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Abstract 

Background  Schizophrenia (SCZ) patients undergoing antipsychotic treatment demonstrated a high preva-
lence and harmful effects of metabolic syndrome (MetS), which acted as the major cause of cardiovascular dis-
ease. The major clinical challenge is the lack of biomarkers to identify MetS episodes and prevent further damage, 
while the mechanisms underlying these drug-induced MetS remain unknown.

Methods  This study divided 173 participants with SCZ into 3 groups (None, High risk, and MetS, consisting of 22, 
88, and 63 participants, respectively). The potential biomarkers were searched based on 16S rRNA gene sequence 
together with metabolism analysis. Logistic regression was used to test the effects of the genus-metabolites panel 
on early MetS diagnoses.

Results  A genus-metabolites panel, consisting of Senegalimassilia, sphinganine, dihomo-gamma-linolenoylcholine, 
isodeoxycholic acid, and MG (0:0/22:5/0:0), which involved in sphigolipid metabolism, fatty acid metabolism, second-
ary bile acid biosynthesis and glycerolipid metabolism, has a great discrimination efficiency to MetS with an area 
under the curve (AUC) value of 0.911 compared to the None MetS group (P = 1.08E-8). Besides, Senegalimassilia, 
3-Hydroxytetradecanoyl carnitine, isodeoxycholic acid, and DG(TXB2/0:0/2:0) distinguished between subgroups 
robustly and exhibited a potential correlation with the severity of MetS in patients with SCZ, and may act as the bio-
markers for early MetS diagnosis.

Conclusions  Our multi–omics study showed that one bacterial genus-five lipid metabolites panel is the potential 
risk factor for MetS in SCZ. Furthermore, Senegalimassilia, 3-Hydroxytetradecanoyl carnitine, isodeoxycholic acid, 
and DG(TXB2/0:0/2:0) could serve as novel diagnostic markers in the early stage. So, it is obvious that the combina-
tion of bacterial genus and metabolites yields excellent discriminatory power, and the lipid metabolism provide new 
understanding to the pathogenesis, prevention, and therapy for MetS in SCZ.
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Background
Schizophrenia (SCZ), characterized by psychotic symp-
toms such as hallucinations, delusions, cognitive symp-
toms, and social and occupational decline, remains an 
etiological and therapeutic challenge. Among the treat-
ment, second-generation antipsychotics (SGAs) are rec-
ommended for maintenance treatment in schizophrenia 
priority because of their effectiveness on reducing symp-
toms and improving social function [1, 2]. However, 
many of these drugs, especially clozapine and olanzapine, 
have severely troubling side-effects, with the weight gain 
and metabolic syndrome (MetS) happed most obviously 
[3, 4].

MetS is a constellation of a series of metabolic risk fac-
tors characterized by a combination of abdominal obe-
sity (also known as central obesity), high blood pressure 
(BP), low high-density lipoprotein cholesterol (HDL-C), 
elevated triglycerides (TG), and hyperglycemia [5, 6]. 
SGAs have been reported to cause weight gain, lipid dis-
turbance, and insulin resistance, highly contributing to 
MetS development [7]. Clinical treatment gives priority 
to the combination of different antipsychotic drugs, this 
brings a high possibility of MetS, especially clozapine and 
olanzapine [8]. As one of the most severe side effects, 
MetS cause high exposure to cardiovascular diseases 
(CVD) [5, 9], and it is the leading cause of death in SCZ 
[10, 11]. Additionally, MetS significantly affects patients’ 
cognitive function and eventually causes mental disabil-
ity in cognition [12, 13]. Owing to the above damages, 
MetS led to a bad poor medication compliance, which in 
turn aggravated the difficulty in SCZ clinical treatment. 
However, the current criteria neither describe physi-
ologic risk factors completely, nor reflect real-time physi-
cal conditions. It is reported that there are some potential 
biomarkers in blood, urine or microorganism, such as 
acyl-carnitines [14], folic acid [15], Eubacterium rectale 
and Roseburia intestinalis and their related metabolites 
short chain fatty acid (SCFA) [16], and other metabo-
lites including carbohydrates, acids, hormones, other 
organic compounds, proteins, lipids, vitamins, amino 
acid and metals [17], have potential correlations with 
certain metabolic parameters and antipsychotic-induced 
MetS. Unfortunately, there is little evidence to suggest 
that these biomarkers have a high ability to distinguish 
MetS in SCZ, and a combined multi-omics strategy has 
not been applied in biomarker discovery for SCZ with 
MetS. Furthermore, biomarkers for the early diagnosis of 
MetS in SCZ are lacking, hindering more rational medi-
cation, and their translation into the clinical setting is still 
inadequate. Moreover, evidence regarding the mecha-
nisms inherent to antipsychotic drugs that contribute to 
an increased MetS risk is also lacking. Therefore, urgent 
further studies are needed to bridge this gap.

