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Abstract 

Background The Rey‑Osterrieth Complex Figure Test (RCFT) is a tool to evaluate cognitive function. Despite its 
usefulness, its scoring criteria are as complicated as its figure, leading to a low reliability. Therefore, this study aimed 
to determine the feasibility of using the convolutional neural network (CNN) model based on the RCFT as a screening 
tool for mild cognitive impairment (MCI) and investigate the non‑equivalence of sub‑tasks of the RCFT.

Methods A total of 354 RCFT images (copy and recall conditions) were obtained from 103 healthy controls (HCs) 
and 74 patients with amnestic MCI (a‑MCI). The CNN model was trained to predict MCI based on the RCFT‑copy 
and RCFT‑recall images. To evaluate the CNN model’s performance, accuracy, sensitivity, specificity, and F1‑score were 
measured. To compare discriminative power, the area under the curve (AUC) was calculated by the receiver operating 
characteristic (ROC) curve analysis.

Results The CNN model based on the RCFT‑recall was the most accurate in discriminating a‑MCI (accuracy: RCFT‑
copy = 0.846, RCFT‑recall = 0.872, MoCA‑K = 0.818). Furthermore, the CNN model based on the RCFT could better dis‑
criminate MCI than the MoCA‑K (AUC: RCFT‑copy = 0.851, RCFT‑recall = 0.88, MoCA‑K = 0.848). The CNN model based 
on the RCFT‑recall was superior to the RCFT‑copy.

Conclusion These findings suggest the feasibility of using the CNN model based on the RCFT as a surrogate 
for a conventional screening tool for a‑MCI and demonstrate the superiority of the CNN model based on the RCFT‑
recall to the RCFT‑copy.
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Background
Neuropsychological assessments play a crucial role in 
achieving an objective diagnosis for patients with cogni-
tive impairment [1]. Among various neuropsychological 
assessments, the Rey-Osterrieth Complex Figure Test 
(RCFT) has been widely employed to assess cognitive 
function. Notably, the RCFT has proven valuable for ana-
lyzing visuospatial construction, perceptual organization, 
and visual memory in clinical evaluations and research 
studies [2].
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The RCFT includes immediate copy and delayed recall 
tasks. During the copy task of the RCFT, subjects are 
required to visually examine a complex geometric figure 
and then replicate it as accurately as possible on a blank 
sheet of paper. This task assesses their visuo-construc-
tional skills and executive function, which involve the 
ability to perceive and accurately reproduce visual infor-
mation [3]. The second task of the RCFT is the delayed 
recall. At 30 min after completing the copy task, subjects 
are asked to draw the figure again from memory, without 
any visual reference. This task evaluates their visual mem-
ory, specifically their ability to retain and recall complex 
visual information after a delay [4]. Both copy and recall 
performance are evaluated based on the accuracy and 
organization of the reproduced figure using scoring cri-
teria, including accuracy, organization, and placement of 
the different components of the figure [4].

A previous study reported that patients in the early 
stages of cognitive impairment often exhibit poor per-
formance on the RCFT [5, 6]. Specifically, patients with 
frontal lobe damage demonstrate an impairment in their 
abilities to reproduce the Rey-Osterrieth Complex Figure 
[7]. Given the importance of identifying and diagnosing 
mild cognitive impairment (MCI) at an early stage, there 
is a growing interest in the potential of using the RCFT 
to detect MCI. Indeed, prior studies have reported that 
the RCFT can significantly predict the conversion to pre-
MCI or MCI as patients with MCI commonly show exec-
utive dysfunction and memory declines [8].

Although the RCFT has scoring criteria, it has some 
inherent subjectivity that can influence its results and 
interpretation, leading to challenges in the detection 
of MCI.6 To address this issue, recently there have been 
studies reporting the use of convolutional neural net-
work (CNN) techniques to analyze images of the RCFT. 
These studies demonstrated the clinical feasibility of 
the RCFT using CNN techniques [6, 9, 10]. Moreover, a 
CNN-based approach has clinical significance as it allows 
for automated evaluation of the RCFT, potentially saving 
time and effort in analyzing large amounts of data.

