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Abstract 

Background Attention-Deficit/Hyperactivity Disorder (ADHD) is a multifaceted neurodevelopmental psychiatric 
condition that typically emerges during childhood but often persists into adulthood, significantly impacting individu-
als’ functioning, relationships, productivity, and overall quality of life. However, the current diagnostic process exhibits 
limitations that can significantly affect its overall effectiveness. Notably, its face-to-face and time-consuming nature, 
coupled with the reliance on subjective recall of historical information and clinician subjectivity, stand out as key chal-
lenges. To address these limitations, objective measures such as neuropsychological evaluations, imaging techniques 
and physiological monitoring of the Autonomic Nervous System functioning, have been explored.

Methods The main aim of this study was to investigate whether physiological data (i.e., Electrodermal Activity, Heart 
Rate Variability, and Skin Temperature) can serve as meaningful indicators of ADHD, evaluating its utility in distinguish-
ing adult ADHD patients. This observational, case-control study included a total of 76 adult participants (32 ADHD 
patients and 44 healthy controls) who underwent a series of Stroop tests, while their physiological data was pas-
sively collected using a multi-sensor wearable device. Univariate feature analysis was employed to identify the tests 
that triggered significant signal responses, while the Informative k-Nearest Neighbors (KNN) algorithm was used 
to filter out less informative data points. Finally, a machine-learning decision pipeline incorporating various classifica-
tion algorithms, including Logistic Regression, KNN, Random Forests, and Support Vector Machines (SVM), was utilized 
for ADHD patient detection.

Results Results indicate that the SVM-based model yielded the optimal performance, achieving 81.6% accuracy, 
maintaining a balance between the experimental and control groups, with sensitivity and specificity of 81.4% 
and 81.9%, respectively. Additionally, integration of data from all physiological signals yielded the best results, sug-
gesting that each modality captures unique aspects of ADHD.

Conclusions This study underscores the potential of physiological signals as valuable diagnostic indicators of adult 
ADHD. For the first time, to the best of our knowledge, our findings demonstrate that multimodal physiological data 
collected via wearable devices can complement traditional diagnostic approaches. Further research is warranted 
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to explore the clinical applications and long-term implications of utilizing physiological markers in ADHD diagnosis 
and management.

Keywords Precision medicine, Data-driven diagnostics, Attention-deficit/hyperactivity disorder, Psychophysiological 
data, Electrodermal activity, Heart-rate variability, Skin temperature

Introduction
Attention Deficit Hyperactivity Disorder (ADHD) is a 
multifaceted neurodevelopmental psychiatric disorder 
typically emerging during childhood. Individuals with 
ADHD exhibit distinct personality traits and cogni-
tive characteristics that impede their ability to regulate 
attention, behavior, and emotional responses [1]. The 
symptoms often manifest themselves as a persistent chal-
lenge to maintain focus, accompanied by hyperactivity 
or impulsivity, resulting in impairments in cognition and 
various life domains, including social, educational, and 
vocational among others [2, 3]. Although ADHD pri-
marily arises early in childhood, in most cases, it often 
persists into adulthood, exerting long-term effects on 
individuals’ functioning, productivity, and overall qual-
ity of life [4, 5]. Although extensive research efforts have 
focused on childhood ADHD, where approximately 8% 
of children and 6% of adolescents worldwide are affected 
[6], researchers have only recently started investigating 
the disorder in adults [7–11], with an estimated global 
prevalence of 6.76% as reported by a 2022 study [12].

Although increased self-control in adulthood can help 
mitigate some of the symptoms associated with hyper-
activity, difficulties in regulating emotional responses, 
maintaining focus, inferiority and feelings of impulsiv-
ity often persist beyond childhood [5, 13]. Inattention in 
adults with ADHD may lead to a slower pace of thinking 
and decision-making, as they often become entangled in 
irrelevant details [14]. Meanwhile, hyperactivity is linked 
to an inner sense of restlessness, with symptoms such as 
talking too much or too loudly, pacing up and down, or 
even experiencing muscle strain when seated [14]. Over-
all, adults with ADHD encounter several challenges in 
their personal, social, academic and vocational lives [2, 
14, 15]. Their struggle to maintain focus and complete 
tasks renders them less productive at work [16], lead-
ing to work loss and substantial economic repercussions 
[17]. Furthermore, adults with ADHD are more prone to 
addictive behaviors (e.g. substance abuse disorders) [18, 
19], while they also have a higher risk of injury and seri-
ous accidents, particularly stemming from risky driving 
behavior [20, 21].

In light of the profound impact ADHD has on individu-
als throughout their lives, diagnosing ADHD in adults 
is a crucial step towards managing and treating the dis-
order, ultimately enhancing their overall well-being 

and quality of life. The current standard for diagnosing 
ADHD in adults relies on a combination of psychometric 
questionnaires, in-person interviews with the individual 
and/or their parents to gather a comprehensive clinical 
history, and clinical assessments to identify the pres-
ence of specific symptoms [22]. Although widely used, 
this process has several limitations that can significantly 
affect its overall effectiveness [1]. Firstly, the current 
diagnostic process primarily relies on face-to-face assess-
ments, which presents a significant limitation in terms 
of accessibility. Additionally, it can be time-consuming 
and economically burdensome, as multiple sessions may 
be required [22]. Furthermore, obtaining ancillary infor-
mation to establish ADHD onset in childhood, which 
in most cases extends to adulthood, relies on subjective 
recall and may not always be available [23]. Moreover, 
recognizing the occurrence of symptoms is subject to 
the clinician’s interpretation, introducing potential bias 
into the diagnosis [24, 25]. Finally, ADHD symptomatol-
ogy does not uniquely correlate with an ADHD condition 
and can overlap with symptoms of other psychiatric con-
ditions [26]. It is estimated that approximately three out 
of four adults with ADHD suffer from at least one addi-
tional mental disorder such as depression, anxiety, per-
sonality disorders, or substance abuse [14, 24, 25]. The 
non-distinct nature of ADHD symptoms and the pres-
ence of psychiatric comorbidities introduce an additional 
level of uncertainty and complexity into the current diag-
nostic process [24, 26, 27].

