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Abstract
Background Methamphetamine (MA) abuse has resulted in a plethora of social issues. Sleep disturbance is a 
prominent issue about MA addiction, which serve as a risk factor for relapse, and the gut microbiota could play an 
important role in the pathophysiological mechanisms of sleep disturbances. Therefore, improving sleep quality can be 
beneficial for treating methamphetamine addiction, and interventions addressing the gut microbiota may represent a 
promising approach.

Method We recruited 70 MA users to investigate the associations between sleep quality and fecal microbiota by 
the Pittsburgh Sleep Quality Index (PSQI), which was divided into MA-GS (PSQI score < 7, MA users with good sleep 
quality, n = 49) and MA-BS group (PSQI score ≥ 7, MA users with bad sleep quality, n = 21). In addition, we compared 
the gut microbiota between the MA-GS and healthy control (HC, n = 38) groups. 16S rRNA sequencing was applied to 
identify the gut bacteria.

Result The study revealed that the relative abundances of the Thermoanaerobacterales at the order level differed 
between the MA-GS and MA-BS groups. Additionally, a positive correlation was found between the relative 
abundance of the genus Sutterella and daytime dysfunction. Furthermore, comparisons between MA users and HCs 
revealed differences in beta diversity and relative abundances of various bacterial taxa.

Conclusion In conclusion, the study investigated alterations in the gut microbiota among MA users. Furthermore, 
we demonstrated that the genus Sutterella changes may be associated with daytime dysfunction, suggesting that the 
genus Sutterella may be a biomarker for bad sleep quality in MA users.
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Introduction
Methamphetamine (MA), commonly known as ice drug, 
is a highly prevalent drug worldwide and has caused sub-
stantial social problems. In China, at the end of 2019, 
MA had become the most frequently abused drug, with 
1.18 million MA users, accounting for 55.5% of all drug 
users nationwide [1]. Research has shown that MA use 
can have negative effects on physical health, includ-
ing increased risks of tachycardia, hypertension, and 
rhabdomyolysis [2]. Additionally, MA use may result in 
mortality due to pulmonary edema, pulmonary conges-
tion, ventricular fibrillation, acute cardiac failure, or 
hyperpyrexia [2]. Furthermore, MA addiction, compared 
to MA use without addiction, can lead to altered men-
tal states such as severe depression [3, 4], anxiety [5], 
and psychiatric symptoms [6, 7] compared to non-MA 
dependent users. High impulsivity [8], aggression [9], or 
violent behaviors [10] are also common among individu-
als addicted to MA.

Sleep disturbance, an important issue related to MA 
addiction, has garnered considerable attention. Tang et 
al. found that drug users were more likely to experience 
sleep disturbances than non-users, with a prevalence rate 
of 54.16% among MA users [11]. Moreover, sex differ-
ences in sleep problems among MA abusers cannot be 
overlooked, with prevalence rates of MA-related sleep 
disturbance of 52.4% for males and 75.6% for females 
[12]. Mahoney et al. found that daytime sleepiness 
increased in participants with methamphetamine use dis-
order (MUD) and that they had significantly higher Pitts-
burgh Sleep Quality Index (PSQI) scores [13]. Another 
study from Perez et al. revealed that a single intranasal 
MA dose reduced subjective sleep quality [14]. The lit-
erature holds that acute and long-term sleep disturbance 
may be a cause of addiction relapse [15] and are univer-
sal risk factors for psychoactive substance relapse [16]. 
Sleep disturbances are strongly correlated with violent 
and aggressive behavior [17, 18]. Wang et al. discovered 
that melatonin effectively treats sleep disorders caused by 
MA and can reverse aggression induced by the drug [19]. 
Therefore, treating sleep disorders in MA users is critical 
for addiction recovery.

Currently, the roles of the gut microbiota and the 
microbiota-gut-brain axis in different diseases have 
attracted extensive attention, especially in neuropsychi-
atric disorders. Schizophrenia [20, 21], bipolar disorder 
[22, 23], depression [24], autism spectrum disorder [25], 
and substance use disorder [26] are associated with the 
gut microbiota. The microbiota-gut-brain signaling path-
way has several mechanisms according to recent studies 
[27]. The vagal pathway is an important avenue regard-
ing alterations in the gut-brain axis and downstream 
behaviors [26, 28]. Similarly, the immune system was 
seen as a central mediator of gut-brain communication 

[29]. Another component of the microbiota-gut-brain 
axis is metabolites from the gut microbiota, which con-
sist of short-chain fatty acids [30], bile acids [31], and 
neurotransmitters [32]. Nevertheless, the potential 
mechanisms by which the gut microbiota influence brain 
function have not been fully elucidated.