MetS is composed of a series of metabolism disorders, 
including sugars, lipids, and other small molecule metab-
olites [9]. However, it is more like a unified complex net-
work influenced by the host and the numerous internal 
microorganisms rather than only the host’s metabolites 
disorder. Many necessary metabolites and gut bacteria 
are involved in highly relevant activities that are crucial 
in the well-functioning of human metabolism and play 
important roles in developing into MetS. For example, A. 
muciniphila has negatively correlated with obesity, type 
2 diabetes and hypertension [18]. Further, microbiome-
based interventions are gaining popularity to treat and 
prevent metabolic disorders [19]. Bacterial metabolite, 
such as SCFAs, trimethylamine, secondary bile acids, or 
components of the bacterial cell wall lipopolysaccharide 
(LPS), are closely related to dyslipidemia, insulin resist-
ance, and MetS, and the resulting atherosclerotic plaques 
remain the major contribution to CVD and glucose 
metabolism disorder and obesity [20, 21]. Gut microbial 
dysbiosis and the metabolites aberrant greatly interplay. 
However, how did gut microbiome–metabolome axis 
disturbed and what was the pathological mechanism of 
abnormal functions when MetS occurs in SCZ remains 
unknown. Therefore, it is urgent to further identify early 
diagnostic signatures associated with microbial metabo-
lites to improve therapeutic strategies during MetS devel-
opment after taking antipsychotics.

Recently, an increased number of studies have shown 
that multi-omics strategy such as microbiomics and 
metabolism performed well in the study of disease 
markers [22, 23]. To decipher the questions above, we 
performed integrative 16S rRNA gene sequencing and 
metabolomic analyses in the SCZ cohort to identified 
MetS-associated microbial species and fecal metabolites 
that might be related to MetS risk after antipsychotic 
administration. The discriminative microbial-metabo-
lites panel could distinguish MetS and even the high-risk 
group from None symptoms of MetS, which could pro-
vide a deep insight of disordered functions and mecha-
nism on MetS in patients with SCZ as well as alert and 
improve therapeutic strategies.

Methods
Subject recruitment
All participants signed a written informed consent before 
any procedure was performed. This study recruited 
276 patients of SCZ regardless of gender from Hong 
Kou District Mental Health Center, Shanghai, and col-
lected fecal samples. Two senior psychiatrists diag-
nosed SCZ by a structured psychiatric interview using 
the tenth edition of the International Classification 
of Diseases (ICD-10) criteria. Specifically, the struc-
tured psychiatric interview was a conversation between 
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the doctor and the patient, mainly including psychi-
atric examination (such as comprehensive disorders 
of sensation and perception), thinking disorders (such 
as thinking associations, thinking logical and think-
ing content), emotional disorders (related to emotional 
proterties, emotional fluctuation, and emotional coordi-
nation), willpower and behavior disorders, intelligence 
and self-awareness disorders. As previously mentioned, 
MetS diagnosis was under the definitions of the Chi-
nese Diabetes Society according to Clinical guidelines 
in China (2022 edition), MetS was determined by the 
presence of 3 or more of the following metabolic risk 
factors: ① Abdominal obesity (i.e. central obesity) 
(Waist circumference ≥ 90  cm in men and ≥ 85  cm in 
women). ②Fasting plasma glucose ≥ 6.1  mmol/ or 2-h 
plasma glucose ≥ 7.8  mmol/L, or a history of diabe-
tes mellitus with antidiabetic medication. ③elevated 
BP (≥ 130/85  mm Hg, 1  mm Hg = 0.133  kPa) or a his-
tory of hypertension with antihypertensive medication. 
④Increased TG (TG ≥ 1.7  mmol/L, ⑤reduced HDL-C 
(HDL-C < 1.04  mmol/L). Figure S1 describes the inclu-
sion and exclusion criteria presented in the flow chart of 
the study design. Fresh stool samples were collected from 
each participant and immediately frozen at − 80  °C until 
analysis and avoid freeze–thaw repeat.

DNA extraction, PCR amplification and sequencing
The E.Z.N.A.® DNA Kit (Omega Bio-tek, Norcross, GA, 
U.S.) was used to extract microbial community genomic 
DNA from fecal samples following the manufacturer’s 
instructions (Shanghai Majorbio Bio-pharm Technol-
ogy Co., Ltd, Shanghai, China). Briefly, the DNA extract 
was checked on 1% agarose gel, and DNA concentration 
and purity were determined with NanoDrop 2000 UV–
vis spectrophotometer (Thermo Scientific, Wilmington, 
USA). The hypervariable region V3–V4 of the bacterial 
16S rRNA gene was amplified with primer pairs 338F 
(5’-ACT​CCT​ACG​GGA​GGC​AGC​AG-3’) and 806R(5’-
GGA​CTA​CHVGGG​TWT​CTAAT-3’). The PCR ampli-
fication of the 16S rRNA gene was performed to obtain 
amplicons and further purified using the AxyPrep DNA 
Gel Extraction Kit (Axygen Biosciences, Union City, CA, 
USA).