In an effort to address some of the limitations associ-
ated with the standard of care interview-based diagnos-
tic approaches, clinical experts working with ADHD 
patients have sought additional tools to provide objective 
data and facilitate more informed decisions [28, 29]. In 
this context, evaluations of the neuropsychological and 
neurophysiological aspects of the disorder have emerged 
as promising tools, though they have attracted varying 
levels of scientific interest. On the one hand, neuropsy-
chological evaluations, which are more popular, have 
been employed to uncover impairments in various cog-
nitive functions [29], serving as objective indicators of 
ADHD [28]. One such evaluation method is the Continu-
ous Performance Tests (CPTs), which measure sustained 
attention and vigilance in a task-oriented computerized 
setting [1, 28, 30, 31]. Additionally, Stroop tests are com-
monly utilized to assess selective attention, interference 
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and inhibitory control [31–34]. While the value of CPTs 
has been demonstrated in child populations [35, 36] 
and several studies [37–39] have highlighted the poten-
tial of Stroop tests for adults with ADHD, the utility of 
neuropsychological evaluations for diagnosing ADHD 
in adults is limited, as conclusive results cannot always 
be obtained [28, 29, 40–43]. The primary drawback of 
this approach is that it targets specific cognitive deficits, 
which may fail to capture impairments when multiple 
cognitive domains are affected, as is often the case for 
ADHD [28, 44].

On the other hand, clinicians have recently focused on 
the neurophysiological impact of the disorder, including 
brain and Autonomic Nervous System (ANS) functioning 
[5, 45–51]. Research has shown that ADHD is associated 
with alterations in brain function that may lead to cogni-
tive impairment [49]. These alterations can be captured 
by imaging techniques capable of measuring functional 
brain activity (e.g. Electroencephalography (EEG), Mag-
netoencephalography, and Magnetic Resonance Imaging 
(MRI)) [52–57]. Recent studies [52–57] have underscored 
the correlation between functional brain activity, primar-
ily captured by Functional Magnetic Resonance Imaging 
and EEG methods, and an underlying ADHD condition. 
However, such methods can not be used for large-scale 
testing and deployment, as MRI and EEG setups tend to 
be expensive, time-consuming, and obtrusive data collec-
tion approaches. Consequently, integrating these meth-
ods into current clinical practice may prove inefficient 
and impractical [58].

Besides its impact on brain function, studies have 
demonstrated that ADHD also affects the functioning of 
the Autonomic Nervous System (ANS) [50], which con-
trols involuntary physiological processes [59, 60]. Within 
the context of ADHD, several studies [5, 46–48, 50] have 
suggested dysregulation in the part of ANS responsible 
for controlling arousal. This dysregulation may be linked 
to the behavioral challenges experienced by individuals 
with ADHD [47, 50]. Arousal of the ANS can be gauged 
in real-time by measuring physiological data [61], such 
as electrodermal activity (EDA), heart rate (HR), heart 
rate variability (HRV) and skin temperature (ST) [13, 
62–66]. Several studies have proposed that these data 
modalities [45, 67–75] may carry useful information and 
offer valuable insights into an underlying ADHD con-
dition. However, there has been limited focus on adult 
ADHD [45, 67–70, 72], with most studies involving 
relatively complicated setups [45, 68, 71–75] that hin-
der scalability and fail to leverage wearable sensors that 
enable multimodal data capturing in an unobtrusive and 
continuous manner [58].

In summary, neuropsychological and neurophysiolog-
ical evaluations provide complementary and valuable 

information, offering different insights into ADHD con-
ditions. Both approaches appear beneficial for clini-
cians and have the potential to address the limitations 
and complement the current symptom-based diag-
nostic process for adults with ADHD. Given that that 
research has demonstrated that ADHD is characterized 
by dysregulation in controlling physiological arousal, 
exploring the distinct physiological expressions of adult 
ADHD patients during potentially arousing condi-
tions, such as neuropsychological tests, is of particu-
lar interest. Neuropsychological tests can reliably elicit 
ANS responses related to attention, cognitive control, 
and emotional regulation [76–80]. Therefore, the main 
focus of this study is to assess the potential capability 
of physiological data (i.e. EDA, HRV, ST) to distinguish 
ADHD adults, when collected during a series of neu-
ropsychological evaluations (i.e. Stroop tests).

The selection of these specific data modalities serves 
multiple purposes. Firstly, we aim to explore the poten-
tial of physiological markers as standalone indica-
tors for ADHD. To the best of our knowledge, there 
is limited research exploring the connection between 
physiological data and adult ADHD compared to neu-
ropsychological assessments. Secondly, we seek to 
assess the utility of unobtrusively and continuously 
collected data, using scalable wearable technology. 
Such approaches would be more feasible for real-world 
applications and more likely to be integrated into cur-
rent clinical practice compared to brain activity evalu-
ations. Lastly, even though including additional data 
modalities (e.g. metrics from neuropsychological evalu-
ations) in our analysis would be interesting, at the same 
time, it would significantly increase the complexity and 
dimensionality of our models, potentially compromis-
ing the robustness of the results and necessitating a 
more extensive dataset.

Therefore, this study employs EDA, HRV and ST data 
collected from a wrist-worn sensor during neuropsycho-
logical evaluations to investigate their potential utility in 
the diagnostic process for adult ADHD. For this purpose, 
we leverage the Feel Digital Precision Medicine Platform 
(DPMP), which enables continuous, real-time, and unob-
trusive data capturing through a single wearable device. 
Furthermore, the platform offers signal processing and 
feature extraction capabilities, which are also utilized in 
this work. The main aims of this work are to: (i) evaluate 
the feasibility and utility of integrating physiological data, 
captured through a cost-effective and unobtrusive wear-
able sensor, into the current diagnostic framework for 
adult ADHD, (ii) develop and validate the performance 
and diagnostic capability of a machine learning (ML)-
based pipeline in distinguishing ADHD adults, leveraging 
our DPMP and (iii) assess the complementary value of 
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physiological data in providing a comprehensive under-
standing of ADHD symptoms.

