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Abstract 

Background Nonadherence to medication contributes substantially to worse health outcomes. Especially 
among older adults with chronic illness, multimorbidity leads to complex medication regimes and high non-
adherence rates. In previous research, depressive symptomology has been identified as a major contributor 
to nonadherence, and some authors hypothesize a link via motivational deficits and low self-efficacy. However, 
the exact mechanisms linking depressive symptomology and nonadherence are not yet understood. This is in part 
because the often-employed sum scores cannot do justice to the complexity of depressive symptomology; instead, it 
is recommended to assess the influence of individual symptoms.

Methods Following this symptom-based approach, we performed correlation, network and regression analysis using 
depressive symptoms as depicted by the items of the revised Beck Depression Inventory II (BDI) to assess their influ-
ence with nonadherence in N = 731 older adults with chronic neurological diseases. Nonadherence was measured 
with the self-report Stendal Adherence to Medication Score (SAMS).

Results Even when controlling for sociodemographic and health-related covariates, the BDI remained the most influ-
ential contributor to nonadherence. Across different methods, Loss of Interest and Difficulty with Concentration were 
identified as particularly influential for nonadherence, linking nonadherence with other affective or somatic BDI items, 
respectively. Additionally, Fatigue, Problems with Decision Making, Suicidal Thoughts, and Worthlessness contribute 
to nonadherence.

Conclusion Using a symptom-driven approach, we aimed to understand which depressive symptoms contrib-
ute to higher levels of nonadherence. Our results refine previous hypotheses about motivation and control beliefs 
by suggesting that it is not merely a lack of beliefs in the efficacy of medication that connects depressive symptoms 
and nonadherence, but rather an overall lack of interest in improving one’s health due to feelings of worthlessness 
and suicidal tendencies. This lack of interest is further substantiated by already sparse resources caused by changes 
in concentration and fatigue. In order to improve health outcomes and reduce nonadherence, these associations 
between depressive symptoms must be further understood and targeted in tailored interventions.
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Background
With advancing age, the prevalence of chronic diseases in 
general and neurological diseases in particular increases. 
The World Health Organization (WHO) estimates that 
more than 20% of adults aged 60 years have a mental or 
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neurological disease; other projections predict that the 
number of these older adults will double by 2050, lead-
ing to an increasing burden of age-related diseases world-
wide [1, 2].

Importantly, most chronic conditions are treated with 
medication. According to the American Center for Dis-
ease Control and Prevention, in 2016, 85% of US citizens 
aged 60 or older received a prescription for medication 
[3]. Because older adults often have multiple conditions, 
they have to adhere to complex medication regimens [2, 
4, 5]. To achieve optimal health outcomes, it is essential 
that patients take these medications as prescribed. Non-
adherence describes a situation where patients do not 
take their medicines as agreed on with their healthcare 
providers [4, 6]. Nonadherence rates remain high, with 
a recent review estimating nonadherence at 43% [7]. 
As nonadherence reduces the effectiveness of medica-
tion and/or can lead to adverse health events due to side 
effects or inappropriate drug interactions [8], nonadher-
ence is generally associated with poorer health outcomes 
and quality of life (QoL) [9, 10].

The reasons for nonadherence are multifaceted; in 
a review, Yap and colleagues summarize five overall 
domains of adherence barriers: medication factors such 
as medication complexity and frequency of change, phy-
sician factors such as communication and satisfaction, 
system factors including finances and availability, mis-
cellaneous factors, and patient factors such as age and 
gender, cognition, personality, and overall health [11]. 
Among these, depressive symptoms as patient factors 
have been identified as particularly detrimental [12, 13]. 
This association between depressive symptoms and non-
adherence is particularly harmful because poorer health 
and depressive symptoms are interrelated, leading to a 
downward spiral of poorer physical and mental health. 
As poorer health in old age is also associated with more 
medical prescriptions, the association between nonad-
herence and depressive symptoms makes the latter an 
ideal starting point for improving nonadherence rates. 
Thus, across many different studies, including different 
patient groups and measurement tools, depressive symp-
toms have been consistently identified as influential [11, 
14, 15].