A previous work using CNN techniques for the RCFT 
to discriminate MCI utilized the RCFT’s copy condition 
alone [6]. However, the potential utility of a CNN model 
based on the RCFT’s recall condition remains unclear 
despite the confirmed benefits of a CNN model using the 
RCFT’s copy condition in discriminating MCI [6]. Con-
sidering individuals with MCI show both executive func-
tion and memory deficits depending on the subtype of 
MCI [11, 12], the clinical feasibility of the RCFT’s recall 
condition also needs to be examined. Furthermore, as 
memory impairment is a stronger predictor of progres-
sion from MCI to Alzheimer’s disease than impairment 
in other cognitive domains [13], it is worthwhile to apply 

the RCFT’s recall condition to the amnestic type of MCI 
(a-MCI), a subtype of MCI that exhibits predominant 
memory decline. Indeed, it has been acknowledged that 
the previous study’s findings have a limitation attributed 
to its exclusive focus on analyzing the copy condition, 
which further supports the need to evaluate the feasibil-
ity of a CNN model based on the RCFT’s recall condition 
for the detection of a-MCI. Consequently, it is necessary 
to compare the difference in CNN model performance 
between conditions of the RCFT in discriminating 
a-MCI.

Therefore, this study utilized the CNN model based 
on both RFCT’s copy and recall to distinguish a-MCI 
from healthy aging. The primary aim of this study was 
to investigate whether the RCFT with CNNs could be 
employed as a screening tool for MCI. This study also 
sought to compare the discriminant power of CNN mod-
els between the RCFT’s copy and recall.

Methods
Design
This study employed an observational study design using 
data from the author’s previous study examining the fea-
sibility of the newly developed screening system for MCI 
in South Korea. This study was approved by the Insti-
tutional Review Board of Yonsei University (1041849-
201611-BM-060-01). All subjects provided informed 
consent before participating in the present study accord-
ing to the Declaration of Helsinki (2004).

Dataset
The original data set from the author’s previous study 
consisted of 103 healthy controls (HCs) and 74 patients 
with amnestic MCI (a-MCI) [11]. All subjects were older 
than 65 years. They were recruited from communities 
and welfare centers in South Korea. The HC group con-
sisted of 103 subjects without memory complaints. They 
were in the normal range for the standardized neuropsy-
chological battery, the Seoul Neuropsychological Screen-
ing Battery. The MCI group consisted of 74 individuals 
with a-MCI defined according to a previous study [13]. 
Inclusion criteria were as follows: (a) subjective memory 
complaint, (b) objective memory impairment relative to 
age- and education-matched HCs confirmed by a score 
on the Seoul Verbal Learning Test (below 1.5 standard 
deviations), (c) intact general cognitive function con-
firmed by the Korean version of the Mini-Mental State 
Examination (MMSE-K) score (≥ 24), and (d) intact 
activities of daily living as identified by score on Seoul 
instrumental activities of daily living score ≤ 7. Exclusion 
criteria were as follows: (a) prior diagnosis of dementia 
by physicians, (b) presence of neurological or psychiat-
ric disorders (e.g., stroke or schizophrenia), (c) moderate 
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to severe depressive symptoms defined by a score on the 
Beck Depression Scale, and (d) any auditory or visual 
impairments.

Measurement
In the author’s previous study [10], the RCFT was imple-
mented by trained occupational therapists. Subjects were 
given an A4-sized paper and a pencil and asked to copy 
the presented Rey Complex Figure (RCFT-copy). 30 min 
after the copy condition, they were instructed to draw the 
figure again on another A4-sized paper, relying on their 
memory (RCFT-recall).

Data preprocessing
A total of 354 RCFT images (copy and recall conditions) 
were obtained from 104 HCs and 74 patients with MCI. 
Since the original RCFT samples were not suitable to 
impute to a CNN model directly as the size and direc-
tion of the figure varied across subjects, raw samples 
were preprocessed by automatically cropping in a square 
and resized to 224 × 224 regardless of the raw sample 
size. In this process, all samples were placed in a 600-dpi 
template and saved in the “.png” format. In addition, all 
images were converted into tensors and subsequent nor-
malization. The pixel values of the images were scaled to 
a range between 0 and 1 by dividing them by 255 for nor-
malization. Subsequently, the preprocessed samples were 
augmented to increase the number of samples to impute 
to the CNN model by adding a combination of the fol-
lowing manipulation according to a previous study: rota-
tion (90 or 180 degrees), horizontal flip, or vertical flip, 
resulting in a total of 708 samples [6]. For test samples, 
only original samples were used.