16S rRNA gene sequence analysis
The raw 16S rRNA gene sequencing reads were demul-
tiplexed, and quality was filtered by fastp version 0.20.0 
[24] and merged by FLASH version 1.2.7 [25] with the 
criteria attached in Supplementary Information A.

UPARSE version 7.1 (http://​drive5.​com/​uparse/) was 
used to cluster operational taxonomic units (OTUs) with 
97% similarity cutoff [26], and chimeric sequences were 
identified and removed. The taxonomy of each OTU 

representative sequence was analyzed by RDP Classi-
fier version 2.2 [27] against the 16S rRNA database (e.g., 
Silva v138) using a confidence threshold of 0.7. Different 
families between groups were analyzed based Mann–
Whitney U test (p-value < 0.05) to identify discriminative 
microbial markers across the MetS and NoMetS groups.

PICRUSt was used to standardize the OTU abundance 
using the greengene id corresponding to each OTU, and 
the OTU is annotated with COG and Kyoto Encyclope-
dia of Genes and Genomes (KEGG, http://​www.​genome.​
jp/​kegg/) functions from the eggNOG database (evolu-
tionary genealogy of genes: Nonsupervised Orthologous 
Groups, http://​eggnog.​embl.​de/) to obtain the pathway 
and functional abundance annotations.

Metabolomics profile analysis
Details of the metabolomics methods were applied as our 
previously published protocols [28]. Briefly, Freeze-dried 
stool samples were prepared by homogenization, extrac-
tion, and centrifugation after being weighed accurately. 
Supernatant were analyzed using Agilent 1290 Infinity LC 
system coupled with Agilent 6545 accurate mass quadru-
pole time-of-flight (Q-TOF) mass spectrometer (Agilent, 
USA). Various metabolites that are responsible for the 
discrimination between groups were filtered by SIMCA-
P software (version 14.1, Umetrics AB, Umeå, Sweden) 
and SPSS. Human Metabolome Database (http://​www.​
hmdb.​ca), Metlin (http://​metlin.​scrip​ps.​edu), and Lipid 
Maps Structure Database were used to identify metabo-
lites. Then, the relative levels of metabolites between the 
groups are shown in a heat map analysis based on the 
MetaboAnalyst 5.0 platform (http://​www.​metab​oanal​
yst.​ca). To investigate the related disturbed pathways and 
function, we performed the differential metabolites using 
MetaboAnalyst 5.0 platform and QIAGEN’s Ingenuity 
Pathway Analysis (IPA®, QIAGEN Redwood City, www.​
qiagen.​com/​ingen​uity). The profile procedure details are 
attached in Supplementary Information B.

Multi‑omic correlation analysis
Spearman correlations between microbiota and metabo-
lites and clinical parameters were calculated using R (ver-
sion 3.3.1, pheatmap package). The metabolites origin 
analysis and the link between the changed microbiota 
and metabolites were preformed used Sankey network 
analysis in MetOrigin [29] (http://​metor​igin.​met-​bioin​
forma​tics.​cn/)​to explain the statistical correlation as 
well as specific metabolic reaction and their biological 
relationship based on KEGG. Furthermore, Cytoscape 
(Version: 3.9.1) was applied to establish gut microbiota-
metabolites-pathways and function network.

http://drive5.com/uparse/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://eggnog.embl.de/
http://www.hmdb.ca
http://www.hmdb.ca
http://metlin.scripps.edu
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
http://metorigin.met-bioinformatics.cn/)to
http://metorigin.met-bioinformatics.cn/)to


Page 4 of 14Zhao et al. BMC Psychiatry          (2024) 24:529 

Statistical analysis
Statistical analyses were conducted using Microsoft 
Excel 2021, SPSS version 21 (SPSS, Chicago, IL, US), 
and GraphPad Prism version 7. Continuous, nor-
mally distributed variables were analyzed by one-way 
ANOVA analysis. The Kruskal Wallis test was used for 
non-normal distributed data for the nonparametric 
analysis, then categorical variables were compared by 
employed the χ2 test. Different types of variables were 
annotated below Table 1. A P-value of < 0.05 indicates 
significant differences. Spearman correlations between 
differential feces metabolites, feces microbiota, and 
clinical parameters were calculated using R (version 
3.3.1, pheatmap package) and SPSS. Logistic regres-
sion analysis and receiver operating characteristic 
(ROC) curves were operated based on SPSS.