Of note, depression is a highly heterogeneous con-
struct that includes both affective symptoms, such as loss 
of interest, hopelessness, sadness and lack of pleasure, 
and somatic symptoms concerning sleep, appetite and 
concentration [16–19]. Additionally, much like nonad-
herence, depressive symptoms are complex and may dif-
fer in their manifestation between individuals [20–23]. 
Because of this complexity, new efforts have been made 
to expand the view of depressive symptomology towards 
a symptom-based approach. Accordingly, researchers 

are proposing to move away from the traditional idea of 
depression being a single (latent) construct that causes its 
corresponding symptoms, and instead to focus on these 
very symptoms as a self-sustaining, interactive system 
[21, 23–25]. This approach suggests that symptoms influ-
ence and trigger each other in cyclic relationships that 
cannot be satisfactorily accounted for by summarizing 
depression in a single diagnostic criterion or total score. 
This symptom-based approach is based on research dem-
onstrating a) significant associations between depressive 
symptoms, b) symptom overlap between depression and 
other psychiatric disorders, and c) the overall lack of a 
replicable (factor) structure of depression as an overall 
diagnostic term across individuals [20–23, 25–28]. This 
symptom-based approach not only recognizes the com-
plexity of depressive symptoms, but also allows a better 
understanding of which of the many depressive symp-
toms have an impact on, for example, health, QoL, or 
adherence [29].

Despite the close association between nonadherence 
and depressive symptoms, it is not well understood how 
exactly depressive symptoms exert their influence. While 
several studies report an effect of higher depression sum 
score values on higher levels of nonadherence [11–13], 
for example a meta-analysis by Grenard et  al. estimates 
an odds ratio of 1.76 for nonadherence in patients with 
depression compared to patients without depression [15], 
these studies cannot explain which aspects of depres-
sive symptoms deliver this effect. Many authors hypoth-
esize about potential effects of reduced concentration or 
motivation as a connecting factor [14, 15, 30]; however, 
the symptom-driven approach described above may shed 
light on which depressive symptoms contribute primarily 
to nonadherence. While this approach has been applied 
to depressive symptoms in other contexts [31–35], to the 
best of our knowledge, it has not yet been done to assess 
its relation with nonadherence. Therefore, we applied 
different methods to assess the relationship between 
nonadherence and individual depressive symptoms to 
understand by which mechanisms depressive sympto-
mology is linked to nonadherence.

Methods
Study design, setting and participants
The data used for this secondary analysis were taken 
from the NeuroGerAd study, an observational study on 
medication adherence and related psychosocial factors 
conducted on the wards of Neurology at Jena University 
Hospital, Germany, from 2019 to 2020. Detailed informa-
tion on the study design and collected data can be found 
in the published study materials [36–38]. Briefly, older 
patients with common neurological main diagnoses as 
confirmed by the hospital’s leading physicians received 
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a comprehensive assessment during their hospital stay. 
Initial study inclusion criteria comprised age (≥ 60 years, 
or ≥ 55 years with multi-morbidity), cognition (no severe 
cognitive impairments as indicated by Montreal Cogni-
tive Assessment > 18 or diagnosis of dementia, no delir-
ium), and absence of severe depression. Of the original 
910 participants included in the study, N = 731 completed 
both the dependent and independent variable of interest 
for this manuscript, and were thus included in the pre-
sent analysis.

Variables
We extracted the following variables for the present 
analysis:

– The dependent variable was depressive symptomol-
ogy as assessed with the revised Beck Depression 
Inventory (BDI) [39, 40]. The BDI encompasses 21 
items assessing the presence and intensity of different 
depressive symptoms on a 4-point Likert scale.