Alterations in the intestinal microbiota in MA abus-
ers have been confirmed. Yang et al. found decreasing 
relative abundances in Deltaproteobacteria and Bacte-
roidaceae and increasing relative abundances in Sphin-
gomonadales, Xanthomonadales, Romboutsia, and 
Lachnospiraceae for the MA users, and cognitive assess-
ment was positively related to Blautia [33]. Deng et al. 
revealed that relative abundances of Collinsella, Odori-
bacter, and Megasphaera are growing and the levels of 
Faecalibacterium, Blautia, Dorea and Streptococcus were 
reduced at the genus level in subjects with MA addiction 
[34]. In addition to the alteration of the gut microbiota, 
Yang et al. also demonstrated oral microbiota (Negativ-
icutes, Veillonellaceae, Veillonella, and Selenomonadales) 
had higher relative abundance in the MA group which 
are connected with oral diseases [35]. Another study sug-
gested that the interrelationships between the oral and 
gut microbiomes sustained attention [36]. In addition, 
animal experiments have also found MA-induced altera-
tions in the gut microbiota. Chen et al. discovered that 
the relative abundances of pathogenic bacteria improved 
while those of probiotics were reduced by MA exposure, 
with corresponding metabolomics alterations [37]. Wang 
et al. revealed that MA-induced mice treated with antibi-
otics exhibit weaker conditioned place preference (CPP), 
but CPP formation was erased by fecal microbiota trans-
plantation [38]. The above studies suggest that the psy-
chological and behavioral changes induced by MA may 
be related to gut microbiota.

Regarding the pathophysiological mechanisms of sleep 
disturbance, the role of the gut microbiota has gradu-
ally attracted increasing attention. Zhang et al. found 
that Tenericutes, Elusimicrobia, butanoate metabolism, 
and propanoate metabolism were the main differences 
between groups with poor and normal sleep quality 
[39]. Beyond the difference between healthy controls 
and insomnia patients, significant differences in taxa 
such as Lachnospira, Faecalibacterium, and Blautia were 
observed between chronic and acute insomnia patients 
[40]. In young healthy individuals, self-reported sleep 
quality was associated with microbial diversity [41] while 
in preschool-aged children, a novel association between 
sleep and gut microbiota was revealed [42]. These experi-
ments all verified abnormalities in the gut microbiota are 
evident in sleep disorders.

However, previous research on the relationship 
between the gut microbiota and sleep quality in MA 
users is lacking. Hence, our goal was to investigate the 
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alterations in the gut microbiota in MA users with bad 
sleep quality by employing 16S rRNA sequencing. Based 
on the above results, we speculated that the gut micro-
biota in MA users with bad sleep quality would exhibit 
unique characteristics. In addition, we also explored the 
differences between MA users with good sleep quality 
and healthy controls.

Materials and methods
Study design
In the present research, 80 MA users and 50 healthy 
controls (HCs) whose ages ranged from 18 to 65 years 
were recruited from October 2021 to December 2022. 
The MA users were recruited from the First Compulsory 
Drug Rehabilitation Center of Shenyang, while HCs were 
recruited through advertising from the local community. 
According to the following criteria, 22 participants were 
excluded due to use of antibiotics, probiotics, or defeca-
tion drugs; diabetes; cirrhosis of the liver; or refusing to 
provided provide stool samples. Finally, a total of 70 MA 
users and 38 HCs were included in the current study. 
70 MA users were divided into two groups, namely the 
group with good sleep quality and the group with poor 
sleep quality. The differences of gut microbiota between 
the two groups were compared and further found the gut 
microbiota related to sleep quality in MA users. More 
details of the research will be mentioned later. The Medi-
cal Research Ethics Committee of the First Affiliated 
Hospital of China Medical University approved the study 
(No. [2021]361). All the participants in the study volun-
tarily provided written informed consent.

Inclusion criteria
For MA users, the inclusion criteria involved meeting the 
Diagnostic and Statistical Manual of Mental Disorders, 
fifth edition (DSM-5), criteria for MUD and at least two 
positive urine tests more than one month apart. For HCs, 
participants with a Pittsburgh Sleep Quality Index (PSQI) 
score < 7 were included.

Exclusion criteria
The following exclusion criteria were applied to all par-
ticipants: (1) other psychiatric diseases such as depres-
sive disorder, bipolar disorder, or schizophrenia (for MA 
users) and any Axis I or Axis II disorders (for HCs); (2) 
use of other illicit drugs such as heroin; (3) metabolic dis-
ease, autoimmune disease, diabetes, hepatitis, cirrhosis 
of the liver, or infection with human immunodeficiency 
virus (HIV); (4) gastrointestinal surgery or troubles such 
as constipation, diarrhea or inflammatory bowel disease; 
(5) serious and unstable conditions such as a history of 
neurological disease or cardiopathy; (6) use of probiotics, 
antibiotics, immunomodulators or defecation drugs in 

the past month; (7) special diet such as a vegetarian diet; 
or (8) pregnancy.