Methods
Study design and participant recruitment
This was an observational, case-control study that 
included two groups of participants, an experimental and 
a control one. Participants for this study were recruited 
in collaboration with the First Department of Psychia-
try of the Athens School of Medicine. The experimental 
group (EG) consisted of adult patients diagnosed with 
ADHD who were evaluated by healthcare professionals 
of the clinic. The assessment process for potential candi-
dates in the EG included completing a questionnaire that 
consisted of questions collecting demographic, educa-
tional, occupational, and clinical data. This was followed 
by a battery of screening instruments, including a modi-
fied version of the Barkley Adult ADHD Rating Scale 
(BAARS) [81], the Autism-Spectrum Quotient (AQ) [82] 
and the Empathy Quotient (EQ) [83, 84]. Additionally, 
the semi-structured Diagnostic Interview for ADHD in 
Adults (DIVA) was administered to all patients [85, 86]. 
Complementary information was also collected from rel-
atives. The second step of the assessment process entailed 
a comprehensive two-hour psychiatric examination by an 
experienced psychiatrist in the Psychiatry Department. 
This examination aimed to explore the presence of life-
time psychopathology using the Mini-International Neu-
ropsychiatric Interview (M.I.N.I.) Greek version [87], 
which consists of a short structured interview assessing 
patient symptoms and signs against diagnostic crite-
ria outlined in the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-5) [3]. Overall, the main inclu-
sion criteria for the EG candidates were: (i) ADHD diag-
nosis; (ii) age≥ 18 years; (iii) IQ>70; (iv) proficient in 
Greek; and (v) willing and able to give informed consent 
for participation. On the other hand, the main exclusion 

criteria were: (i) major psychiatric disorder (e.g., schizo-
phrenia, bipolar disorder); (ii) significant neurological 
conditions (e.g., epilepsy, traumatic brain injury); and (iii) 
severe learning disabilities. The final diagnosis regard-
ing the presence of ADHD was based on DSM-5 crite-
ria. Furthermore, candidates for the control group (CG) 
included neurotypical adults who had not undergone 
any screening for the presence of ADHD. Control par-
ticipants were required to meet the same inclusion and 
exclusion criteria with EG participants, apart from the 
ADHD diagnosis.

Eligible candidates for both groups were then informed 
about the study scope, aims, and experimental process 
and were invited to participate. Those who expressed 
interest in joining had to select their preferred time slot 
and schedule an in-person experimental session. Dur-
ing this session, held at the First Department of Psychia-
try of the Athens School of Medicine, participants were 
provided the Feel physiological data monitoring device 
(see Data acquisition, preprocessing and feature extrac-
tion infrastructure  section). This device unobtrusively 
and continuously collected participants’ data, as they 
progressed through the various steps of experimental 
protocol. The flowchart of the participant screening and 
recruitment process is illustrated in Fig. 1.

Experimental setup
The experimental protocol for both the EG and CG, con-
sisted of a series of six computerized Stroop tests during 
which participants were required to answer as quickly 
and accurately as possible: three color-word Stroop 
tests, two number Stroop tests, and one emotion Stroop 
test. At the same time, their physiological data was col-
lected via the Feel Monitoring Device. The Stroop tasks 
were developed in Python programming language [88] 
and were presented using a Windows personal com-
puter and a 17-inch flat screen. Participants provided 

Fig. 1 Flowchart for participant screening and recruitment
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their responses for the number and emotion Stroop tests 
using the computer keyboard, while the number of cor-
rect and wrong responses for the color-word Stroop tests 
were manually recorded by the researcher executing the 
experiment. The start and end times for each test were 
manually input by the researcher through the data col-
lection mobile application (see Data acquisition, pre-
processing and feature extraction infrastructure section). 
This ensured that the physiological data recorded by the 
wearable device was synchronized with the task events. 
In more detail, each test was designed as follows:

• Color-Word Stroop: This step consisted of three dif-
ferent tests labeled as C1, C2 and C3. In C1, partici-
pants were instructed to name a color word depicted 
in a neutral color (e.g. the word “red” presented in 
a black-colored font). In C2, participants were pre-
sented with differently colored symbols and asked to 
identify the color of the font (e.g. symbol XXX pre-
sented in a blue-colored font). In C3, color words 
were depicted in a different color, which the subjects 
were asked to identify, ignoring the word itself (e.g. 
the word “red” presented in a blue-colored font). 
Each of the color-word Stroop tests lasted approxi-
mately one minute, during which participants were 
prompted to give as many answers as possible from 
a list of 200 words. The total duration of the session 
was 3 minutes.

• Number Stroop: This part consisted of two tests 
labeled as N-S (Number-Size) and N-V (Number-
Value). In both tests, participants were presented 
with pairs of numbers, each one displayed in a differ-
ent font size. In the congruent condition, the number 
with the higher value was displayed in the larger font 
size, while in the incongruent condition, the number 
with the higher value was displayed in the smaller 
font size. During the N-S test, participants were 
asked to identify the number with the larger font size, 
while in N-V, they were asked to identify the num-
ber with the larger value. Each test included 100 pairs 
of numbers. This series of tests did not have a fixed 
duration and test duration depended on the time 
required by each participant to respond to all pairs of 
numbers. The average duration for each test was 3.9 
minutes, with the total duration of this session being 
on average 7.8 minutes.

• Emotion Stroop: This part consisted of a single test 
labeled as E. In the Emotion Stroop task, partici-
pants were instructed to name as quickly and accu-
rately as possible the color of the presented words, 
while ignoring their meaning, which could be either 
neutral (e.g. tower, fork, etc.) or negative (e.g. crime, 
traitor, annoying, etc.). This session included 30 neu-

tral and 30 negative words, presented in 4 different 
colors. The total number of trials was 240. The num-
ber of words displayed was fixed, and like the Num-
ber Stroop step, the total test time varied among par-
ticipants. The duration of this session was on average 
4.3 minutes.

Data acquisition, preprocessing and feature extraction 
infrastructure
For the purposes of this study, we have leveraged the 
capabilities and functionalities of our proprietary 
DPMP. The DPMP is a remote patient monitoring plat-
form designed for unobtrusive, passive, and continuous 
monitoring and analysis of neurological and psychiatric 
patient data. The platform facilitates the collection, cura-
tion, and processing of multimodal data, with a focus on 
the discovery, extraction, and validation of metrics and 
biomarkers for various use cases in the fields of neurol-
ogy and psychiatry. In this study, the following compo-
nents of the platform were employed:

• Feel Monitoring Device: The wrist-worn device fea-
tures five embedded sensors and connects to the 
user’s smartphone via Bluetooth to accommodate 
continuous and passive data collection and transmis-
sion (Fig. 2A). The device collects psychophysiologi-
cal, activity, and ambient conditions data, which have 
proven to be relevant and highly valuable for many 
neurological and psychiatric applications [89–91]. 
More specifically, the following data modalities are 
captured by the wearable device: EDA, HR, HRV, ST, 
9-axis Inertial Measurement Unit, ambient tempera-
ture, and humidity. The focus of this work is on the 
first three data modalities.

• Feel Mobile app: The Mobile app (Fig. 2B) connects 
to the Feel Monitoring Device, collects data, and 
transfers it from the device to the secure cloud-based 
processing infrastructure. The app allows users to 
control the start/stop of the data acquisition session 
and annotate specific timestamps during the acquisi-
tion with custom labels, indicating the start and end 
of each session step. These labels are used to identify 
data segments associated with each Stroop test. The 
Feel Mobile App is available for Android and iOS 
platforms.