– The key independent variable was medication adher-
ence measured with the Stendal Adherence to Medi-
cation Score (SAMS), a self-report scale encompass-
ing a sum score as well as the sub-scales Modification 
of medication, Forgetting to take medication, and 
Missing Knowledge about medication. Each of the 
18 items is posed as a 4-point Likert scale ranging 
from 0 to 4, with higher scores indicating higher lev-
els of nonadherence. The SAMS has undergone test-
ing across a range of patient groups, such as neuro-
logical patients, chronic pain patients, and patients 
who have received kidney transplants, and the three 
sub-scales have been replicated in various studies 
[41–45]. In our study, we calculated the sub-scales as 
the mean of the respective items (Cronbach’s α: Total 
Score = 0.83 [95% CI 0.82-0.85], Forgetting = 0.73 [95% 
CI 0.70-0.76], Modification = 0.84 [95% CI 0.82-0.86], 
and Missing Knowledge = 0.79 [95% CI 0.77-0.81]). As 
no universally accepted cut-off point for nonadher-
ence is defined, we treated the SAMS as a continuous 
variable [46].

In addition, to evaluate the relative contribution of the 
BDI, we included the following covariates:

– Age (years), Sex (Male/Female), Living Situation 
(Alone/not Alone), Marital State (Married or in a 
relationship/not Married), Education (low ≤ 8  years, 
medium 9 – 11 years, high ≥ 12 years corresponding 
to the German education system)

– Type of medical main diagnosis as given by physi-
cians during the patients’ hospital stay (Movement 
Disorder, Cerebrovascular Disorder, Neuromuscu-

lar Disorder, Epilepsy, Miscellaneous Disorders) and 
number of different medications taken daily

– Self-Rated Health (SRH) according to item 1 of the 
SF-36. This item asks patients to rate their general 
health (“in general, would you say your health is…?”) 
on a scale of 1 = excellent to 5 = poor [47, 48].

– Satisfaction with healthcare indicated by Healthcare 
Climate Questionnaire (HCCQ) The HCCQ utilizes 
15 Likert-Scale items to assess patients’ perception of 
support for autonomy, competence, communication, 
and empathetic support. It is summarized as a mean 
score, with higher scores indicating a higher overall 
satisfaction with the provided care. It has been tested 
and validated in previous studies [49–51].

– Cognition assessed with the Montreal Cognitive 
Assessment (MoCA). The MoCA is one of the most 
commonly used cognitive screenings with high sen-
sitivity especially for differentiation between unim-
paired cognition and mild cognitive impairment. It 
incorporates not only memory and orientation but 
also abstraction, language/fluency, and visuospatial 
tasks. A maximum of 30 points can be received, with 
higher scores reflecting better performance. In addi-
tion to utilizing the overall sum score as a continu-
ous variable, different cutoffs are proposed in various 
patient populations [52–55].

– As we included not only patients with movement 
disorders but generally older adults, we measured 
Mobility as indicated by the Timed Up and Go (TuG) 
test. During the TuG, patients are asked to stand up 
from a chair, walk a set distance, turn around and re-
take their seat, assessing overall mobility required for 
every-day tasks [56]. The TuG is a validated and relia-
ble measure for mobility also in impaired populations 
[57, 58].

– Personality according to the Big Five Inventory-10 
(BFI) [59]. The BFI is the most commonly used and 
validated questionnaire to assess personality based 
on the Big Five theory including the traits open-
ness, neuroticism, agreeableness, conscientiousness, 
and extraversion. The BFI-10 has five subscales with 
two Likert-scale items for each of the traits. Scale 
scores are then calculated as the participant’s mean 
response. Its validity has been confirmed previously 
in extensive German samples [60].

Statistical methods
We used descriptive statistics (Mean and SD or Median 
and IQR) to describe the included patients. Using lin-
ear regression, we initially confirmed the association 
between BDI and SAMS while controlling for covari-
ates. Subsequently, we performed network analysis (NA) 



Page 4 of 11Schönenberg et al. BMC Psychiatry          (2024) 24:131 

[61–63] using the R-package bootnet [61] as an explora-
tory tool to map out the relation between the SAMS sum 
score and sub-scales, and depressive symptoms repre-
sented by the BDI items. Unlike traditional modelling 
approaches, NA does not assume an underlying latent 
factor to account for links between variables, but rather 
assumes that the included variables influence each other 
in a cyclic relationship. Especially for psychosocial items, 
this approach is beneficial as it assumes that items, e.g. 
symptoms in a questionnaire such as the BDI, are inter-
related and assesses their interplay rather than reducing 
a phenomenon as complex as depressive symptomology 
down to one latent factor [21, 24–26].