Clinical measurements
Demographic characteristics were obtained from a self-
reported questionnaire, which involved age, sex, smoking 
status, and BMI. Drug history from self-report surveys 
included abstinence time and the age of initial MA use.

To collect clinical symptom data, several self-report 
scales were adopted for assessment. The Beck Depression 
Inventory (BDI) was to estimate the severity of depressive 
mood [43]; it consists of 13 items, and each item is scored 
on a scale ranging from 0 to 3. The severity of depres-
sion was determined based on BDI scores as follows: 0–4 
(minimal depression), 5–7 (mild depression), 8–15 (mod-
erate depression), and 16 (severe depression) [4]. The 
Beck Anxiety Inventory (BAI) was used to measure the 
severity of anxiety [44]. It contains 21 questions, and each 
item is scored on a scale ranging from 0 to 3. The sever-
ity of anxiety was determined based on BAI scores as fol-
lows: 8–15 (mild anxiety), 16–25 (moderate anxiety), and 
26–63 (severe anxiety) [45].

The Pittsburgh Sleep Quality Index (PSQI) was applied 
to measure sleep habits across one month time, which 
contains 18 self-rated questions divided into seven com-
ponents: sleep quality (P1), sleep latency (P2), sleep 
duration (P3), habitual sleep efficiency (P4), sleep distur-
bance (P5), use of sleeping medication (P6), and daytime 
dysfunction (P7) [46]. The PSQI total score (TS) ranges 
from 0 to 21 and a total score > 5 was considered to indi-
cate “bad sleeper” [46]. According to previous research, 
a PSQI total score = 7 was also considered as the cut-off 
point [47, 48]. Therefore, the 70 enrolled MA users were 
divided into two groups: those with bad sleep quality 
(MA-BS; PSQI total score ≥ 7, n = 21) and those with good 
sleep quality (MA-GS; PSQI total score < 7, n = 49). The 
HCs were referred to as the HC-GS group. Visual Ana-
log Scale (VAS) was utilized to estimate MA craving [49]; 
this scale is a 10-centimeter line ranging from 0 to 10 (0 
representing “no craving” and 10 representing “highest 
craving”) [50].

Fecal sample collection and DNA extraction
Fecal Samples were collected from the First Compulsory 
Drug Rehabilitation Center of Shenyang within 3 days 
after finishing the questionnaires and subsequently were 
kept in a -80℃ deep freeze freezer before DNA extrac-
tion. The fresh stool samples were stored in a fecal pres-
ervation solution (CW2654, CwBiotech, Beijing, China). 
The DNA was extracted by following the procedure 
instruction of the DNA extraction kit (MN® NucleoSpin 
96 Soi kit, Germany).
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16S rRNA sequencing
The 16S rRNA gene of gut bacteria was amplified in the 
V3-V4 regions by 2 round polymerase chain reaction 
(PCR) using specific primers (338F: 5’- A C T C C T A C G G 
G A G G C A G C A-3’ and 806R: 5’-GGACTACHVGGGT-
WTCTAAT-3). The first round of PCR had the following 
parameters: 95 ºC for 5 min, followed by 25 cycles at 95 
ºC for 30s, 50 ºC for 30s, 72 ºC for 40s, and then 72 ºC 
for 7 min for final extension while the second round PCR 
was under 98 ºC for 30s, followed by 10 cycles at 98 ºC 
for 10s, 65 ºC for 30s, 72 ºC for 40s, and a final extension 
at 70 ºC for 5 min. Finally, the amplicons were extracted 
from 1.8% agarose gels using a Monarch DNA extraction 
kit.

PCR products are purified by gel electrophoresis, quali-
fied, and sequenced by the Illumina HiSeq 2500. The data 
acquired from Illumina HiSeq 2500 were first jointed 
and low-quality filtered using Fastp [51]. Cutadapt (Ver-
sion 2.7.8) software was used to identify and remove 
primer sequences, and high-quality reads without primer 
sequences were obtained. Through Trimmomatic (Ver-
sion 0.33) software [52], the raw reads obtained by 
sequencing were filtered to finally obtain high-quality 
reads. Then use USEAERCH (Version 10.0.240) [53] 
and VSEARCH (Version 2.15.2) [54] were used to gen-
erate abundance tables and species annotation tables of 
amplicon sequence variants (ASVs) and align sequences 
against the SILVA database (silva_16S_v123.fa) [55].

Bioinformatic analysis
Alpha-diversity indices were calculated in R (Version 
4.2.1), including the Chao1, ACE, Shannon index, and 
Simpson index. Then, alpha-diversity indices were com-
pared between the MA-BS and MA-GS groups and the 
MA-GS and HC-GS groups. The Mann–Whitney U test 
was used to compare alpha-diversity indices, and the sta-
tistical significance was set at p < 0.05.