• Digital Endpoints Development & Biomarker Dis-
covery Infrastructure: This sophisticated infrastruc-
ture integrates data curation, signal processing, time 
series analysis, and pattern recognition tools and 
frameworks for noisy artifact detection and denois-
ing, signal annotation and segmentation, and feature 
extraction purposes. The processing pipeline for col-
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lected time series commences with the denoising 
step, where noisy signal parts are identified and the 
impact of noise artifacts is appropriately mitigated. 
Subsequently, time segments of the collected sig-
nals corresponding to each of the six Stroop tests 
are identified, using the timestamp annotations that 
have been inserted from the Feel mobile app. Finally, 
a wide variety of proprietary features are calculated 
for each segment of the acquired time series. These 
features range from simple statistical metrics to more 
complex and highly nonlinear ones reflecting the 
morphological, frequency, repeatability, and predict-
ability characteristics of the signals. Specifically, 103 
features have been extracted from the EDA signals, 
77 from the HRV signals, and 11 from the ST signals, 
resulting in a feature set of 191 features available for 
our analysis.

Statistical analysis and decision pipeline
We employed descriptive statistics to analyze the demo-
graphic characteristics of the two groups. Additionally, 
we compared the age distribution of the two groups using 
an independent t-test [92] and assessed the gender ratio 
using the χ2 test [93]. Leveraging the features extracted 
by the Biomarker Discovery infrastructure, we conducted 
a two-step univariate feature analysis to identify the best 
subset of the collected data that, when fed into an ML 
pipeline, would be able to distinguish between the exper-
imental and control groups. An overview of the data pro-
cessing and decision pipeline is shown in Fig. 3.

Firstly, within each group (i.e. EG and CG), we inves-
tigated the variance of each feature at the individual 
level. To accomplish this, we performed a series of 

nonparametric pairwise statistical tests for every pair of 
Stroop tests using the Wilcoxon signed-rank test [94]. 
Utilizing this method, a univariate analysis was per-
formed in order to determine the proportion of total 
features showing a statistically significant difference 
between pairs of Stroop tests. A low ratio suggests mini-
mal impact at the individual level for the specific com-
bination of tests, allowing paired data to be treated as 
uncorrelated. Consequently, the feature data from two 
Stroop tests could be combined and analyzed together 
under a common test label. The second step of our sta-
tistical analysis involved identifying the data subsets 
that yielded more profound differences across features 
between the two groups (CG and EG). To achieve this, 
for each type of test (either the original tests or the bun-
dled ones determined by the first level of our analysis), 
we conducted a univariate feature analysis using Kol-
mogorov-Smirnov statistical tests [95]. Subsequently, the 
subset of our dataset corresponding to the Stroop tests 
that yielded a higher percentage of features with statisti-
cally significant differences between the two groups were 
selected as inputs to the learning algorithms. For both 
levels of the statistical analysis, the cutoff P-value used 
for statistical significance was set at 0.1. For both statisti-
cal tests, we utilized the corresponding implementations 
in the SciPy Python package [96].

Having built a more informative data subset, the deci-
sion pipeline consists of three main parts: i) informative 
point selection, ii) feature selection, and iii) classifica-
tion. The input of this pipeline is a dataset that includes 
the features identified as the most informative from the 
previously discussed statistical analysis. Separate data-
sets were constructed both for each of the three signals 
(i.e. EDA, HRV, and ST) and for their fusion. In the latter 

Fig. 2 The feel monitoring device (A) and the feel mobile app (B)
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case, the feature space is constructed by concatenating 
the features from all signals.

Informative point selection
We enhance the separability of the two groups by iden-
tifying and discarding the least informative points [97]. 
Towards this, we utilize a modified version of the k-Near-
est Neighbors algorithm (KNN), namely the Informa-
tive KNN (i-KNN) [98]. The least informative points 
are defined as data points that are (isolated) instances of 
one class in a n-dimensional feature space that reside in 
a neighborhood with a high density of points from the 
opposite class. For each data point xi with class yi we 
select k nearest neighbors and calculate for each neigh-
bor xj , the associated informativeness given by Eq. (1) 
[98]:

where d is a distance function defined as d(xj , xi) =
e−|xj−xi|

2 , η represents the ratio of neighbors that have the 
same class yj as xj and Ci is a normalization factor such 
that j P(xj|xi) = 1 . The function �(xj) can be inter-
preted as a weighting parameter, which quantifies how far 
apart the point xj lies from the rest of the k − 1 neighbors 
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)η(xj ,xi)�

(
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of xi which have a different label than yj . This weighting 
parameter is defined in Eq. (2).

with δyj ,yn being the Kronecker delta which equals 1 only if 
yj = yn and 0 otherwise. We rank the k neighbors accord-
ing to their informativeness (Eq. (1)) and classify xi using 
the majority vote of the labels from the M neighbors with 
the highest informativeness. This classification decision is 
denoted as ỹi . We perform this process for k ∈ {3, 5, 7, 10} 
and for each k, we use M ∈ [1, k] (25 possible combinations 
in total). For each value l for k and m for M, we compare the 
real label yi with the decision ỹi from the most informative 
neighbors and assign a binary score s(xi, l,m) = 1− δyi ,ỹi . 
We rank every vector xi using the average s̄(xi) of the scores 
s(xi, l,m) , which is defined as shown in Eq. (3). A higher 
value of s̄(xi) implies that xi is less informative for its corre-
sponding class yi and could thus be discarded. In this study, 
we examined two input datasets to the decision pipeline: i) 
the full dataset and ii) the reduced dataset after discarding 
the worst 5% of the data points, as described above. The 
implementation of this algorithm was performed in Python 
utilizing the respective packages [99].
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Fig. 3 Overview of the data processing and decision pipeline
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Feature selection
Regarding feature selection, we utilize the relative 
Median Absolute Deviation (rMAD, Eq. (4)) and the rela-
tive Interquartile Range (rIQR, Eq. (5)) as lower bounds 
to discard low-variance features that have minimal 
impact on the separability of the two groups. We have 
selected these two quantities as thresholds since they are 
robust to outlier values.

In Eqs. (4) and (5), fi refers to a feature vector, i.e. a list 
of the values of the feature i. Furthermore, med(fi) in Eq. 
(4) is the median and p(fi, q) in Eq. (5) represents the q-th 
percentile of fi.