Results
Characteristics of the study
Patients with SCZ were enrolled at Hong Kou Mental 
Health Center through a strict pathological diagnostic 
and exclusion process. We divided the participants into 
three groups following the number of diagnostic indica-
tors (NoDI) they met based on MetS diagnosis guidelines: 
None (NoDI: 0, n = 22), High risk (NoDI: 1–2, n = 88), 
MetS (NoDI: ≥ 3, n = 63). The key demographic variables, 
including age, gender, Positive and Negative Syndrome 
Scale (PANSS) classification [30] (positive/negative 
type: ≥ 3 items with a score of ≥ 4 in the positive/nega-
tive symptom subscale), psychiatry medication quantity 
(PMs), and body mass index (BMI) and the risk factors 
of MetS summarized in Table 1. BP, waist, blood glucose, 
TG, and HDL-C of these patients were increased with the 
increased NoDI, and the BMI, which was closely associ-
ated with MetS [9], also significantly increased. while 
other variables, such as PANSS classification, age, gender, 

Table 1  Characteristics of the study cohort

a  n (%), Categorical variables compared by χ2 test 
b  median (IQR), non-normal distributed data variables compared by Kruskal Wallis test
c  mean ± SD, Continuous, normally distributed variables analyzed by one-way ANOVA test
d  F value in one-way ANOVA test
e  χ2 value in Kruskal Wallis test and χ2 test

None(n = 22) High Risk(n = 88) METS(n = 63) F or χ2 value P value

PANSS_classification 1.076e 9.52E-01

  Positivea 3(13.63) 11(12.50) 8(12.70)

  Negativea 18(81.82) 75(85.23) 53(84.13)

  Nonea 1(4.55) 2(2.27) 2(3.17)

History of SCZ, yearsb 59(14.25) 61.5(11.00) 62(8.00) 1.053e 5.91E-01

Gender 0.953e 6.39E-01

  Femalea 12(54.55) 45(51.14) 35(44.44)

  Malea 10(45.45) 43(48.86) 28(55.56)

Years of SCZc 32.77 ± 13.50 30.25 ± 12.73 30.79 ± 11.78 0.359d 6.99 E-01

Psychiatry Medications (PMs) 1.936e 9.52E-01

  Single antipsychotic druga 11(50.00) 47(53.41) 30(47.62)

  Two antipsychotic druga 11(50.00) 39(44.32) 32(50.79)

  There and above drugs a 0(0) 2(2.27) 1(1.59)

BMI,kg/m2c 20.66 ± 3.49 22.70 ± 3.77 25.91 ± 3.57 23.384d 1.07E-09

Hypertensiona 0(0.00) 20(22.73) 30(47.62) 21.317e 2.09E-05

Diabetesa 0(0.00) 12(13.64) 24(38.10) 20.033e 2.71E-05

Waist, mean ± SDb 80.50(7.50) 90.0(14.75) 100.0 ± 13.00 70.115e 5.95E-16

Systolic Pressure, mmHgb 112.5(15.50) 121(20) 131.00(20.00) 33.377e 5.65E-08

Diastolic Pressure, mmHgc 71.36 ± 6.40 78.76 ± 8.99 87.16 ± 10.67 29.744d 8.39E-12

Fast Blood Glucose,mmol/Lb 4.62(1.11) 4.99(0.84) 5.62(1.40) 24.538e 4.69E-06

Triglyceride (TG), mmol/Lb 0.94(0.51) 1.24(0.82) 1.95(0.95) 53.0138e 3.08E-12

HDL-C, mmol/Lb 1.59(0.48) 1.32(0.46) 1.05(0.30) 50.156e 1.28E-11

LDL-Cb 2.35(1.10) 2.80(1.15) 2.82(1.51) 1.509e 4.70E-01

TCc 4.56 ± 0.80 4.70 ± 1.05 4.64 ± 1.11 0.158d 8.54E-01
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and PMs, have no difference between groups, indicating 
that they were not confounding factors between groups.

Alterations of the gut microbiota in SCZ patients with MetS
We investigated the alteration in gut microbiota and 
the functions of gut microbiota that are associated with 
MetS in SCZ patients. The Chao 1 and Shannon indices, 
which represent the microbiota richness and diversity 
in α-diversity analysis based on OUT level, were signifi-
cantly lower in the MetS group than in the None group 
(Fig.  1a, b). The score plot of PLS-DA based on genus 
level, which is a supervised multivariate statistical analy-
sis method for discriminant analysis, showed an obvi-
ous separated trend to assess the overall structure of the 
gut microbiota (Fig.  1c), indicating differences between 
groups. At the phylum level (Fig. 1d), the MetS group was 
characterized by a significantly lower abundance of Fir-
micutes and Actinobacteriota and higher abundance of 
Bacteroidota and Proteobacteria than in the None group. 
At the genus level (Fig. 1e), dysbiosis in MetS was char-
acterized by an expansion of genera such as Bacteroides, 
Prevotella and Alistipes, and a decrease in lactobacillus 
and senegalimassilia.