This approach has recently been employed to study 
the complexity of mental health disorders, especially 
depression [22, 31, 32, 35, 61, 64]. The Gaussian Graphi-
cal Model (GGM) based on polychloric correlation for 
ordinal variables maps the relationships between two 
variables while controlling for all other variables in the 
network [65]. Consequently, the network plot does not 
contain mere correlations; two items can be strongly 
correlated but unconnected in the network if their asso-
ciation is delivered via other variables. Thus, NA can help 
understand the potential flow of information between 
different variables [66]. Of note, NA is an exploratory tool 
that we mainly used to visualize the complex interactions 
between the BDI items and the SAMS, allowing for the 
assessment of interconnection between items rather than 
reducing the data down into (orthogonal) factors or sin-
gle latent constructs [66]. Although centrality measures 
exist to assess the influence of particular items within 
the network, we intentionally do not report them, mainly 
because centrality indices only indicate the importance of 
items relative to all items in the network, but not relative 
to specific constructs such as the SAMS. Thus, centrality 
indices do not provide useful information for our specific 
purpose [61, 67, 68].

Visually, NA displays two components: the variables 
(BDI items and SAMS scores), called nodes, and their 
connecting edges. Edges display the strength of the asso-
ciation with their thickness and the direction with their 
color, with red edges depicting negative associations. 
present edge indicates that, when conditioning on all 
other inter-item relationships in the network, a relation 
between two items remains. In contrast, the absence 
of an edge between two nodes indicates independ-
ence of those two nodes after conditioning on all other 
nodes. The nodes are then depicted graphically using 
the Fruchterman-Reingold algorithm, placing the nodes 
within the network based on the strengths of their asso-
ciations. This means that nodes with strong connections 
are positioned in close proximity [69].

In NA with multiple variables, all edges are drawn per 
default, leading to a network that is difficult to interpret. 
Therefore, we used the Extended Bayesian Information 
Criterion with Graphical Least Absolute Shrinkage and 
Selection Operator (EBICgLasso) to shrink the abso-
lute weights of the correlations towards zero, effectively 
reducing the number of edges to produce a sparse net-
work [61, 70]. The hyper-parameter was set to 0.5. The 
stability of NA can be assessed using a case-dropping 
nonparametric bootstrap: if the correlation stability coef-
ficient (CS-C) remains above 0.5, a proportion of the 
study sample can be dropped without major changes in 
the NA properties [61].

Lastly, we used linear regression with elastic net regu-
larization to assess the contribution of the different BDI 
items on the SAMS variance. When using the BDI items 
as regressors, we performed Elastic Net Regularization 
with tenfold cross-validation to detect the optimal alpha 
and lambda combination [71, 72]. Elastic Net is a pen-
alty-based combination of Ridge and Lasso regression to 
perform variable selection and prevent overfitting. This 
makes elastic net a beneficial approach when a multitude 
of independent variables is included in a model, when 
these variables are correlated, and/or sample sizes are 
small [71, 72]. The variables identified as relevant based 
on a reduction of the mean squared error (MSE) in the 
elastic net can then be entered into a final linear model. 
All elastic net models were compared to regular linear 
regression models with all included variables using the 
performance-package to detect the best-fitting model. 
Elastic Net was performed with the glmnet package in R 
[71].

Assumptions for linear regression were assessed with 
the performance-package in R [73]. All analyses were 
performed in R Version 4.3.1. [74]. P-values below 0.05 
denote statistical significance, 95% confidence intervals 
(CIs) are given where possible. All visualizations were 
computed using ggplot2 [75] or qgraph for the NA [69].

Results
The included 731 patients had a mean age of 70.2 years 
(SD ± 8.61), ranging from 55 to 96  years. Of these, 326 
patients (44.6%) were female (see Tables  1 and 2 for a 
descriptive overview).

