079 2.977 ± 1.355 1 0.041 0.009 1.057 0.339

GR – goal-directed animations 2.954 ± 1.952 5.431 ± 1.189 1 0.490 0.112 12.457 0.002
GR – ToM animations 1.568 ± 1.420 4.750 ± 1.366 1 0.520 0.119 13.199 ≤ 0.001

Residual 83 3.309 0.758

Total 87 4.361 1.000

IN 22.636 ± 9.594 31.977 ± 3.015 1 0.602 0.138 14.009 ≤ 0.001
AP 11.977 ± 6.428 23.454 ± 3.406 1 0.134 0.030 3.135 0.070

Residual 85 3.610 0.827

Total 87 4.361 1.000

rs53576 GR – random animations 3.045 ± 2.079 2.977 ± 1.355 1 0.040 0.008 0.882 0.370

GR – goal-directed animations 2.954 ± 1.952 5.431 ± 1.189 1 0.419 0.088 9.176 0.002
GR – ToM animations 1.568 ± 1.420 4.750 ± 1.366 1 0.431 0.091 9.456 0.004
Residual 83 3.837 0.811

Total 87 4.728 1.000

IN 22.636 ± 9.594 31.977 ± 3.015 1 0.159 0.033 3.730 0.031
AP 11.977 ± 6.428 23.454 ± 3.406 1 0.970 0.205 22.708 ≤ 0.001
Residual 85 3.590 0.759

Total 87 4.728 1.000
Note: Significant p-values (p-values which are less than 0.05 with 95% CI are highlighted in bold)
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their significant interaction with environmental factors 
both during childhood and adulthood. In 2019, Smarius 
et al. suggested that five-to-six-year-old children who had 
the GG genotype in rs53576 and were exposed to verbal 
violence by their mothers, as well as same age children 
who were carriers of the A allele in rs2268498 (AA and 
AG) and were exposed to verbal violence by their moth-
ers, showed a significant increase in systolic blood pres-
sure [59]. In addition, Sicorello et al. in 2020 attempted 
to identify associations between rs2268498 and rs53576 
and everyday social behaviors, such as social buffering, 
among healthy individuals. Their results demonstrated 
that G carriers of both rs2268498 and rs53576 exhib-
ited lower social company requirements after stress-
ful events [60]. In light of the findings discussed above, 
it is implied that rs2268498 and rs53576 together and 
alongside each other may be significantly associated 

with social functioning. As a result, further investiga-
tion may be needed in order to gain a deeper under-
standing of the mechanisms behind the association of 
rs2268498 and rs53576 with social cognition. Regard-
ing this approach, Laursen et al. investigated the asso-
ciation between rs2268498 and rs53576 polymorphisms 
and cognitive empathy in 2014. The results indicated 
that healthy individuals who hold the CC and AA geno-
types at rs2268498 and rs53576, respectively, displayed 
significantly higher levels of empathic concern [61]. 
Moreover, in 2019, Meixner et al. assessed if rs2268498 
and rs53576 are associated with language-based ToM 
through the use of a word-processing task. The results 
illustrated that rs2268498 A carriers and rs53576 G car-
riers showed weaker bias in conditions measuring emo-
tionally positive self-related words [62]. Thus, it could 
be anticipated that rs2268498 and rs53576 may also 