Genera were further compared across the three 
groups to identify those that consistently increased or 
decreased, in order to ascertain the potential biomark-
ers that changed with symptom aggravation. This analysis 
was based on 13 genera that were exclusive to MetS in 
SCZ compared with the None group previously. Finally, 
we observed a steady increase in 3 genera and a steady 
decrease in 6 genera across the three groups. (Fig.  1f, 
Table  S1). To further identify the functional features of 
the gut microbiome with the progress of MetS, function 
prediction analysis (Fig. 1g) based on PICRUST revealed 
that variously expressed microbiota mainly involved 
not only endogenous metabolites, such as carbohy-
drates, amino acids, lipids, nucleotides, and vitamins but 
also some xenobiotic biodegradation and metabolism. 
This indicated that the gradually expressed microbiota 
between these three groups affect the function of car-
bohydrate, amino acid, and lipid metabolism and have a 
high correlation with MetS.

Using logistic regression analysis, we constructed the 
optimal classifier model of None vs. MetS and None 
vs. high risk and MetS using these 9 gradually changed 

genera, and a group of 3 genera (Senegalimassilia, 
unclassified_f_Peptostreptococcaceae, Acetitomaculum) 
was selected as the key genera that provided the best 
discriminatory power by enter-in cross-validation, with 
AUC values of 0.808 in ROC curves analysis (p < 0.001, 
Fig.  2a). While only genus Senegalimassilia, with AUC 
values of 0.641 in ROC curves analysis (p < 0.032, Fig. 2b), 
found in None vs. high risk and MetS discriminatory 
analysis, suggesting that genera have potential diagnostic 
power for SCZ, however, they were not enough for early 
diagnosing high risk subjects.

Changes of feces metabolites in SCZ patients with MetS
To further investigate the biological effects of the gut 
microbiota in different MetS categories, untargeted 
metabolome profiles was applied on feces samples by liq-
uid chromatography–mass spectrometry. The system sta-
bility was conducted by injecting a QC every 18 samples 
during the whole sample batch. The total ion chromatog-
raphy of the 10 QC samples demonstrated a good overlap 
in both positive and negative ion modes (Figure S2 a, b). 
The RSD values of the peak intensities in the QC sam-
ples were used to measure stability. As shown in Fig. S2 
c, more than 80% of the RSD values of the QC samples 
were less than 20%. QC samples in principal compo-
nent analysis (PCA) (Figure S2 d, e) also displayed a high 
degree of aggregation. These results demonstrated the 
robust stability of the proposed method. Then, the entire 
normalized data were imported into the SIMCA-P pro-
gram (version 14). There was a clearly separation clusters 
between None and MetS groups based on the PLS-DA 
models (Fig.  3a), indicating that MetS has significantly 
changed at the metabolic levels.

We finally identified 23 metabolites dysregulated in 
MetS significantly (Table S2, Fig. 3b), with 11 downreg-
ulated and 12 upregulated in the MetS group. The same 
type of metabolites is clustered together generally. Inter-
estingly, amino acids, choline, glycerolipids, and sphin-
golipid metabolites were downregulated, while bile acids, 
glycerophospholipids, and acyl carnitines were upregu-
lated in the MetS group (Fig. 3c). Notably, all lysoglycer-
ophospholipids, long-chain fatty acids, and most of the 
acylcarnitines increased in MetS, while SCFAs belong 
to the opposite trend. Additionally, 21 metabolites were 
regarded as symptom-aggravation related and potential 

Fig. 1  Differential gut microbial characteristics of SCZ with MetS. a, b The microbial community diversity (Shannon index; a, p = 0.0367) 
and richness (Chao 1 index; b, p = 0.0037) (c) Score plot of the PLS-DA constructed based on genus level. d, e The relative abundance of microbial 
taxa at phylum and genus levels; phyla or genera with a relative abundance < 1% in each sample are merged into others. f Histogram of 9 
differential expressed genus gradually changed with MetS under Mann–Whitney U test, *P < 0.05, **P < 0.01. g Function prediction analysis using 
PICRUST based on EggNOG and KEGG

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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markers highly related to MetS development process 
in SCZ because they changed gradually from the None 
group to High-risk group. (Fig.  3d). Among them, 10 
metabolites changed significantly between the MetS and 
high-risk groups, while only 2 metabolites changed obvi-
ously between high risk and None group, supposed that 
high-risk group did not reach the diagnosed MetS level, 
however, the inner molecular changes already appear 
before the occurrence of clinical symptoms.