As a first step, we confirmed the association between 
the BDI and the SAMS that we reported in previous 
manuscripts as a basis for subsequent analyses (Supple-
ment Table 1A).

In a univariate linear regression model (F(1, 
729) = 52.23, p < 0.001, adjusted R2 = 0.07), the BDI 
was significantly associated with the SAMS sum score 
(est = 0.26, p < 0.001, 95% CI [0.19; 0.33]).
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When adding the covariates to the model (F(23, 
386) = 5.62, p. < 0.001, adjusted R2 = 0.201), the 
BDI remained a significant predictor of the SAMS 
(est = 0.36, p < 0.001, 95% CI [0.26; 0.45]) along with 
sex, HCCQ, and SRH (see Supplement Table 1B, Model 
1). The BDI was also identified as a significant contribu-
tor to all the SAMS sub-scales even with adjustment for 
covariates (Supplement Table 1B, Models 2–4). Having 
confirmed the general relationship between SAMS and 
BDI, we aimed to understand which aspects of depres-
sive symptomology as described by the BDI items 
deliver this influence. For this purpose, we performed 
subsequent analyses using the BDI items.

Spearman correlations between the BDI items and 
the SAMS in the sum score (Fig.  1) and in the SAMS 
sub-scales (Supplement Figs. 1–3) were low to moder-
ate but statistically significant for most items. How-
ever, for the Missing Knowledge sub-scale, only items 
1–3 (Sadness, Pessimism and Failure), 10–14 (Crying, 
Restlessness, Loss of Interest, Decision Making, Worth-
lessness), and 18–19 (Appetite, Concentration) reached 
statistical significance. Forgetting was significantly asso-
ciated with all items except for items 7 (Self-Rejection), 
10 (Crying), 16 (Sleep) and 21 (Sexual Interest). The 
Modification scale was significantly correlated with all 
BDI items. The SAMS sum score is most strongly corre-
lated with item 12 (Loss of Interest), 19 (Problems with 
Concentration), 20 (Fatigue), 14 (Worthlessness), and 
13 (Decision Making). Looking at the SAMS sub-scales, 
the Forgetting sub-scale showed highest correlation 
with BDI items 12 (Loss of Interest), 19 (Concentra-
tion), 20 (Fatigue) and 13 (Decision Making) as well, 
although with lower loadings than for the SAMS sum 
score. For the Missing Knowledge sub-scale, items 19, 14 
and 12 still showed highest associations, as well as item 
18, and for the Modification sub-scale again items 12, 
13, 14, and 20 as well as item 17 (Irritability) showed 
highest correlations.

Correspondingly, in the Network for the total SAMS 
(Fig.  2), direct connections were present between the 
SAMS sum score and items 19 (Concentration) and 12 
(Loss of Interest). Additionally, the SAMS was directly 
connected to BDI-II item 9 (Suicidal Thoughts), and 
weakly with items 17 (Irritability) and 20 (Fatigue). Vis-
ually, item 19 appears to connect the SAMS with other 
somatic BDI-items, while item 12 serves as a gateway to 
other affective BDI symptoms. Case-dropping bootstrap 
revealed the network to be sufficiently stable with a CS-C 
of 0.595, displaying 132/231 possible edges. Having estab-
lished an overall relationship between the SAMS sum 
score and the BDI, we then used the SAMS sub-scales to 
provide more refined information about how the various 
BDI symptoms are related to aspects of nonadherence. 