Both rMAD and rIQR have been normalized respec-
tively. For rIQR if p(fi, 0.25) = 0 , then p(fi, 0.75) is used 
in the denominator.

Classification
For the classification step, we first utilize Principal Com-
ponent Analysis (PCA) to construct linear combinations 
of the features that best capture the variability, and thus 
the useful information, of the dataset. Then, we employ 
four widely used classification algorithms: Logistic 
Regression (LR), KNN, Random Forests (RF) and Sup-
port Vector Machines (SVM) [99]. For each algorithm, 
a set of classifier-specific hyperparameters along with 
the rMAD and rIQR thresholds are tuned to achieve the 
best accuracy. This tuning process is conducted using a 
100-fold cross-validation scheme, where we split the 
data into a 70%-30% train-test stratified split. It is note-
worthy that whether the full or reduced dataset was used 
was not treated as a hyperparameter, ensuring that each 
algorithm utilizes the same data points across all valida-
tion folds. For each input dataset, we have the option to 
keep all input data, or discard the least informative points 
and evaluate the output of the decision pipeline on the 
obtained accuracy, sensitivity and specificity of the test 
sets.

Ethical considerations
This observational study was conducted in accordance 
with the Declaration of Helsinki and was approved by 
the Ethics Committee of the National and Kapodistrian 

(3)s̄(xi) =
1

25

l=k
∑

l=1

m=k
∑

m=1

s(xi, l,m)

(4)rMAD(fi) =
med(|fi −med(fi)|)

med(fi)

(5)rIQR(fi) =
|p(fi, 0.75)− p(fi, 0.25)|

p(fi, 0.25)

University of Athens, 1st Department of Psychiatry, 
Eginition Hospital. Prior to their participation in the 
study, all individuals were fully informed about the 
study scope, objectives, methodology, and components, 
and they provided written informed consent. They were 
also informed that their participation was voluntary and 
they could withdraw from the study at any time. Each 
participant was assigned a unique identifier upon pro-
viding informed consent. The collected data was pseu-
donymized, and no personal identifiers were used during 
data processing and reporting of results. Furthermore, 
participants did not receive any monetary compensation 
for their involvement in the study.

Results
Sample characteristics
A total of 95 individuals participated in this study, with 
58 in the control group and 37 in the ADHD group. 
There were no difference in the age ( 35.18± 11.14 vs 
32.58± 11.39 , t(93) = 1.06 , P = .29 ) and gender ratio 
(Male/Female, 32/26 vs. 24/13, χ2(1, 95) = 0.5221 , 
P = .46 ) between the two groups. Out of the 95 par-
ticipants who joined the study, 4 did not complete the 
experimental process due to time limitations or personal 
discomfort issues. Additionally, physiological data was 
not retrievable for 15 participants, mainly due to pro-
tocol execution errors, mobile app malfunctions, and 
internet connectivity issues. The remaining participants 
(i.e. 44 CG and 32 EG participants) successfully com-
pleted the experimental process. For this group of par-
ticipants, there were no significant differences in the age 
distributions (36.23 ± 9.36 vs. 33.26 ± 12.18, t(74) = 1.18 , 
P = .24 ), as well as for the gender ratio (Male/Female 
29/15 vs. 21/11, χ2(1, 76) < 10−4 , P = .97 ). Finally, 
23 out of 32 EG participants were receiving ADHD 
medication.

Feature analysis
Firstly, we explore the variability of the extracted features 
within the CG and EG for all combinations of Stroop 
tests in the experimental process, employing the Wil-
coxon signed-rank test. In Fig. 4, we showcase the ratio 
of the total features that show a statistically significant 
change between every pair of tests for the CG and EG in 
the left and right plots, respectively. The x and y-axis in 
each plot indicate the two tests involved in the compari-
son. For example, the element in the first row and sec-
ond column corresponds to the output of the comparison 
between the C1 and C2 Stroop tests. Accordingly, the ele-
ments on the diagonal are all equal to 0, since these cor-
respond to the output of the comparison of a Stroop test 
with itself. It becomes evident that a clear pattern exists 
involving Stroop tests of the same type (i.e. Color-Word, 
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Number, or Emotion). For such cases, the percent-
age of features showing a statistically significant change 
between the corresponding Stroop tests within both CG 
and EG is much lower (light-colored regions) than for 
cases with Stroop tests of different types being compared 
(dark-colored regions). Therefore, data from tests C1, C2, 
and C3, as well as N-Size and N-Value, can be bundled 
together under the new label “C” and “N”, respectively.

After bundling together the Color-Word and Num-
ber Stroop tests, we now have three types of tests: Color 
(C), Number (N), and Emotion (E). As the next step of 
the analysis, we explore how much the extracted fea-
tures differ between the CG and EG for the three types 
of tests. For each case, the percentage of total features 
that showed a statistically significant difference between 
the CG and EG is illustrated in Fig.  5A. Moreover, the 
respective percentages per data modality (i.e. EDA, HRV 
and ST) are shown in Fig. 5B. As can be seen, the data-
set consisting of N tests shows a much larger percentage 

of features differing between the two groups compared 
to the C and E tests, with more than half of the features 
being significantly different. Therefore, in the rest of this 
work, we focus solely on the subset of our dataset that 
includes features only from the N test.

Decision pipeline
For the evaluation of the performance of the decision 
pipeline, three metrics have been utilized: accuracy, 
sensitivity, and specificity. The former corresponds to 
the ratio of the correctly identified instances (true CG 
+ true EG) to the total number of instances and reflects 
how many instances were correctly classified in total. 
Sensitivity assesses the capability of the model to cor-
rectly identify positive (true EG) instances and is cal-
culated as the ratio of correctly identified EG instances 
to their total number. Similarly, specificity evaluates the 
same aspects for the CG instances and is extracted as 
the ratio of correctly identified CG instances to their 

Fig. 4 Percentage of features that differ significantly ( P ≤ .1 ) within the control (CG; left) and experimental (EG; right) groups, per every couple 
of Stroop Tests

Fig. 5 Percentage of features showing statistically significant differences ( P ≤ .1 ) between the control (CG) and experimental (EG) groups 
for the Emotion (E), Color-Word (C), and Number (N) Stroop tests in total (A) and per data modality (B)
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total number. Tables  1, 2, 3  and 4 present these met-
rics for the different classification models employed 
for each physiological signal (i.e. EDA, HRV, ST) and 
their fusion, utilizing data captured during the Number 
Stroop tests. In all cases, the results for both the full 
and the reduced datasets are provided.