We further investigated the related disturbed path-
ways and function using IPA to obtain better explora-
tions on the internal changes associated with MetS 
aggravation in SCZ. The top 20 confidence-enriched 
canonical pathways under the Benjamin-Hochberg test 
showed in Fig.  3e, and ceramide degradation and bio-
synthesis, sphingomyelin metabolism, type II diabetes 
mellitus signaling, triacylglycerol biosynthesis, and 
endothelin-1 signaling seemed of great importance in 
the regulation of blood lipids, blood glucose and BP, 
which are the top three important diagnostic index of 
MetS. Additionally, the related diseases and functions 

were displayed in Fig. 3f. Activated and inhibited func-
tions were ultimately affected the activation of liver cell 
death, epithelial tissue necrosis, glucose metabolism 
disorder, and hepatic steatosis, and they have a similar-
ity function enrichment with those from changed gen-
era and were consistent with MetS symptoms.

Spearman’s correlation analysis between fecal metab-
olites and clinical parameters revealed that MetS sever-
ity-dependent metabolites were significantly correlated 
with serum levels of diastolic pressure, TG, BMI, waist, 
and HDL-C (Fig.  4a). Additionally, the use of drugs 
for hypertension and diabetes seriously affects the BP 
and fast blood glucose value, so the diagnostic indica-
tors, including fast blood glucose, systolic pressure, 
diastolic pressure, diabetes, and hypertension per-
formed a strong trend consistency with the rest indica-
tors although only a few metabolites have a statistically 
significant correlation. The result suggested that the 
metabolites may be involved in but not limited to blood 
pressure regulation and lipid metabolism regulation in 
MetS aggravation.

Fig. 2  Genera diagnostic outcomes are shown via ROC curves for MetS by logistic regression analysis. a Three genera (Senegalimassilia, g_unclass
ified_f_Peptostreptococcaceae, Acetitomaculum) penal for the classification of patients with SCZ from None group. b One genus (Senegalimassilia) 
for distinguish high risk patients of SCZ from None group. None: n = 22, High risk: n = 88, MetS: n = 63

Fig. 3  Different expressed metabolites associated with MetS in SCZ. a PLS-DA score plot between MetS and None group. b Hierarchical clustering 
correlating levels of fecal metabolites in SCZ with and without MetS visualized as a heatmap. c The type classification of 23 changed metabolites. d 
Histogram of 21 changed metabolites with the aggravation of MetS under Mann–Whitney U test,*P < 0.05, vs. None, **P < 0.01, vs. None. #P < 0.05, vs. 
High risk, ##P < 0.01, vs. High risk. e The top 20 confidence enriched canonical pathways based on 21 changed metabolites. f Function enrichment 
analysis of 21 changed metabolites under IPA analysis

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Gut microbiota, metabolites and MetS‑related signatures 
network analysis
The cross-omics correlation-based network were ana-
lyzed based on spearman correlation coefficients. It 
revealed that metabolites were strongly tied with both 
gut microbiota genera and host MetS-related signa-
tures, especially those indicators related to lipid metabo-
lism disorders such as TG, HDL-C and BMI (Fig. 4b and 
Table  S3). Metabolites involved in secondary bile acids 
and most of glycerophospholipids, with high ratio in 
MetS, have tightly relationship with TG and BMI. Fur-
thermore, biological correlations between the changed 
bacteria and metabolites were built based on the Sankey 
network analysis on Metorigin (http://​metor​igin.​met-​
bioin​forma​tics.​cn/) (Figure S3), which could be the sup-
plementary correlations between gut microbiota genera 
and metabolites. Notably, the metabolites were mainly 
involved in lipid metabolism disorder such as glycer-
ophospholipid metabolism, glycerolipid metabolism, 
sphingolipid metabolism and fatty acid degradation, and 
so did the pathways enrich in Figure S3. Metabolites con-
nected density between genera and clinical indicators, 
suggesting that metabolites were the bridge of the host–
microorganism network in MetS, and lipid metabolism 
disorder may be a priority to uncover the mechanism of 
MetS.

MetS diagnosed and prediction based on microbiota 
genera and metabolites
To determine whether the gut genera-metabolites mod-
ules could distinguish MetS from None and even from 
very early stage, we established logistic regression model 
based on 21 metabolites and 9 genera. It was easy to 
distinguish MetS from the None group accurately by a 
microbial-metabolites panel (Senegalimassilia, sphinga-
nine, dihomo-gamma-linolenoylcholine, isodeoxycholic 
acid, and MG [0:0/22:5/0:0]). The fecal genera-metab-
olites combined markers provided a large improvement 
in discriminating MetS with an AUC value up to 0.911 in 
the ROC curve, and also showed a significantly improved 
discrimination efficiency between None vs. High risk and 
MetS (AUC = 0.837, 1 genus and 4 metabolites) (Fig. 5a, 
b) compared to the use of microbiome biomarkers alone 

in Fig. 2. Therefore, the microbiota-metabolites combina-
tion analysis could optimize the accuracy of determining 
MetS then one-sided markers, and the combined bio-
markers may provide novel insights for MetS prevention 
and intervention.