Fig. 3 Hierarchical clustering results visualization. Hierarchical clustering of ToM parameters’ dissimilarity matrix distance in TD (a) and ASD (b) groups and 
2-dimentional k-means clustering in TD (c) and ASD (d) groups
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be associated with verbal ToM on the basis of such an 
observation. In this respect, our findings demonstrate a 
positive association between the rs2268498 AA genotype 
and validated parameters pertaining to language-based 
ToM abilities in typically developing children and adoles-
cents. However, in the case of the association of rs53576 
with IQ our findings suggest the association of rs53576 
GG genotype with lower IQ scores in ASD individuals. 
This seems contradictory to some extent [49]. Hence, 
this should be evaluated in other samples and popula-
tion for replicability. In this regard, it is worth mention-
ing that a number of previous studies have also examined 
the association of OXTR polymorphisms and validated 
ToM tasks. Hence, some studies have attempted to deter-
mine if there is a significant association between OXTR 
SNPs and well-known ToM tasks such as the Reading 
Mind in the Eyes’ Test (RMET) and the false-belief task. 
The obtained results showed no significant association 
between OXTR SNPs and false-belief task performance 
in healthy populations regardless of age [36, 63], whereas 
RMET accuracy in healthy adolescents and young adults 
was significantly associated with rs53576, rs2254298, 
and rs2228485 [35]. While rs2268498 has been shown to 
be significantly associated with autistic traits in healthy 
young adults [64], no study has yet been able to find an 
association between OXTR variants and ToM tasks such 
as RMET in population with ASD symptoms [65]. More-
over, considering that individuals with ASD may also 
present language delays, it may be more appropriate to 
use language-related and language-free ToM tasks sepa-
rately. In this regard, our results clearly illuminated that 
rs53576 is associated with non-verbal ToM in individu-
als with ASD. Despite of findings regarding association 
between rs53576 and rs2268498 with different aspects 
of ToM, including this study, the accuracy and reliability 
of these findings are still in question. In light of this, it 
appears that these results require assistance on a com-
putational level. Using the matrix distance principle, we 
have found that linguistic and nonlinguistic ToM dif-
fer from one another in both ASD and TD individuals. 
According to our results, rs53576 was associated with 
parameters that represent verbal ToM in the ASD group, 
while rs2268498 was associated with variables indicative 
of verbal ToM in the TD group.

ToM can have various manifestations in everyday life. 
These manifestations can range from following social 
cues during infancy to complex abilities intertwined with 
other cognitive functions, such as language and face pro-
cessing. Both rs2268498 and rs53576 have indicated sig-
nificant associations with different aspects of ToM or of 
which ToM itself is a part (e.g., empathy, face emotion 
recognition, social cognition, etc.). However, the ques-
tion that arises before deep diving into the discussion 
about the association of rs2268498 and rs53576 with 

these aspects of ToM is that considering the fact that 
these two variants are located in the non-coding regions 
of the OXTR gene, how and through what mechanisms 
they have association with ToM? Regarding rs2268498, 
since this SNP is located in the promoter region of OXTR 
gene and has a significant association with OXTR expres-
sion at the cellular level [28], it can be concluded that 
the association of rs2268498 with ToM is moderated by 
OXTR expression. Different studies have uncovered the 
association between rs2268498 and ToM. Previous find-
ings suggested that rs2268498 has a significant associa-
tion with identifying and utilizing social cues as well as 
social learning which in turn can represent ToM [29, 66]. 
In addition, rs2268498 genotype can predict prosocial 
behavior and empathic concerns, both indicators of ToM 
[31]. More importantly, rs2268498 illustrated association 
with facial emotion recognition, an ability that directly 
reflects ToM associated functions [30].

rs53576 is a non-coding SNP located in intron 3. Up 
to now, no study has revealed the exact cellular and 
molecular mechanisms through which rs53576 affects 
ToM. However, it can be assumed that rs53576 could 
play a role as a cis-SNP and regulate OXTR expression 
itself or be a trans-SNP for other genes associated with 
ToM. As of yet, a wide range of investigations have tried 
to demonstrate the association of rs53576 with ToM and 
its associated traits. In infants, rs53576 has a significant 
association with visual attention to the eyes as social 
cues [67]. Additionally, it has been shown that rs53576 
is significantly associated with RMET performance [35] 
and Hinting Task [68] which both are ToM measuring 
tasks in typically developing individuals. ToM has, how-
ever, been largely correlated with empathy and rs53576 
in previous studies. While Gong et al. demonstrated the 
association of rs53576 with empathy in general [69], the 
study of Chander et al. revealed that rs53576 GG geno-
type is associated with greater cognitive empathy in 
Asian cohorts [33]. Moreover, McDonald et al. studies, 
rs53576 moderates the relation of parent-child interac-
tions with children’s empathy [70]. Sociality, sociabil-
ity, social cognition abilities, face processing, and facial 
emotion recognition are other manifestations of ToM 
associated with rs53576 [71–74]. rs53576 is not just asso-
ciated with ToM in typically developing populations. 
Some studies have indicated the association of rs53576 
with ToM in individuals with psychiatric symptoms. As 
an illustration, rs53576 is significantly associated with 
ASD [75], Asperger syndrome [76], and autism related 
social impairment and social communication difficulties 
[58, 77]. Furthermore, rs53576 has also shown a signifi-
cant correlation with ToM in individuals with treatment-
resistant schizophrenia [78], bipolar disorder type I [79], 
and attention deficit/hyperactivity disorder (ADHD) [80]. 
Lastly, few studies evaluate the association of rs53576 and 
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ToM at the neural level. Association of rs53576 with N1 
event-related potential component during performing a 
social task [81] and correlation of anterior cingulate and 
supplementary motor area activity with rs53576 during 
performing an empathic task [82], are studies indicating 
the relation of rs53576 and ToM at neurobiological level.