CNN structure
In this study, a CNN with four convolutional layers 
including max pooling layers after each convolutional 
layer and two fully connected layers was adopted. To 
avoid overfitting, a drop layer was introduced between 
fully connected layers. There were 32 convolutions with 
3 × 3 kernels in each layer. The two fully connected layers 
had 256 and 128 neurons, respectively. A rectified linear 
unit (ReLU) function was used as an activation function. 
This CNN model was established in accordance with a 
previous study [14].

Model training and validating
For training a CNN model, the experiment was imple-
mented in Python using the Keas package with Tensor-
flow. Model training was performed to increase accuracy 
and its validation for a maximum epoch of 30 times. The 
batch size was set to 32. To maximize the validating pro-
cess, early stopping was arbitrarily applied based on the 

validation accuracy curve. Binary cross-entropy was used 
as a loss function. For minimizing or maximizing the loss 
function, Adam optimizer was used with its default set-
ting in Keras. A 5-fold cross-validation was used. Subse-
quently, the trained CNN model was applied to the test 
sub-group to evaluate the CNN model’s performance. 
Standard metrics (accuracy, sensitivity, specificity, and 
F1-score) were measured.

Statistical analysis
SPSS for Windows (version 22.0) was used to analyze 
data in this study. The general and clinical characteristics 
of subjects were analyzed using descriptive statistics. The 
area under the curve (AUC) was calculated by perform-
ing a Receiver Operating Characteristic (ROC) curve 
analysis.

Results
Basic features
Demographic and clinical characteristics of datasets 
included sex, age, education period, and the Korean ver-
sion of the Montreal Cognitive Assessment (MoCA-K) 
scores. There was no significant difference in sex ratio, 
age, and education period between the HC and a-MCI 
groups (p’s > 0.05) (Table  1). However, a significant dif-
ference was found in the MoCA-K score between both 
groups, with the a-MCI group showing a lower cognitive 
function than the HC group (p < 0.05) (Table 1).

Classification performance
During the CNN analysis, an overfitting was not found. 
Overall performance in the test sub-group is summa-
rized in Table  2. The CNN model based on the RCFT-
recall was more accurate in discriminating a-MCI from 
HCs than the CNN model based on the RCFT-copy 
and the MoCA-K (recall: 0.853; copy: 0.824; MoCA-
K: 0.818). Specifically, the CNN model based on the 
RCFT-recall achieved the highest specificity of 0.854 
whereas, the MoCA-K showed the highest sensitivity of 
0.951. Furthermore, the CNN model based on RCFT-
recall achieved the highest AUC value, followed by the 

Table 1 General characteristics of participants (N = 177)

MoCA-K Korean version of the Montreal Cognitive Assessment

Characteristics a-MCI (n = 74) NC (n = 103) χ2 / t p

Age, years (SD) 74.45 (6.51) 74.93 (6.96) .471 0.639

Sex. N (%)

 Male 33 (44.6) 45 (43.7) .905 0.513

 Female 41 (55.4) 58 (56.3)

Education, years (SD) 6.14 (4.53) 5.83 (4.52) ‑.450 0.654

MoCA‑K, scores (SD) 22.89 (2.17) 25.74 (2.10) 9.894 <0.001
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RCFT-copy (Fig. 1). These findings suggest that the CNN 
model with the RCFT can better discriminate a-MCI 
than the MoCA-K and that the CNN model based on the 
RCFT-recall has higher discriminative power for a-MCI 
than the RCFT-copy.