Table 1 Sociodemographic information on included patients

IQR interquartile range, SD standard deviation

Variable Mean (SD) Median (IQR) N
Age 70.2 (8.61) 70 (14) 731

N % N

Gender: female 326 44.6 731

Education 724

 Low 224 30.9

 Medium 249 34.4

 High 251 34.7

 Marital Status: married 496 68.7 722

 Living Situation: not alone 527 75.4 699

Diagnosis 731

 Movement Disorder 237 32.4

 Cerebrovascular 191 26.1

 Neuromuscular 143 19.6

 Epilepsy 35 4.8

 Miscellaneous 125 17.1

Table 2 Descriptive statistics of included variables

BDI Beck Depression Inventory II, BFI Big Five Inventory, HCCQ Healthcare 
Climate Questionnaire, MoCA Montreal Cognitive Assessment, SAMS Stendal 
Adherence to Medication Scale, SRH Self-Rated Health, TuG Timed Up and Go

Variable Mean (SD) Median (IQR) N

BDI 9.68 (7.51) 8 (9) 731

SAMS 6.16 (7.59) 4 (8) 731

Modification 0.219 (.53) 0 (0.17) 731

Missing Knowledge .446 (.79) 0 (0.75) 731

Forgetting .418 (.57) 0.25 (0.50) 731

MoCA 23.50 (2.71) 23 (4) 731

HCCQ 5.62 (1.13) 5.9 (1.3) 692

TuG 10.60 (4.48) 10 (4) 477

Number of Drugs 5.74 (3.68) 5 (5) 697

N % N
BFI 701

 Neurotic 81 11.8

 Open 114 16.3

 Extroverted 148 21.1

 Conscientious 298 42.5

 Agreeable 60 8.7

SRH (SF-36 Item 1) 721

 1—Excellent 4 0.6

 2 – Very Good 18 2.5

 3 – Good 209 29.0

 4 – Fair 356 49.4

 5 – Poor 134 18.6
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(Supplement Figs.  4–6). All networks revealed CS-Cs 
above the required 0.5.

The Network for the Forgetting sub-scale confirmed 
direct associations between forgetting and items 12 (Loss 
of Interest), 9 (Suicidal Thoughts), and 20 (Fatigue), as 
well as weakly with item 19 (Concentration). Again, items 
12 and 9 connect nonadherence with other affective BDI 
items, while items 19 and 20 link Forgetting with the 
somatic symptoms. The network for Missing Knowledge 
generally showed weaker relations, direct connections for 
knowledge were present with item 15 (Loss of Energy) as 

a connection to somatic BDI symptoms, and items 12, 14 
(Worthlessness), and 3 (Failure). In the network for Mod-
ification, this sub-scale was directly connected to somatic 
symptoms via items 16 (Sleep) and 20, as well as weakly 
with 15 and 21 (Sexual interest). Weaker direct links were 
present with affective symptoms via items 12, 10 (Crying) 
and 8 (Self-Accusation).

Because NA is primarily an exploratory approach, we 
used linear regression with elastic net regularization to 
identify the BDI items most relevant in explaining SAMS 
variance. Regression analysis for the SAMS sum score 

Fig. 1 Spearman correlation for SAMS and BDI-II Items based on significance level of .05. Note: Values give correlation coefficients. Crossed-out 
values did not reach significance
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and sub-scales yielded similar results as the NA. Accord-
ingly, for the SAMS sum score, the BDI items 12 (Loss of 
Interest) and 19 (Concentration) were identified as main 
contributors to SAMS variance (Table 3).

When looking at the Forgetting sub-scale (see Supple-
ment Table  2, Model 1), only item 12 significantly con-
tributed to explained variance of the sub-scale, while 
items 12, 15 and 19 contribute significantly to the Miss-
ing Knowledge (Supplement Table  2, Model 2) subscale. 
Finally, Modification (Supplement Table 2, Model 3) was 
related only to item 12.

Discussion
Depressive symptomology has previously been iden-
tified as closely related to nonadherence, both in our 
data and in other studies [11, 14, 15, 36]. However, new 
approaches suggest that depressive symptomology needs 
to be considered at the symptom level rather than using 

Fig. 2 Network Analysis of SAMS Sum Score and BDI items

Table 3 Linear Regression with Elastic Net Regularization for 
SAMS sum score with all BDI items as predictors

BDI Beck Depression Inventory, CI confidence interval, Sams Stendal Adherence 
to Medication Scale