Beta diversity was computed in R (Version 4.2.1) and 
estimated by weighed Bray‒Curtis distance matrices. Dif-
ferences in beta diversity were identified with permuta-
tional multivariate analysis of variance (PERMANOVA) 
with 999 permutations with the vegan R package (Ver-
sion 2.6-4) and visualized with principal coordinate anal-
ysis (PCoA) with the ggplot2 R package (version 3.4.1). 
In the PERMANOVA, p < 0.05 was set as the significance 
threshold.

Linear discriminant analysis effect size (LEfSe) was 
also applied to identify prominently enriched taxa. Lin-
ear discriminant analysis (LDA) was used to identify taxa 
with significant differences. Taxa with LDA scores > 2 and 
p < 0.05 were considered significantly different. The ana-
lytical methods were performed on the online website 
Galaxy (https://huttenhower.sph.harvard.edu/galaxy/).

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Phylogenetic Investigation of Communi-
ties by Reconstruction of Unobserved States (PICRUSt, 
Version 2.4.1) [56] were used to predict the function of 
microbiota community. The differences in metabolic 
pathways were analyzed by STAMP (Version 2.1.3) [57] 
and identified by the Kruskal-Wallis rank-sum test. All 
comparisons were corrected for multiple testing (Ben-
jamini–Hochberg correction, q < 0.05).

Statistical analysis
R (version 4.2.1) and SPSS (version 26.0) were used to 
perform statistical analysis. Demographic and clinical 
characteristics were analyzed by SPSS. According to the 
normality of data distribution, data type, and the pur-
pose of analysis, two-sample t tests, chi-square tests, or 
the Mann–Whitney U test were used to analyze age, sex, 
BMI, smoking status, initial age of MA use, duration of 
abstinence, clinical symptoms, relative abundances, and 
alpha diversity. Spearman partial correlation analysis was 
performed in R and used to determine the relationships 
among different PSQI component scores, other clini-
cal symptoms (BDI, BAI, and VAS scores), and the rela-
tive abundance of taxa. Sex, age, BMI, PSQI total scores, 
BDI scores, BAI scores, and VAS scores were included as 
covariates according to analysis requirements. False dis-
covery rate (FDR) correction was applied to the p value. 
The statistical significance of the above tests was set at 
p < 0.05 (two-tailed).

Results
Demographic, addiction, and clinical characteristics of 
participants
There were no differences in age, sex, BMI, smoking sta-
tus, initial age of MA use, duration of abstinence, BDI 
scores, BAI scores, or VAS scores between the MA-GS 
and MA-BS groups, although there were significant 
group differences in the PSQI score and seven PSQI 
component scores. In addition, a larger proportion of 
MA abusers were male and smoked compared to that of 
healthy controls. Age, sex, BMI, initial age of MA use, 
duration of abstinence, PSQI score, six PSQI compo-
nent scores (except daytime dysfunction), and BAI scores 
were not significantly different between the MA-GS and 
HC-GS groups, but there were significant differences in 
smoking status, daytime dysfunction, BDI scores, and 
VAS scores. All characteristics are listed in Tables 1 and 
2.

Alpha-diversity and beta-diversity of the gut microbiota
We used four indices to assess alpha diversity, including 
the Chao1, ACE, Shannon, and Simpson indices. Alpha 
diversity reflects the taxa richness and diversity of a sin-
gle sample. The Chao1 and ACE indices measure taxa 

https://huttenhower.sph.harvard.edu/galaxy/
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abundance, while the Shannon and Simpson’s indices 
evaluate abundance and community evenness. Regard-
ing alpha diversity, there were no significant differences 
in the Chao1 (Z = -0.391, p = 0.696), ACE (Z = -0.391, 
p = 0.696), Shannon (Z = -0.365, p = 0.715), or Simpson 

indices (Z = -0.391, p = 0.696) between the MA-GS and 
MA-BS groups. The Chao1 (Z = -1.840, p = 0.066), ACE 
(Z = -1.866, p = 0.062), Shannon (Z = -1.429, p = 0.153), 
and Simpson indices (Z =-1.198, p = 0.231) were not sig-
nificantly different between the MA-GS and HC-GS 

Table 1 Demographic, addiction and clinical characteristics between MA-GS and MA-BS group
MA-GS
(n = 49)

MA-BS
(n = 21)

Test value
(t/χ2/Z)

p value

Demographic characteristics
Age (years) 38.98 ± 9.65 39.95 ± 11.31 -0.367 0.715†

Gender (male) 35 (71.43%) 14 (66.67%) 0.158 0.690#

BMI (kg/m2) 25.95 ± 3.43 25.79 ± 4.68 0.164 0.870†

Smoking (Yes) 49 (100%) 20 (95.24%) 0.915 0.339#

Addiction characteristics
Initial age of methamphetamine use 30.37 ± 8.57 30.05 ± 10.8 0.729 0.469†