Further subgroup discrimination revealed that the 
features with predictive value include two metab-
olites (3-Hydroxytetradecanoyl carnitine and 
DG[TXB2/0:0/2:0]) in None vs. High risk and L-Pro-
line, L-palmitoylcarnitine and sphinganine in High risk 
vs. MetS (Fig. 5 c, d). Microbial genus marker appeared 
when MetS been definite diagnosis, while metabolites 
panel appeared in the discrimination between subgroups 
of disease early development, suggesting that metabo-
lites, especially acylcarnitines and glycerolipids (mainly 
MG and DG), may be sensitive in reflecting the aggrava-
tion of MetS in early stage, while Senegalimassilia and 
isodeoxycholic acid appeared when those high-risk group 
were about developed into MetS. So, we inferred that 
microbial prefer to act on MetS through the affection of 
co-metabolites and microbial-metabolite exhibit a great 
ability to identify MetS and could diagnosis in an early 
stage.

Discussion
The current study demonstrated that the gut micro-
biota and metabolites exhibited significant changes dur-
ing MetS development. Multi omics analysis revealed 
that genera and metabolites which mainly related to 
lipid metabolism were disturbed accompanied by the 
emergence of MetS phenotype. Besides, the micro-
bial-metabolites panel (Senegalimassilia, sphinganine, 
dihomo-gamma-linolenoylcholine, isodeoxycholic acid, 
and MG [0:0/22:5/0:0]) facilitate the identification of 
MetS in SCZ than microbial alone. Third, Senegalimassi-
lia together with second bile acids, glycerolipids and 
acylcarnitines were more sensitive to reflect the aggrava-
tion of MetS, and Senegalimassilia and isodeoxycholic 
acid, glycerolipids and acylcarnitines might be used as 
biomarkers for early MetS diagnosis and reflected the 
severity of MetS.

Firstly, Senegalimassilia, which acts as the only genus 
for effectively distinguishing MetS, is downregulated with 

(See figure on next page.)
Fig. 4  Metabolites interacted with genera and MetS indicators. a Spearman correlations between MetS clinical indicators and metabolites. The 
color represents positive (red) or negative (blue) correlation, and FDRs are denoted as follows: *, p < 0.05, **, p < 0.01, ***, p < 0.001. b The network 
between gut microbiota, metabolites and function and MetS clinical indicators. Visualization of the correlation network according to Spearman 
correlation analysis data and illustrated by Cytoscape. Node: triangle represents MetS clinical indicators, diamond represents microbes, circle dot 
represents metabolites, and hexagon represented functions. Red represents upregulated and blue represents down regulated, the disk sizes show 
the ratio of abundance in MetS over None. Edge: Red (blue) connection represents positive (negative) correlation (Spearman correlation test, 
FDR < 0.05), the line widths show the absolute values of coefficients. Detailed information is shown in Table S3

http://metorigin.met-bioinformatics.cn/
http://metorigin.met-bioinformatics.cn/
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Fig. 4  (See legend on previous page.)
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Fig. 5  Diagnostic predictive indicators via ROC curves by logistic regression analysis. a Employing the combination of 5 metabolites-genera 
panel (Senegalimassilia, sphinganine, dihomo-gamma- linolenoylcholine, isodeoxycholic acid, MG (0:0/22:5/0:0)) for discriminating the MetS 
individuals from the None group. b 5 combined markers (Senegalimassilia, 3-Hydroxytetradecanoyl carnitine, DG[TXB2/0:0/2:0], isodeoxycholic 
acid, and Methylsuccinic acid) in None vs. High risk and MetS. c 2 combined markers (3-Hydroxytetradecanoyl carnitine and DG(TXB2/0:0/2:0)) 
for early diagnosis of high-risk of MetS form None. d 3 combined markers (L-Proline, L-palmitoylcarnitine and sphinganine) in High risk vs. MetS 
discrimination
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MetS aggravation and has manifold effects. Some reports 
showed that Senegalimassilia was down-regulated in 
children with overweight, it was inversely associated with 
inflammation markers and hepato-visceral fat [31,  32]. 
In addition, rats had higher abundance of gut Senegali-
massilia when alleviated type 2 diabetes [33], indicating 
that down-regulated Senegalimassilia may have impor-
tant roles on overweight and type 2 diabetes that contrib-
utes to MetS.