N 730,  R2 /  R2 adjusted 0.091 / 0.081

F(8, 721) = 9.02, p < .001

Predictors SAMS

Estimates CI p

(Intercept) 3.56 2.61 – 4.51 < 0.001
bdi 3 1.01 -0.17 – 2.18 0.093

bdi 5 0.41 -1.07 – 1.90 0.584

bdi 11 0.61 -0.23 – 1.45 0.154

bdi 12 1.56 0.54 – 2.58 0.003
bdi 14 0.11 -1.11 – 1.33 0.858

bdi 16 0.35 -0.26 – 0.96 0.259

bdi 19 1.07 0.16 – 1.97 0.021
bdi 20 0.44 -0.49 – 1.36 0.354
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sum scores [21, 24–26]. Therefore, we set out to examine 
the impact of depressive symptoms, as measured by the 
BDI, on medication nonadherence using correlation, net-
work and regression analysis.

Overall, our data confirm that depressive symptoms 
and nonadherence are closely related, with the BDI sum 
score alone explaining 7% of SAMS variance. When 
socio-demographic and health-related covariates were 
included, the BDI still retained the strongest explanatory 
value in the model. Therefore, we used item-level correla-
tion, network and regression analyses to explore this rela-
tionship between the BDI and SAMS in depth.

Both for the SAMS sum score and the sub-scales, BDI 
item 12 (Loss of Interest) has been identified as influen-
tial across all methods. The associations between depres-
sive symptoms and adherence vary slightly depending 
on which sub-scale, i.e. which type of nonadherence, is 
considered, but overall items 12 and 19 (Problems with 
Concentration) were found to be directly related to non-
adherence. Additionally, items 20 (Fatigue), 14 (Worth-
lessness) and 13 (Problems with Decision Making) were 
identified to contribute to nonadherence. In the NA, item 
9 (Suicidal Thoughts) also showed direct associations 
with nonadherence for SAMS sum score and Forgetting.

Although there is no replicable structure of the BDI 
due to the high complexity and individuality [76], the BDI 
is often thought to incorporate both cognitive-affective 
and somatic symptoms [39, 77, 78]. Generally, higher lev-
els of nonadherence as measured by the SAMS sum score 
were associated with other affective symptoms via Loss 
of Interest (Item 12) and with other somatic symptoms 
via Concentration (Item 19) and Fatigue (Item 20), indi-
cating a multi-component association between depres-
sive symptoms and nonadherence.

The effect of cognitive problems such as lack of con-
centration and unintentional forgetting of medication has 
been reported in previous studies [11, 14, 15, 79]; our data 
again indicate that not taking medication may be associ-
ated with concentration deficits as well as with a general 
physical weakness. Of note, the Forgetting sub-scale rep-
resenting unintentional nonadherence was associated 
with both Concentration and Fatigue, as well as with a 
lack of interest and a feeling of worthlessness. The Modi-
fication sub-scale was primarily related to loss of interest, 
indicating a general carelessness about the correctness of 
medication intake. In the NA, also items 8 and 10 (Cry-
ing and Self-Accusation) were linked with higher levels 
of Modification; however, for this sub-scale the somatic 
symptoms appear to be more influential. Thus, the NA 
shows links with Fatigue (item 20) and Sleep Problems 
(item 16), which together with the influence of item 12 
point towards a general lack of care and interest in one’s 
medication. This is in line with the association found 

between nonadherence and item 9 (Suicidal Thoughts), 
as well as item 14 (Worthlessness) that has been reported 
in the NA and regression for SAMS sum score as well 
as Knowledge and Forgetting sub-scales. These associa-
tions suggest an underlying general belief that taking care 
of one’s health is not worth the effort. Our results indi-
cate overall that patients with higher levels of depressive 
symptomology may care less about their own well-being 
and survival due to general feelings of worthlessness and 
loss of interest in their well-being; and accordingly do not 
invest in their own health, especially when cognitive and 
energy resources are already scarce.