Duration of abstinence (months) 2.00 (5.00) 2.00 (6.00) -0.026 0.979*

Clinical characteristics
Pittsburgh Sleep Quality Index (PSQI) 3.00 (4.00) 12.00 (4.00) -6.630 < 0.001*

Sleep quality 0.00 (1.00) 2.00 (2.00) -6.137 < 0.001*

Sleep latency 1.00 (1.00) 2.00 (1.00) -5.117 < 0.001*

Sleep duration 1.00 (2.00) 2.00 (2.00) -3.802 < 0.001*

Habitual sleep efficiency 0.00 (1.00) 1.00 (3.00) -2.914 0.004*

Sleep disturbance 0.00 (1.00) 2.00 (1.00) -6.178 < 0.001*

Use of sleeping medication 0.00 (0.00) 0.00 (2.00) -4.171 0.003*

Daytime dysfunction 0.00 (0.00) 2.00 (1.00) -6.038 < 0.001*

Beck Depression Inventory (BDI) 0.00 (7.00) 4.00 (11.00) -1.301 0.193*

Beck Anxiety Inventory (BAI) 0.00 (4.00) 3.00 (9.00) -1.599 0.110*

Visual Analog Scale (VAS) 0.00 (0.00) 0.00 (0.00) -0.192 0.848*

Note: Data are presented as means ± standard deviations, percentages (%), or median (interquartile range)
#P-value for chi-square test, †P-value for two-sample t-test. *P-value for the Mann–Whitney U test

MA-GS, MA users with good sleep quality; MA-BS, MA users with bad sleep quality

Table 2 Demographic and clinical characteristics between MA-GS and HC-GS group
MA-GS
(n = 49)

HC-GS
(n = 38)

Test value
(t/χ2/Z)

p value

Demographic characteristics
Age (years) 38.98 ± 9.65 42.74 ± 9.38 -1.824 0.072 †

Gender (male) 35 (71.42%) 23 (60.53%) 1.145 0.285#

BMI (kg/m2) 25.95 ± 3.43 24.91 ± 2.82 1.499 0.137 †

Smoking (Yes) 43 (87.76%) 4 (10.52%) 51.392 < 0.001#

Clinical characteristics
Pittsburgh Sleep Quality Index (PSQI) 3.00 (4.00) 3.50 (3.00) -1.110 0.267*

Sleep quality 0.00 (1.00) 0.00 (1.00) -1.340 0.180*

Sleep latency 1.00 (1.00) 1.00 (1.00) -0.353 0.724*

Sleep duration 1.00 (2.00) 1.00 (1.00) -0.110 0.912*

Habitual sleep efficiency 0.00 (1.00) 0.00 (0.00) -1.027 0.304*

Sleep disturbance 0.00 (1.00) 0.50 (1.00) -1.509 0.131*

Use of sleeping medication 0.00 (0.00) 0.00 (0.00) -0.181 0.856*

Daytime dysfunction 0.00 (0.00) 0.00 (1.00) -2.127 0.033*

Beck Depression Inventory (BDI) 0.00 (7.00) 0.00 (1.00) -2.034 0.042*

Beck Anxiety Inventory (BAI) 0.00 (4.00) 0.00 (2.00) -0.618 0.536*

Visual Analog Scale (VAS) 0.00 (0.00) 0.00 (0.00) -2.595 0.009*

Note: Data are presented as means ± standard deviations, percentages (%), or median (interquartile range)
#P-value for chi-square test, †P-value for two-sample t-test. *P-value for the Mann–Whitney U test

MA-GS, MA users with good sleep quality; HC-GS, healthy controls with good sleep quality
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groups. Alpha diversity results are shown in Supple-
mentary Figs.  1 and 2. Regarding beta diversity, we did 
not find significant differences between the MA-GS and 
MA-BS groups (R2 = 0.017, p = 0.225), while there were 
significant differences between the MA-GS and HC-GS 
groups (R2 = 0.024, p = 0.003). The PCoA visualization is 
shown in Fig. 1.

In order to control covariates such as age, gender, 
BMI, BDI scores, BAI scores, VAS scores, and smoking 
state, analysis of covariance (ANCOVA) was adopted 
to compare alpha diversity difference between MA-GS 
and MA-BS, MA-GS and HC-GS. There were no sig-
nificant differences in the Chao1 (F = 0.125, p = 0.725), 
ACE (F = 0.160, p = 0.690), Shannon (F = 0.114, p = 0.737), 
or Simpson indices (F = 0.030, p = 0.863) between the 

MA-GS and MA-BS groups. The Chao1 (F = 0.350, 
p = 0.556), ACE (F = 0.295, p = 0.588), Shannon (F = 0.992, 
p = 0.340), and Simpson indices (F = 1.180, p = 0.281) 
were not significantly different between the MA-GS 
and HC-GS groups. Regarding beta diversity, we still 
control for the above covariates and did not find sig-
nificant differences between the MA-GS and MA-BS 
groups (R2 = 0.017, p = 0.180), while there were signifi-
cant differences between the MA-GS and HC-GS groups 
(R2 = 0.024, p = 0.003).