Among the panel, glycerolipids like diacylglycerol (DG) 
and monoacylglycerol (MG) were the important indica-
tors of early MetS diagnosis. Generally, TG in the small 
intestine was synthesized from DG and MG by diacylg-
lycerol acyltransferase (DGAT) and monoacylglycerol 
acyltransferase (MGAT) [34]. Although DG in mouse 
liver increased under a high-fat diet and was accompa-
nied by hepatic insulin resistance and glucose tolerance 
[35, 36], it may differentiated from the trend in fecal. In 
our study, serum TG increased while MG and DG, acted 
as the precursors, decreased in fecal with the aggrava-
tion of MetS. This may infer that TG biosynthesis was 
promoted, and DGAT and MGAT should be further 
explored to confirm this process. Interestingly, sphinga-
nine and acylcarnitine were also downregulated in fecal 
with MetS aggravation. Sphinganine belongs to sphin-
golipids together with its downstream product cera-
mides (Cer). As a class of cometabolites between host 
and microbiome, sphingolipids have well-defined roles 
in mammalian energy metabolism pathways, acting as 
cell adhesion molecules to regulate cell proliferation, 
differentiation, and apoptosis [37, 38]. Reportedly, Cers 
elevated in liver have been reported to correlate with 
hepatic insulin resistance and associated with increased 
total DG and TG [39]. However, they also exhibit the 
reverse trend in gut contents because of a complicated 
process from gut to blood and organs.

This is similar with acylcarnitine, as their function and 
role in MetS pathophysiology are not completely clari-
fied. We found that 3-Hydroxytetradecanoyl carnitine 
(C14-OH) decreased with MetS severity. It is said that 
long-chain (C14-C18) acylcarnitines decreased in the 
plasma of patients with SCZ than healthy people, which 
may be influenced by different transporters in the plasma 
membrane [40], and was found to increase antioxidant 
activity, and regulate immune functions [41]. However, 
more certain findings have emphasized that acylcar-
nitine content was influenced by microbiome-derived 
metabolite δ-valerobetaine, which decreased long-chain 
acylcarnitine consumption in mitochondrial β-oxidation 
to accumulate tissue fat [42]. Acylcarnitines are harm-
ful fatty acid intermediates, especially those with satu-
rated fatty acids, which have a role in inducing oxidative 
phosphorylation inhibition and increasing apoptosis [43]. 

This was consistent with our result that palmitoylcarni-
tine (C16:0) and stearoylcarnitine (C18:0) increased in 
patients with SCZ with MetS aggravation, acting as the 
markers to reflect different metabolic conditions. Fur-
thermore, population-based studies revealed increased 
palmitoylcarnitine (C16:0) and stearoylcarnitine (C18:0) 
in SCZ with MetS compared with NoMetS [14, 44], dem-
onstrated that long-chain carnitines with saturated fatty 
acids were potentially associated with insulin resistance, 
incomplete fatty acid oxidation, and mitochondrial lipid 
overload and played positive roles in the development of 
MetS.

Limitations
Some possible confounds are worth mentioning. Firstly, 
many patients were prescribed not only antipsychotic 
medication but also other medications, including drugs 
for hypertension, diabetes, and others. Fortunately, 
PLS-DA plots demonstrate no separation between PMs-
only and PMs with other kinds of drugs in three dif-
ferent groups both in positive and negative ion mode 
(Table  1,Figure S4). This indicates that the differences 
in medication quantity do not significantly influence the 
grouping, and other supplementary treatments were not 
prominent confounding variables affecting our result 
interpretation. Additionally, the sample size in our study 
was somewhat small, and another fully matched cohort 
is required for external validation of the findings. Finally, 
further experimental explanation of the causal relation-
ship between the changes in bacteria and metabolites 
and MetS would be beneficial. Nonetheless, our study 
provides a novel framework for mapping the role of gut 
microbiota and metabolites in anti-psychiatric medicine-
induced MetS.

Conclusion
In summary, it is urgent that significant and convenient 
biomarkers should be identified to monitor vulnerable 
subjects from no risk indicators to MetS due to the high 
incidence and high risk of MetS in SCZ. Following the 
use of combined omics for early diagnosis, we discovered 
that specific microbiota and metabolites are interrelated 
and influenced each other, and the microbial-metabolites 
panel demonstrated a strong discriminatory ability in 
diagnosing MetS. What is more, the disturbed biomark-
ers, primarily associated with lipid metabolism, were 
more sensitive in reflecting the exacerbation of MetS, 
helping to uncover the mechanism of MetS induced by 
antipsychotics. Overall, these findings contribute new 
insights into the role of gut microbiota and metabolites 
in early clinical diagnosis of MetS in SCZ. Furthermore, 
it revealed novel potential etiologies for MetS in patients 
with SCZ, and the changed molecular and functions may 
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be the potential targets to treat or ameliorate MetS in 
SCZ.
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