Discussion
This study investigated the feasibility of using the CNN 
model based on the RCFT as a screening tool for a-MCI 
and compared the non-equivalence of sub-tasks (copy 
and recall conditions) of the RFCT. The findings of this 
study revealed that the CNN model based on the RCFT-
recall was more accurate in differentiating MCI than the 
RCFT-copy and the MoCA-K, suggesting the superiority 
of the RCFT-recall in distinguishing a-MCI.

In the RCFT-copy, the complexity of the figure requires 
an ability to organize it into a meaningful perceptual unit. 
It involves cognitive processes related to executive func-
tion [15], which is frequently impaired in patients with 
MCI. Specifically, regardless of the sub-types of MCI, 
patients with MCI, even those with pure a-MCI, were sig-
nificantly more impaired than HCs in neuropsychological 
assessments of executive function [16]. These findings 
support that the RCFT-copy can sufficiently differenti-
ate a-MCI [6]. Similarly, this study found that RCFT-
copy achieved satisfactory sensitivity and specificity in 

detecting a-MCI from HCs with a high accuracy, which is 
in line with previous findings [6, 15, 16].

Contrary to a previous study that only examined the 
RCFT-copy [6], this study investigated both the RCFT-
copy and RCFT-recall to confirm their non-equivalence 
for distinguishing a-MCI. This study revealed that the 
CNN model based on the RCFT-recall was superior to 
the RCFT-copy in differentiating a-MCI, which is con-
sistent with the findings of a previous study [17]. Fur-
thermore, a previous study reported that the RCFT-copy 
alone is insufficient in screening MCI [18], support-
ing the current findings. This non-equivalence could be 
attributed to the characteristics of patients with a-MCI in 
this study. Since patients with a-MCI were selected out of 
those with sub-types of MCI in this study, visual memory 
assessed by the RCFT-recall might be more representa-
tive of a-MCI’s cognitive traits than executive function 
assessed by the RCFT-copy. This could affect the supe-
riority of the RCFT-recall to differentiate a-MCI [17]. 
Indeed, patients with a-MCI are distinctly characterized 
by memory impairment [19]. Accordingly, the superior-
ity of the RCFT-recall to detect MCI might not neces-
sarily be confirmed in other types of MCI. Nevertheless, 
RCFT-recall is still important for distinguishing a-MCI 
from HCs, with the exception of non-amnestic MCI as 
patients with MCI have common memory deficits [20]. It 
was interesting to note that despite the superiority of the 
RCFT-recall, even the RCFT-copy had higher discrimina-
tive power than the MoCA-K for a-MCI. This discovery 
suggests that the RCFT-copy, assessing a single cognitive 
domain, might prove valuable in the screening of a-MCI 
compared to the MoCA-K, which evaluates multiple cog-
nitive domains.

Notably, both the CNN model based on the RCFT-
recall and that based on the RCFT-copy had higher spec-
ificity than the MoCA-K, demonstrating their advantages 
as screening tools. High specificity means that it is good 
at identifying individuals who do not have a particular 

Table 2 Convolutional neural network performance and the 
MoCA‑K for detection of a‑MCI

MoCA-K Korean version of the Montreal Cognitive Assessment, RCFT Rey 
Complex Figure Test

Features Accuracy Sensitivity Specificity F1-score

RCFT

 Copy condition 0.846 0.843 0.851 0.864

 Recall condition 0.872 0.864 0.884 0.890

MoCA‑K, scores 0.818 0.951 0.630 0.859

Fig. 1 ROC curves of three predictors. Greater AUC values indicate higher power in discriminating a‑MCI from HCs
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condition or disease. In other words, high specificity can 
ensure fewer false positives. False positives can lead to 
unnecessary further testing. Thus, reducing false posi-
tives allows for more efficient use of a screening tool [21]. 
On the other hand, the MoCA-K showed the highest sen-
sitivity. The high specificity of the CNN model based on 
the RCFT-recall and the high sensitivity of the MoCA-K 
might provide the optimal combination in differentiating 
a-MCI from HCs by minimizing false positives and false 
negatives, respectively.