Relative abundances of the gut microbiota
Figure 2 show the average bacterial compositions of the 
MA-GS and MA-BS groups at the phylum and genus lev-
els for the top 10 gut microbiota. The class, order, and 

Fig. 2 The top 10 of average gut microbiota relative abundance and the relative abundance about Thermoanaerobacterales between MA-GS and MA-BS 
group. Note: The top 10 of average gut microbiota relative abundance between MA-GS and MA-BS group at the phylum level (A) and the genus level (B). 
(C) The relative abundance about Thermoanaerobacterales between MA-GS and MA-BS group at order level. MA-GS, MA users with good sleep quality; 
MA-BS, MA users with bad sleep quality. *p < 0.05, **p < 0.01, ***p < 0.001

 

Fig. 1 The beta diversity of the bacterial communities. Note: MA-GS, MA users with good sleep quality; MA-BS, MA users with bad sleep quality; HC-GS, 
healthy controls with good sleep quality
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family levels of microbial taxa in the MA-GS and MA-BS 
groups shown expressed in Supplementary Fig.  3, while 
the average bacterial compositions of the top 10 micro-
bial taxa of the MA-GS and HC-GS groups are shown in 
Supplementary Fig. 4.

We observed differences in the relative abundances 
of several microorganisms. In the comparison of the 
MA-GS and MA-BS groups, Thermoanaerobactera-
les (Z = -3.229, q = 0.048) was discovered differ at the 
level order, but no differences at the other levels were 
observed. The MA-GS and HC-GS groups also sig-
nificantly differed in the relative abundance results. At 
the phylum level, the results revealed different rela-
tive abundances of Actinobacteria (Z = -2.773, q = 0.02), 
Bacteroidetes (Z = -2.396, q = 0.0497), and Firmicutes (Z 
= -2.807, q = 0.02). At the class level, Actinobacteria (Z 
= -3.282, q = 0.012) was differed. At the order level, Bifi-
dobacteriales (Z = -3.603, q = 0.004), Micrococcales (Z 
= -5.253, q < 0.001), and Aeromonadales (Z = -3.323, 
q = 0.009) differed between the two groups. At the fam-
ily level, Micrococcaceae (Z = -5.023, q < 0.001) and Bifi-
dobacteriaceae (Z = -3.603, q = 0.008) exhibited different 
relative abundances between the two groups. At the 
genus level, there were differences in the relative abun-
dance of several microbiotas, including Weissella (Z = 
-3.835, q = 0.012), Bifidobacterium (Z = -3.612, q = 0.02), 
and Faecalitalea (Z = -3.453, q = 0.022). FDR correc-
tion was applied to all the above results. Further details 
about the differences in the relative abundances of taxa 
are shown in Fig. 2 and Supplementary Fig. 5. We used 
ANCOVA to respectively compare MA-GS and MA-BS, 
MA-GS and HC-GS, controlling for age, gender, BMI, 
BDI scores, BAI scores, VAS scores, and smoking state. 
After FDR correction, no gut microbiota exists statistical 
difference between MA-BS and MA-GS groups. Before 

FDR correction, there were statistical differences in order 
Thermoanaerobacterales (F = 4.638, p = 0.035) between 
MA-BS and MA-GS groups. Differences were found phy-
lum Firmicutes (F = 11.666, q = 0.012) and genus Incertae_
Sedis (F = 13.755, q = 0.042) between MA-GS and HC-GS 
groups, and FDR correction was performed.

To further analyze the microbiota community struc-
ture, LEfSe analysis was applied. According to the LDA 
scores, the effect size of each microbiota is different 
between the MA-GS and MA-BS group, and the MA-GS 
and HC-GS group. The results of comparison between 
the MA-GS and MA-BS group found several microbiotas 
are associated with MA-BS at the order level (Thermoan-
aerobacterales), family level (Thermoanaerobacteraceae 
and Clostridiaceae_1), and genus level (Clostridium_
sensu_stricto_1, Enterorhabdus, Gelria, Holdemanella, 
Oscillibacter, and Sutterella), which were discovered a 
significant increase in MA-BS group. As for the MA-GS 
group, Dielma, Lachnospiraceae_UCG_005, Parasut-
terella, and Ruminococcaceae_UCG_014 at genus level 
were revealed enrichment. More details were exhibited in 
Fig. 3.