Electrodermal activity (EDA)
Table  1 displays the accuracy, sensitivity, and specificity 
of different classification models using both the original 
and reduced feature sets from EDA data. It should be 
noted that in most cases, all metrics improve when the 
least informative points are discarded, and the reduced 

Table 1 Accuracy, sensitivity and specificity for the LR, RF, KNN and SVM classification models using the original and reduced feature 
set from EDA data

Method

LR RF KNN SVM

Metric Original Reduced Original Reduced Original Reduced Original Reduced

Accuracy 65.8% 73.5% 62.3% 72.6% 58.3% 68.5% 56.5% 60%

Sensitivity 82.5% 86.4% 66% 74.6% 54.8% 76.1% 16.6% 77.7%

Specificity 51.6% 58.8% 59.2% 70.5% 61.2% 59.8% 90.4% 40%

Table 2 Accuracy, sensitivity and specificity for the LR, RF, KNN and SVM classification models using the original and reduced feature 
set from HRV data

Method

LR RF KNN SVM

Metric Original Reduced Original Reduced Original Reduced Original Reduced

Accuracy 67.4% 77.6% 62.7% 75.6% 66.1% 78% 56.8% 71.6%

Sensitivity 67.2% 73.8% 61.5% 77.3% 64.3% 77.5% 36.1% 78.1%

Specificity 67.5% 82.2% 63.7% 73.5% 67.7% 78.7% 75.3% 63.6%

Table 3 Accuracy, sensitivity and specificity for the LR, RF, KNN and SVM classification models using the original and reduced feature 
set from ST data

Method

LR RF KNN SVM

Metric Original Reduced Original Reduced Original Reduced Original Reduced

Accuracy 67.3% 72% 64.5% 71.6% 65.6% 71.7% 57.9% 63.9%

Sensitivity 81.9% 89.4% 68% 79.9% 63.4% 79.9% 27.9% 85.8%

Specificity 54.8% 53.6% 61.6% 62.7% 67.4% 62.9% 83.5% 40.7%

Table 4 Accuracy, sensitivity and specificity for the LR, RF, KNN and SVM classification models using the original and reduced feature 
set from fused EDA, HRV and ST data

Method

LR RF KNN SVM

Metric Original Reduced Original Reduced Original Reduced Original Reduced

Accuracy 72.1% 79.6% 69% 78.7% 69% 77.2% 68.6% 81.6%

Sensitivity 76.8% 82.4% 65.6% 81.1% 65.7% 78.4% 59.2% 81.4%

Specificity 68.2% 76.5% 71.8% 76.2% 71.8% 76% 76.7% 81.9%
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dataset is utilized. More specifically, all performance 
metrics improve for the LR and RF algorithms, while only 
accuracy and sensitivity are enhanced for KNN and SVM. 
Notably, for SVM, the capability to identify CG instances 
is significantly reduced (specificity=40%). Interest-
ingly, noisy data points appear to play a crucial role in 
constructing the support vectors, as the performance 
of the SVM model in terms of sensitivity and specific-
ity is reversed when these points are discarded. The LR 
model achieves the highest accuracy and sensitivity but 
performs relatively poorly in identifying CG data points, 
with specificity below 60%. On the other hand, the RF 
classifier achieves a more balanced performance, with all 
performance metrics ranging from 70% to 74%.

Heart rate variability (HRV)
Similar to the previous case, the performance of all mod-
els is generally enhanced when the most informative data 
points are retained (Table 2). This becomes also evident 
for the SVM case, at least with regard to the accuracy and 
sensitivity metrics, which are significantly improved. This 
time, the KNN algorithm achieves the most balanced 
performance, with all metrics hovering around 78%. The 
RF algorithm also demonstrates a balanced performance, 
albeit with slightly lower metrics ranging from 73% to 
77%. On the other hand, the capability of the LR model 
to identify the CG instances is the best among all mod-
els with a specificity of 82.2%, while also showing simi-
lar performance to the RF and KNN models with respect 
to the other metrics. Finally, the SVM achieves the best 
sensitivity, which is close to that of the KNN, but shows 
poorer performance in identifying CG data points. Simi-
lar to the EDA case, the SVM is notably influenced by the 
presence of the least informative data points.

Skin temperature (ST)
In the case of the ST signal (Table 3), the LR algorithm 
achieves an accuracy of 72% with a sensitivity of 89%. 
However, there is a notable increase in misclassification 
of CG participants, with a specificity close to 55%. The 
KNN and RF models exhibit similar performance, with 
more balanced metrics compared to the other models. 
On the other hand, the SVM algorithm demonstrates 
the least balanced performance, successfully identifying 
most of the EG data (sensitivity: 85%) but misclassifying 
the majority of CG data (specificity: 40%). Retaining the 
most informative data points affects the performance of 
all algorithms, with the SVM being particularly impacted.

Data modalities fusion
Finally, when fusing data from all physiological signals 
together, we effectively expand the feature space and uti-
lize the information from each signal simultaneously. As 

shown in Table  4, this leads to improved performance 
for all classifiers. Interestingly, the SVM classifier, which 
exhibited the least balanced performance when each sig-
nal was utilized separately, now shows almost identical 
capability to identify both the CG and EG data well, with 
sensitivity and specificity close to 82%. The rest of the 
classifiers demonstrate similarly balanced performance, 
but with slightly inferior performance metrics, except for 
the sensitivity of the LR model, which reaches sensitivity 
values up to 82.4%. Finally, discarding some of the noisy 
data points results in a boost of the performance for all 
classifiers, with the respective performance metrics for 
the SVM model ranging from 81.4%-81.9%.

Discussion
In this study, we investigated the potential of utiliz-
ing physiological data for the detection of adult ADHD. 
Specifically, we focused on three physiological signals: 
EDA, HRV, and ST, acquired using a wrist-worn sensor 
during a series of Stroop tests. Our main hypothesis was 
that these tests would elicit ANS responses that differ 
between neurotypical adults and adults with an ADHD 
condition. One of our primary objectives was to evalu-
ate the performance of unimodal models using each 
physiological signal separately. Additionally, we explored 
the potential of the complementarity of information, 
provided by these data modalities and constructed a 
multimodal model combining them simultaneously, to 
enhance the overall model capabilities. Using our propri-
etary data processing infrastructure, we extracted a series 
of features for each physiological signal and employed 
them in ML algorithms for a classification task aimed at 
identifying neurotypical and ADHD populations. Our 
results supported that these physiological signals carry 
significant information to be correlated with underly-
ing ADHD conditions. Specifically, we developed multi-
modal ML models that achieved up to approximately 82% 
sensitivity and specificity. In the following, we will delve 
into the interpretation and implications of these results.