In their review, Grenard and Colleagues propose a 
“lack of energy, motivation, […], feelings of hopeless-
ness and changes in cognition […]” [15] as pathways 
linking depressive symptoms with nonadherence. Our 
results confirm this hypothesis. Similarly, Goldstein and 
colleagues even suggest psychological counseling using 
motivational interviewing as a means to improve medi-
cation nonadherence [30], pointing to the importance 
of motivation and control beliefs in illness. Similarly, 
Schüz et  al. identified the beliefs in efficacy and neces-
sity of medication as predictors of nonadherence [80, 
81], suggesting that the beliefs in the ability and neces-
sity to improve one’s health are essential for adherence 
[41, 82]. In contrast, self-efficacy and locus of control are 
often reduced in persons with higher levels of depres-
sive symptoms [83–85], and depressive symptoms have 
been shown to influence expectations and interpreta-
tions of health in older adults [86]. These results indicate 
an association between depressive symptomology and 
nonadherence via lack of beliefs in the ability to influence 
health; our present result substantiate these findings with 
the addition of worthlessness and loss of interest, sug-
gesting that it is not only a lack of self-efficacy and con-
trol but also a lack of willingness to devote resources to 
the improvement of one’s own health in particular due to 
not feeling worthy. Additionally, our results highlight that 
these resources may also be scarce in the first place due 
to lack of concentration and problems with fatigue and 
sleep.

According to NA, this overall lack of interest (item 
12) seems to bundle the other affective symptoms to 
culminate in nonadherence, while concentration (item 
19) bundles somatic symptoms. Although with cross-
sectional data, it is not possible to assess whether other 
affective symptoms result in lack of interest or whether 
lack of interest causes the other symptoms. While NA 
differs from traditional modelling by allowing the co-
presence of connections and plotting the potential 
flow of information rather than taking into account the 
individual contribution of each variable separately, it 
remains an exploratory analysis especially when using 
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cross-sectional data. Longitudinal analyses using symp-
tom-based approaches such as NA that include more 
fine-tuned data such as motivation, self-efficacy and 
control perceptions as covariates may provide a more 
detailed understanding of the association between 
nonadherence and the broad bandwidth of depressive 
symptomology.

Limitations
Our study is not free of limitations. Firstly, the single-
center study design and specific study population hinders 
generalizability, although we did choose this particular 
cohort of older adults with neurological chronic diseases 
due to its high relevance and predisposition for depres-
sive symptoms [2]. Although NA can provide useful 
insight into the structure of data, it requires large data-
sets in order to be sufficiently stable; thus subgroup-
analyses concerning very specific patient populations, 
age groups or gender differences are not always feasible. 
Additionally, cross-sectional data cannot indicate cau-
sality, thus the analyses should be repeated with longi-
tudinal data in different settings. Furthermore, both the 
depressive symptoms and nonadherence questionnaires 
are based on self-report; although self-reported measure-
ments carry a risk of bias, they offer an opportunity to 
evaluate various forms of nonadherence and their under-
lying causes, which cannot be achieved through the use 
of more objective measures [46, 87]. Furthermore, when 
using valid scores, self-reports can provide reliable infor-
mation on nonadherence behavior. Of note, the patients 
included in our study did not receive a psychiatric assess-
ment, thus the depressive symptoms reported in our data 
are not indicative of Major Depressive Disorders. While 
the use of a questionnaire such as the BDI is useful as it 
provides an assessment of various different symptoms, it 
would be beneficial to repeat these analyses with patients 
at different intensities of depressive symptomology after 
professional psychiatric assessment.

Conclusion
Modern research approaches highlight the need to 
assess depressive symptomology on symptom level 
to do justice to its high complexity. Based on this 
approach, we utilized several methods to assess the 
association between depressive symptoms and non-
adherence to medication. Our results are in line with 
previous hypotheses suggesting a lack of cognitive 
resources and motivation or control beliefs. Addi-
tionally, they refine these hypotheses by highlighting 
that it is not merely a lack of beliefs in the efficacy of 
medication that connects depressive symptoms and 
nonadherence, but rather an overall lack of interest in 

improving one’s health due to feelings of worthless-
ness and suicidal ideas. This lack of interest is fur-
ther substantiated by already sparse resources caused 
by changes in concentration and fatigue on the other 
hand.
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