Regarding the LEfSe analysis comparative results 
between MA-GS and HC-GS, we selected the microbio-
tas with LDA > 4 shown as follows. The MA-GS group 
was significantly enriched at the phylum level (Fir-
micutes), class level (Bacilli), and genus level (Lachnoclos-
tridium and Escherichia_Shigella). Inversely, the HC-GS 
group was associated with the phylum Bacteroidetes and 
Actinobacteria, the class Bacteroidia, the order Bacte-
roidales and Bifidobacteriales, the family Bacteroidaceae 
and Bifidobacteriaceae, the genus Bacteroides and Bifi-
dobacterium. More results were exhibited in Supplemen-
tary Fig. 6.

Fig. 3 The taxa significant differences and the cladogram between MA-GS and MA-BS group. Note: (A) The taxa significant differences (LDA score > 2.0 
and p < 0.05) between MA-GS and MA-BS group were detected by the LEfSe analysis. (B) The cladogram shows the differential taxa between the MA-GS 
and MA-BS group found in the LEfSe analysis. MA-GS, MA users with good sleep quality; MA-BS, MA users with bad sleep quality. P, phylum; c, class; o, 
order; f, family; g, genus
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Function prediction of the microbiota community by KEGG
To explore metabolic pathways related to MA users with 
bad sleep quality, PICRUSt and STAMP were used to map 
microbial genes to metabolic databases to infer micro-
bial functions. No metabolic pathway was discovered 
to exhibit significant differences between the MA-GS 
and MA-BS groups after FDR correction. Regarding the 
microbial functions of MA users with good sleep quality, 
there exists metabolism difference with the HC-GS group 
after FDR correction, which includes biosynthesis of 
other secondary metabolites and amino acid metabolism. 
These results are shown in Supplementary Fig. 7.

Sleep quality was related to the gut microbiota
To analyze the relationship between sleep quality and the 
gut microbiota in the MA-BS group, we selected the bac-
terial taxa with LDA scores > 2 identified by the compari-
son between the MA-GS and MA-BS groups. Therefore, 
13 gut microbes were considered for analysis. Based on 
the seven components of the PSQI and the PSQI total 

score, the scores for eight components were calculated: 
sleep quality (P1), sleep latency (P2), sleep duration (P3), 
habitual sleep efficiency (P4), sleep disturbance (P5), use 
of sleeping medication (P6), daytime dysfunction (P7), 
and total scores (TS). Spearman partial correlation analy-
ses were conducted with sex, age, BMI, BDI scores, BAI 
scores, and VAS scores as covariates. Finally, the results 
showed that the relative abundance of Sutterella, belong-
ing to the family Alcaligenaceae, order Burkholderiales, 
class Betaproteobacteria, and phylum Proteobacteria, 
was significantly positively correlated with P7 scores 
(r = 0.83, p = 0.011). FDR correction was applied to all the 
above results. The heatmap is shown in Fig. 4.

In addition, the bacterial taxa with LDA scores > 4 iden-
tified by the comparison between the MA-GS and HC-GS 
groups were adopted to analyze the correlation between 
microbial taxa relative abundance and clinical symptoms 
in the MA-GS group. After controlling for the covariates 
sex, age, BMI, BDI scores, BAI scores, and TS, the results 
showed that the VAS score was negatively correlated 

Fig. 4 The partial spearman correlation between relative abundance of signature the gut microbiota and the Pittsburgh Sleep Quality Index (PSQI) 
scores in MA-BS group. Note: P1, sleep quality; P2, sleep latency; P3, sleep duration; P4, habitual sleep efficiency; P5, sleep disturbance; P6, use of sleeping 
medication; P7, and daytime dysfunction; TS, total scores. MA-BS, MA users with bad sleep quality. P, phylum; c, class; o, order; f, family; g, genus. *p < 0.05, 
**p < 0.01, ***p < 0.001
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with the relative abundance of Bacteroides (r = -0.349, 
p = 0.022), which belonged to the family Bacteroidaceae, 
order Bacteroidales, class Bacteroidia, and phylum Bac-
teroidetes. Other correlations were not discovered, and 
FDR correction was not applied to the above results.

Discussion
As far as we know, the present research is the first time to 
investigate the gut microbiota features of MA users with 
varying degrees of sleep quality by using the 16S rRNA 
Sequencing method. In addition, the gut microbiota fea-
tures of MA users without sleep problems were explored 
by comparing them with healthy controls. By compar-
ing the MA-GS and MA-BS groups, the present research 
found that there did not exist differences in alpha-diver-
sity and beta-diversity of gut microbiota, but the relative 
abundances of gut microbiota were altered. Meanwhiles, 
the Sutterella genus was discovered positively correlated 
with daytime dysfunction. We also compared the distinc-
tions between MA users and HCs, excluding the effect of 
sleep problems. The results elucidated that alpha-diver-
sity did not exist statistical difference while discrepancies 
in beta-diversity were the opposite. In addition, rela-
tive abundances of different taxa were discovered to be 
changed. These findings above suggested that gut micro-
biota may play an important role in MA users and their 
sleep quality.