On the other hand, due to the inherent limitations of 
CNNs, this study was unable to specify which visual fea-
tures of the RCFT were utilized to discriminate a-MCI. 
Nevertheless, in paper-based RCFT literature, there is 
a recognition of the challenge associated with limited 
visual analysis for identifying the visual features of the 
RCFT. The complexity of the RCFT exacerbates the diffi-
culties associated with visual analysis, thereby steering us 
towards a black box deep learning approach to surmount 
these challenges [22]. Indeed, errors in specific parts of 
the RCFT are not consistently observed in patients with 
MCI. Therefore, the lower accuracy of the figures, rather 
than the features of the figures, emerges as a pivotal fac-
tor in the MCI screening process [4].

Meanwhile, the variation in the strictness applied by 
different experts is evident, and the inter-rater score dif-
ferences, reaching up to 20%, substantiate this disparity 
[22]. Consequently, attempts have been made to achieve 
objective scoring through the utilization of automatic 
scoring techniques using machine learning. However, this 
approach may inadvertently introduce potential biases, 
as it fails to consider the contextual nuances of subjects 
and relies on a standardized assessment. Therefore, even 
automatic scoring techniques are not a complete replace-
ment for CNNs.

Several studies have demonstrated that a digital version 
of a paper-based screening tool is capable of differentiat-
ing patients with cognitive impairment from HCs using 
machine learning [6, 14, 21, 23, 24]. It should have greater 
potential than a conventional paper-based tool in terms 
of its capability to collect large amounts of data quickly. 
In line with this trend, the digital version of the RCFT 
could be popularized to obtain a large amount of data 
from patients with MCI. Nevertheless, a digital RCFT 
requires machine learning techniques to analyze a great 
quantity of data. Therefore, the findings of this study, 
affirming the feasibility of deep learning models based 
on the RCFT to screen a-MCI, have clinical implications. 
Subsequently, digital RCFT with classification models 
can be used to remotely monitor the cognitive status of 
community residents. Moreover, its high specificity can 
reduce false alarms of cognitive decline [25], suggesting 
that it has more potential than the original RCFT.

This study has some limitations. Firstly, in contrast to 
previous studies using publicly distributed data [14], the 
small sample size of this study might limit the general-
izability of its findings. Furthermore, it is impossible to 
rule out the influence of outliers due to a small sample 
size. Nevertheless, this study clearly demonstrated the 
feasibility of the CNN approach with the RCFT to dis-
tinguish MCI by enrolling patients with MCI based on 
the standard MCI criteria, compared to previous stud-
ies that determined MCI based on the Clinical Demen-
tia Rating alone [6]. Moreover, considering that the 
standard deviation of the MOCA-K scores of subjects 
in each group was not substantial, outliers may not have 
significantly distorted the results of this study. Secondly, 
since the subjects of this study were limited to a-MCI, 
its findings could not be generalized to other types of 
MCI. However, considering that most previous studies 
commonly involved a-MCI because patients with a-MCI 
show minimal cognitive bias of a-MCI and they strongly 
predispose subjects toward Alzheimer’s disease [11, 
12, 26], the current findings have clinical implications. 
Thirdly, even though the RCFT is superior in discrimi-
nating patients with a-MCI compared to the MoCA-K, 
it is recommended not to rely solely on the RCFT, as it 
may not encompass all cognitive domains. Fourthly, since 
no effort was made to find an optimized CNN model 
to improve its accuracy, the accuracy could be higher. 
Therefore, the findings of this study should be interpreted 
with caution. Nonetheless, since the purpose of this study 
was to explore the feasibility of using the CNN model 
based on the RCFT for MCI screening and determine the 
non-equivalence between the RCFT-recall and RCFT-
copy, model optimization studies with a large amount of 
data are needed in the future.

Conclusion
In the current study, the CNN model based on the RCFT 
achieved similar performance to previous studies in 
terms of accuracy with subjects based on MCI criteria, 
suggesting its feasibility for detecting MCI. Moreover, the 
superiority of the CNN model based on the RCFT-recall 
to the RCFT-copy was found. Since the CNN model 
based on the RCFT possesses some advantages, such as 
the availability of considerable accumulated past data and 
greater accessibility than the original RCFT, it could be a 
surrogate for a clinical-based screening tool for MCI.
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