Early in our investigation, we explored the ANS 
responses, as captured by the available physiological 
data, across the six different Stroop tests, and between 
the two participant groups. The aim was to identify the 
subset of our data that could yield optimal separability 
between the ADHD and the neurotypical populations. 
Initially, we analyzed each of the two participant groups 
separately. Through the use of Wilcoxon signed-rank 
tests, we found that each type of Stroop test (C, N and 
E) yields sufficiently distinct responses. More specifi-
cally, within the three Color-Word and the two Number 
Stroop tests, the average variation of the feature distri-
butions was significantly lower than comparing feature 
distributions from different types of Stroop tests (i.e. 
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Color-Word vs Number, Number vs Emotion and Color-
Word vs Emotion). Therefore, for the Color-Word and 
Number Stroop tests, the impact of the specific test at the 
individual level was minimal, and thus, we merged the 
corresponding data under a single unique test label. Uti-
lizing these new groupings, we gained a second insight 
regarding the efficiency of the Stroop tests in triggering 
ANS responses sufficient to distinguish between the two 
groups. Our results suggest that the Number Stroop tests 
yield far more features showing a statistically significant 
( P ≤ .1 ) difference between the CG and EG, than Color-
Word or Emotion Stroop tests. In more detail, for the 
Number Stroop, approximately 52% of the total features 
exhibit a significant difference, while for the Color-Word 
and the Emotion Stroop, approximately only 10.4% and 
3.6% of the total features, respectively, show significant 
differences. What is more, the percentage of statistically 
significant features is similar across the different data 
modalities, indicating their potential value in distinguish-
ing between the CG and the EG. Specifically, statisti-
cally significant differences were primarily observed in 
the statistical time domain and morphological features 
of the EDA (e.g. mean, standard deviation, first differ-
ence, number of EDA responses, EDA responses char-
acteristics, etc.), time and frequency domain features of 
the HRV (e.g. SDNN, RMSSD, pNN50, power in low and 
high frequency bands, etc.) and the time domain features 
of the ST (e.g. standard deviation, first and second differ-
ence, etc.).

The sensitivity of the Number Stroop test to group 
differences in ANS response compared to other Stroop 
tasks is an intriguing finding that warrants further dis-
cussion. This phenomenon can potentially be attributed 
to the inherent complexity of the numerical Stroop task, 
which involves comparing two stimuli, the numerical 
value, and the physical size, exhibiting higher cognitive 
load and complexity than the color-word Stroop task 
[100]. Therefore, higher ANS activation is expected dur-
ing numerical tasks since they require substantial work-
ing memory and executive function resources [101]. 
Additionally, previous research suggests that the pro-
cessing of numerical and physical magnitudes relies on 
a semantic abstract and non-verbal magnitude repre-
sentation, which may facilitate or interfere with cogni-
tive processes without the confounding effects of reading 
skill and articulatory speed commonly associated with 
ADHD [102]. Consequently, numerical Stroop tasks 
may be more effective in triggering cognitive challenges 
associated with ADHD conditions. Finally, the nature 
of the stimuli in the numerical Stroop task, where both 
relevant and irrelevant tasks involve the comparison of 
magnitudes, may lead to similar brain activations and 
require constant active control mechanisms to inhibit the 

irrelevant task [103–105]. As a result, it may be more dif-
ficult to modulate the task conflict, leading to increased 
ANS activation.

A later step of our analysis identified data points car-
rying significant information for their respective classes. 
This data mining procedure [106] has become essen-
tial when dealing with real-world data [106] and aims 
to filter out the least informative data points, thereby 
improving input quality for prediction models [106]. In 
this study, we specifically considered outlier data points 
from the neurotypical population. Given that partici-
pants in the CG were not previously assessed for poten-
tial ADHD symptomatology, ADHD-like characteristics 
in their physiological data might have emerged during 
the Stroop tests, despite their labeling as CG. In con-
trast, participants in the EG underwent assessment by 
a clinical expert, during which their inclusion in the EG 
group was verified, and, thus, their physiological expres-
sions were representative of an ADHD condition. Among 
various methods for data filtering [106], we employed an 
extension of the k-Nearest Neighbors algorithm (i-KNN), 
which incorporates a distance metric that considers the 
class labels of the neighboring points [97, 98]. The impact 
of this filtering method was assessed by comparing the 
performance of prediction algorithms separately for the 
full and the reduced dataset. Based on the nature of the 
i-KNN algorithm, we anticipated a larger impact on pre-
diction algorithms exploiting the geometrical properties 
of data [106]. To demonstrate the effect on the prediction 
capabilities of the different models, we utilized balanced 
accuracy, defined as the mean value of sensitivity and 
specificity. Our results indicate a consistently positive 
mean relative change in balanced accuracy across all sig-
nals separately and their fusion when using the reduced 
dataset. Notably, the relative change is more pronounced 
for the RF (15.21%), KNN (14.23%), and SVM (17.72%) 
models, which leverage the high-dimensional structure 
of the data. In contrast, the LR models, which rely on sta-
tistical properties, exhibit a smaller mean relative change 
(9.57%). Therefore, the rest of this section focuses on the 
reduced dataset.

The primary focus of this work was to explore the 
performance of models leveraging each physiological 
signal separately (i.e., unimodal), as well as the fusion 
of them (i.e. multimodal). In the following, we discuss 
the findings regarding the performance of these mod-
els and compare their effectiveness. Starting from the 
unimodal models, significant variations in performance 
were observed across different physiological signals and 
performance metrics. Figure 6 illustrates the accuracy, 
sensitivity, and specificity of each physiological signal 
and their fusion for each tested algorithm, focusing on 
the reduced dataset. Notably, EDA and ST exhibit equal 
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or better sensitivity compared to HRV, while HRV 
shows higher specificity. The most interesting observa-
tion occurs when the fusion of signals is utilized. In this 
case, more complex models can be built by exploiting 
information from all signals simultaneously. Therefore, 
multimodal models demonstrate more balanced per-
formance, also achieving higher sensitivity and speci-
ficity across all algorithms except for KNN (for the 
HRV dataset), compared to the unimodal ones, which 
exhibited either high sensitivity or high specificity. This 
suggests that combining information from multiple 
signals simultaneously improves model performance, 

highlighting the importance of considering multimodal 
approaches in such studies. Independent of the classifi-
cation algorithm, we can argue that multimodal infor-
mation from EDA, HRV and ST yields at least equal 
or better performance than unimodal for both neuro-
typical and ADHD adults. This could be attributed to 
the fact that the selected data modalities convey infor-
mation about various aspects of the ANS [5, 13, 61, 
63–66] and better capture the multifaceted effect of 
ADHD in autonomic functioning [107]. Further inves-
tigation into the underlying mechanisms driving these 
observations could provide valuable insights into the 

Fig. 6 Test accuracy, sensitivity and specificity of the LR (top left), RF (top right), KNN (bottom left) and SVM (bottom right) models for EDA (orange 
line), HRV (light blue line), ST (light green line) and Fusion (black line), when the reduced dataset is utilized
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pathophysiology of ADHD and inform the development 
of more effective diagnostic and therapeutic strategies.