In the present study, no significant difference was 
observed in terms of alpha diversity between MA-GS and 
MA-BS groups or between MA-GS and HC-GS groups, 
which is consistent with previous studies [34, 58]. Our 
findings suggest a notable dissimilarity between the beta 
diversity of the MA-GS and HC-GS groups, which is con-
sistent with the literature [33]. This suggested that there 
may exist a large difference in the composition of gut 
microbiota between MA users and healthy people.

According to the current results, the relative abun-
dance of Parasutterella was decreased in MA users with 
bad sleep quality, and a previous study demonstrated that 
Parasutterella was reduced in humans after sleep depri-
vation [59]. We also found Ruminococcaceae_UCG_014 
and Lachnospiraceae_UCG_005 enriched in MA users 
with good sleep quality. Ruminococcaceae was considered 
to decrease in insomnia patients [60] and be positively 
associated with sleep quality [41]. Meanwhile Rumi-
nococcaceae and Lachnospiraceae can produce short-
chain fatty acid (SCFA), which has anti-inflammatory 
effects and are beneficial to human health [61, 62]. Fam-
ily Thermoanaerobacteraceae and genus Sutterella were 
discovered increasement in MA with bad sleep qual-
ity. Additionally, Sutterella was verified to be positively 
associated with daytime dysfunction in MA users in 
the current results. However, other findings about sleep 
problems are inconsistent with our results. We speculate 

that this may have been caused by MA consumption and 
Sutterella may be a special gut microbiota in MA users 
with daytime dysfunction. Most of the current reports 
related to Sutterella have focused on autism and some 
intestinal disorders, and it is not yet clear what the con-
sequences of an increase in Sutterella relative abundance 
are, but it is possible that under specific conditions these 
bacteria could cause infection [63–67]. Furthermore, 
there existed several experiments to improve sleep qual-
ity by adding probiotics, which have acquired satisfactory 
effectiveness [68, 69]. In summary, our study, and former 
research all demonstrated the significance of gut flora in 
sleep quality, helping us to better improve the sleep prob-
lems of MA abusers.

Based on the results of the comparison between the 
MA-GS and HC-GS groups, which has eliminated the 
interference of sleep problems, we found Bifidobacterium 
and Bacteroides at the genus level reduced while fam-
ily Micrococcaceae, order Aeromonadales, genus Faeca-
litalea, and genus Escherichia_Shigella increased in MA 
users. Bifidobacterium and Bacteroides were considered 
as a beneficial role in human health, which have been 
associated with metabolites such as short-chain fatty 
acids, and bacteriocins that potentially promoted health 
state or neurodevelopment [70–72]. Aeromonadales may 
cause gastroenteritis and extraintestinal diseases [73], 
and Faecalitalea was used to identify autism spectrum 
disorder (ASD) and HC [74], and Escherichia_Shigella 
was associated with human diseases such as Tubercu-
lous meningitis [75] or cognitively impaired [76]. These 
gut microorganisms were considered to be harmful to 
health. Therefore, we discovered beneficial bacteria less-
ened while pernicious bacteria increased. Nevertheless, 
current studies on gut microbiota alterations in meth-
amphetamine users are highly heterogeneous, and our 
results are inconsistent with those of previous studies 
[33, 34, 58]. We inferred that the reason why the results 
are distinct may be that our study excluded sleep prob-
lems, homosexual behaviors, and the addition of women 
using MA. Anyway, both our results and previous litera-
ture confirmed that the gut microbiota is altered in MA 
users.

Our study also has several limitations. First, the PSQI 
was employed to evaluate sleep quality, which is a self-
reported inventory. Future studies should apply more 
objective measurements, such as polysomnography, 
to improve the precision of sleep quality assessments. 
Second, we only compared groups in terms of the gut 
microbiota tested by 16S rRNA sequencing, but such dif-
ferences do not explain the underlying mechanism, which 
suggests that testing to identify inflammatory factors or 
products of metabolism, and adopt shotgun sequenc-
ing to detect gut microbiota may be needed to further 
explain the role of the gut microbiota in MA users with 
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bad sleep quality. Third, demographic characteristics 
and drug history were obtained from self-reported ques-
tionnaires, which might exist an information bias and 
suggest that more objective information is needed for 
future research. In addition, we did not obtain informa-
tion about daily diet and exercise, and we will include 
this information in future research. Lastly, our study was 
a cross-sectional study with a small sample size in each 
group. The sample size should be expanded in the future, 
and relevant longitudinal work should be conducted.

In conclusion, the present study investigated gut 
microbiota alterations in MA users. Moreover, we further 
revealed that the genus Sutterella may be related to day-
time dysfunction in MA users, suggesting that the genus 
Sutterella may be a biomarker for bad sleep quality in 
MA users.
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