Despite all the studies mentioned above, no study dis-
tinguished verbal and non-verbal ToM variations using 
rs2268498 and rs53576 across high-functioning autis-
tic and TD individuals. There is only one study in 2019 
that evaluates the association between rs2268498 and 
rs53576 with emotional words related to self and others 
[62]. Therefore, this study is the first evaluation to dis-
criminate verbal ToM components from non-verbal ToM 
using rs2268498 and rs53576 across ASD and TD indi-
viduals, and the results have implicitly been validated by 
hierarchical clustering.

While many aspects have been discussed so far, the 
most pressing question here is through which neurobio-
logical mechanisms OXTR affects cognitive and behav-
ioral functions related to ToM? There are two levels of 
explanation for these questions: cellular and neurobio-
logical. At the cellular level, there is scarce evidence for 
OXTR function in neurons. The general consensus is 
that the OXT and OXTR signaling pathways in neurons 
are similar to those in uterine smooth muscle cells. Only 
in 2022, Meyer et al. showed that in HEK293 cell lines, 
mutation in OXTR (A218T) leads to OXTR protein stabil-
ity, shift in Ca2 + dynamics, which ends in MAPK path-
way activation reduction [83]. Meanwhile, it is generally 
accepted that neurobiological changes bridge the gap 
between cellular modifications associated with OXTR 
genetic variants and ToM characteristics. In 2014, Brian 
W. Haas et al. published one of the first studies in this 
field. The results of this study indicated that OXTR is sig-
nificantly associated with social endophenotypes. These 
endophenotypes include brain regions such as dorsolat-
eral prefrontal cortex (DLPFC), Ventromedial Prefrontal 
Cortex (VMPFC), Visual Cortex (VC), Premotor Cortex 
(PMC), and Anterior Cingulate Cortex (ACC), which are 
essential for various social cognition processes, including 
emotion recognition and social reward, social commu-
nication, empathy, and ToM. Researchers hypothesized 
that OXTR is associated with social traits indirectly by 
affecting these brain regions [84]. Thus, when it comes to 
rs53576, homozygote individuals with GG genotype who 
experienced insecure childhood attachments have shown 
higher brain gray matter volumes in the left amygdala 
and lower volumes in the right superior parietal lobule, 
left temporal pole, and bilateral frontal regions during 
the ToM paradigm [34]. In addition, Uzefovsky et al. in 
2019 found significant association between rs53576 GG 
genotype and hyperactivity in the right supramarginal 
gyrus (rSMG) and inferior parietal lobule (rIPL) during 

RMET (as a ToM task) whereas AA genotype was asso-
ciated with topological patterns in brain functional net-
works [85, 86]. Nevertheless, little is known about the 
association between rs2268498 and brain scale endophe-
notypes. For instance, Zimmermann et al. showed that 
rs2268498 AA is associated with Amygdala functional 
connectivity [87]. Considering these findings together, 
they shed light on the association between rs2268498 AA 
genotype and rs53576 GG genotype and changes in brain 
regions related to ToM. In this sense, our findings at the 
cognitive level were implicitly aligned with the results of 
those studies.

The main limitation of this study was the sample 
size. Due to limitations in budget, time, facilities, and 
time overlap with COVID-19 pandemic we could not 
expand the sample size enough. However, using accu-
rate statistical methodologies (e.g., permutation tests) we 
could overcome this limitation to some extent. Further, 
advanced assessments using neuroimaging techniques 
and assays that measure other DNA variants with larger 
sample size are required to evaluate the accuracy of these 
findings.

Conclusions
In conclusion, here, children and adolescents with ASD 
and typically developing individuals, matched on sex 
and age in the Iranian population were assessed for ver-
bal and non-verbal ToM as well as OXTR two variants, 
rs2268498 and rs53576, respectively. It was discovered 
that rs2268498 could significantly predict verbal ToM of 
TD participants, whereas rs53576 could significantly pre-
dict non-verbal ToM of participants with ASD. Addition-
ally, the genetic and hierarchical modeling results aligned 
with each other and showed partial agreement. In order 
to ensure that the results of this study are reliable, further 
examinations will be required.
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