Focusing on the multimodal models, a comparison 
across different algorithms was conducted to evaluate 
their performance. In Fig.  7, we present the accuracy, 
sensitivity, and specificity obtained for the LR, RF, KNN, 
and SVM algorithms for the multimodal case. Our analy-
sis reveals that the SVM algorithm consistently outper-
forms the others, particularly in terms of accuracy and 
specificity. Although it is only slightly worse than LR in 
terms of sensitivity, SVM achieves the most balanced 
result overall. The superior performance of SVM in this 
context can be attributed to its ability to effectively utilize 
multimodal data and learn from its complex structure. 
By optimizing the utilization of multimodal information, 
SVM demonstrates proficiency in identifying both neu-
rotypical and ADHD adults.

Overall, the findings of this study validate our hypoth-
esis regarding ANS responses and their association with 
an underlying ADHD condition. Specifically, we demon-
strated that ANS responses triggered by neuropsycholog-
ical evaluations and captured by the EDA, HRV and ST 
physiological signals can effectively distinguish between 
ADHD and neurotypical adults. The most promis-
ing results were observed when following a multimodal 

data approach combining all signals captured during the 
execution of the Number Stroop tests. The SVM classi-
fication model exhibited the most balanced performance 
with regards to sensitivity and specificity (81.4% and 
81.9%, respectively) highlighting the potential to recog-
nize both ADHD and neurotypical adults. Future studies 
could further explore the potential of integrating addi-
tional sensor-collected data modalities (e.g. ambient con-
ditions, accelerometer data, etc.), along with participants’ 
performance metrics from the Stroop tests (e.g. correct 
and wrong responses, response times, etc.) in the ADHD 
detection process. Academic research has recognized the 
potential contribution of these data sources to improve 
the efficiency of early ADHD diagnosis, but very limited 
clinical evidence is available [58].

Our findings contribute to addressing the lack of bio-
markers for the detection of complex conditions like 
ADHD [24, 108]. Even though the current diagnostic 
process for adult ADHD has been widely used for dec-
ades, several limitations including accessibility, sub-
jectiveness of the diagnosis, comorbidities, time and 
financial requirements, may hinder its efficiency and 
effectiveness. By leveraging passively collected multi-
modal physiological data, our study provides valuable 
insights into the pathophysiology of ADHD and presents 

Fig. 7 Test accuracy, sensitivity and specificity for the LR (red line), RF (green line), KNN (blue line) and SVM (orange line) models, when using all 
data modalities
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a scalable solution for ADHD screening. The unobtru-
sive data collection method combined with the low cost 
of associated equipment render our platform a promis-
ing tool for assisting specialists during ADHD screening, 
supplementing traditional and resource-intensive meth-
ods. Furthermore, the use of physiological data obtained 
from wrist-worn devices opens avenues for continuous 
evaluation, enabling clinicians to monitor symptoms 
progression in near-real-time and obtain a more accu-
rate clinical image of patients. This continuous monitor-
ing could also lead to timely interventions and improved 
patient outcomes.

Limitations
While this study provides valuable insights into ADHD 
detection using multimodal physiological data, a few 
study limitations should be acknowledged. The relatively 
small sample size restricts the complexity of the ML 
models built and the robustness of results obtained, high-
lighting the need for larger samples to enable more com-
prehensive analyses. This work relies on in-sample model 
validation methods (i.e. cross-validation), which may lead 
to over-optimistic performance estimates. Larger sample 
sizes will enable the utilization of out-of-sample valida-
tion methods, fortifying the generalizability and robust-
ness of the study outcomes. Additionally, the study did 
not control for co-occurring disorders and medication 
usage among participants, potentially confounding the 
observed ANS responses and ADHD detection accuracy. 
Future research should address these confounding factors 
to improve the validity of findings. Moreover, the study 
focused on detecting ADHD as a general condition and 
did not differentiate between ADHD subtypes, warrant-
ing exploration of subtype-specific detection methods. 
Furthermore, incorporating a wider range of continu-
ous performance tests beyond Stroop tests targeting 
other ADHD-related characteristics could enhance per-
formance, while also improving the generalizability of 
findings. Finally, confirming the profiles of the control 
group participants through clinical evaluations, in order 
to ensure that only neurotypical individuals are included, 
would further enhance our understanding of the poten-
tial of ADHD detection using physiological data.

Conclusion
In conclusion, this study has shed light on the potential of 
utilizing physiological data, including EDA, HRV, and ST 
for the detection of adult ADHD. By investigating ANS 
responses elicited during Stroop tests, we have dem-
onstrated significant differences between neurotypical 
adults and those with ADHD, supporting the feasibility 
of using physiological signals as biomarkers for ADHD 
detection. Our analysis revealed that multimodal models, 

combining information from all physiological signals, 
outperformed unimodal ones, highlighting the impor-
tance of considering multimodal approaches in ADHD 
research. The SVM classification model emerged as the 
most effective in distinguishing between ADHD and 
neurotypical adults, achieving a balanced performance 
in terms of sensitivity and specificity (81.4% and 81.9%, 
respectively).

However, the relatively small sample size and the use 
of in-sample model validation methods pose challenges 
to the generalizability of our findings. Future research 
should aim to address these limitations by incorporat-
ing larger and more diverse samples, as well as employ-
ing out-of-sample validation methods to enhance the 
robustness of the results. Despite these limitations, our 
findings contribute to the growing body of literature on 
ADHD detection and underscore the potential of physi-
ological data as valuable tools in clinical practice. Moving 
forward, further investigation into the underlying mecha-
nisms driving ANS responses in ADHD and the integra-
tion of additional data modalities could provide deeper 
insights into the pathophysiology of the disorder and 
inform the development of more effective diagnostic and 
therapeutic strategies.
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