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Abstract 

Background Effective preventive interventions for PTSD rely on early identification of individuals at risk for devel-
oping PTSD. To establish early post-trauma who are at risk, there is a need for accurate prognostic risk screening 
instruments for PTSD that can be widely implemented in recently trauma-exposed adults. Achieving such accuracy 
and generalizability requires external validation of machine learning classification models. The current 2-ASAP cohort 
study will perform external validation on both full and minimal feature sets of supervised machine learning classifica-
tion models assessing individual risk to follow an adverse PTSD symptom trajectory over the course of 1 year. We will 
derive these models from the TraumaTIPS cohort, separately for men and women.

Method The 2-ASAP longitudinal cohort will include N = 863 adults (N = 436 females, N = 427 males) who were 
recently exposed to acute civilian trauma. We will include civilian victims of accidents, crime and calamities at Victim 
Support Netherlands; and who were presented for medical evaluation of (suspected) traumatic injuries by emergency 
transportation to the emergency department. The baseline assessment within 2 months post-trauma will include 
self-report questionnaires on demographic, medical and traumatic event characteristics; potential risk and protec-
tive factors for PTSD; PTSD symptom severity and other adverse outcomes; and current best-practice PTSD screening 
instruments. Participants will be followed at 3, 6, 9, and 12 months post-trauma, assessing PTSD symptom severity 
and other adverse outcomes via self-report questionnaires.

Discussion The ultimate goal of our study is to improve accurate screening and prevention for PTSD in recently 
trauma-exposed civilians. To enable future large-scale implementation, we will use self-report data to inform 
the prognostic models; and we will derive a minimal feature set of the classification models. This can be transformed 
into a short online screening instrument that is user-friendly for recently trauma-exposed adults to fill in. The eventual 
short online screening instrument will classify early post-trauma which adults are at risk for developing PTSD. Those 
at risk can be targeted and may subsequently benefit from preventive interventions, aiming to reduce PTSD and relat-
edly improve psychological, functional and economic outcomes.
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Background
Exposure to potentially traumatic events (PTE) is com-
mon, with the overlarge majority of the global popula-
tion being exposed to at least one PTE throughout their 
lives [1]. Similarly in the Dutch general civilian popula-
tion, lifetime exposure is estimated at 80% [2]. Approxi-
mately 8% of Dutch civilians develop posttraumatic stress 
disorder (PTSD) at some point throughout their lives as 
a result of trauma exposure [2]. PTSD is a psychiatric 
disorder characterized by involuntary trauma re-experi-
encing, avoidance of trauma-related reminders; negative 
alterations in mood and cognitions; hyperreactivity; and 
hyperarousal [3]. PTSD is associated with a high risk for 
comorbid psychological symptoms and psychiatric dis-
orders, including mood-, anxiety-, substance abuse- and 
sleep/wake disorders [4]. Furthermore, the presence of 
PTSD is associated with impaired well-being, daily func-
tioning, and (health-related) quality of life,  increased 
morbidity and mortality; and relatedly high societal costs 
due to for example health care use and productivity loss 
at work [5–12]. Although several evidence-based treat-
ments are available, 40% of those who are affected are 
never treated; average time to treatment start is 4.5 years 
post-trauma; and approximately one third of treated 
patients does not respond adequately to treatment [13, 
14]. Thus, once PTSD has developed it has a high like-
lihood for chronicity and negative consequences for 
affected individuals and larger society. As PTSD by defi-
nition has its onset after traumatic events, the first period 
post-trauma provides a unique opportunity for preven-
tive interventions to reduce PTSD and related adverse 
psychological, functional and economic outcomes. Over 
the past decade there has been increasing evidence that 
such preventive interventions should not be administered 
in a universal manner to all trauma-exposed individu-
als. Instead, selective or targeted preventive interven-
tion strategies are more promising (e.g., [15–17]). Herein 
one strategy could be to offer preventive interventions to 
those for whom can be established early following trauma 
that they are at high risk for developing PTSD. However, 
existing validated prognostic risk screening instruments 
for PTSD classify a high proportion of individuals who 
do not develop PTSD as at risk (e.g., low specificity rang-
ing between 59–72% with sensitivity at 80% for available 
instrument for Dutch general civilian population; [18]). 
Thus, there is a need for more accurate prognostic risk 
screening instruments that can be used to determine an 
individuals’ risk for PTSD early post-trauma.

Previous research reported a broad range of risk and 
protective factors for PTSD, including demographic; 
socio-economic; psychiatric; psychosocial; biological; 
trauma history; and environmental domains [19–22]. 
Recent studies with a computational approach strongly 

indicate that these risk and protective factors for PTSD 
interact in dynamic non-linear ways and seem to dif-
fer between PTSD symptom trajectories (e.g., [23, 24]). 
Increasing empirical evidence supports the existence 
four common distinct courses or trajectories of PTSD 
symptoms following trauma exposure [25]. Of these, 
resilient and recovery trajectories are considered adap-
tive as they are associated with minimal long-term 
symptoms. Chronic and delayed onset trajectories 
reflect adverse outcome as they are associated with 
long-term high symptoms and the presence of diagnos-
tic PTSD. Thus, there is considerable heterogeneity in 
PTSD symptom courses following trauma, even when 
comparing those with similar long-term outcome.

A growing number of studies support the potential 
of machine learning in prognostic risk classification. 
These studies achieved good accuracy in classifying 
recently traumatized individuals into their subsequent 
PTSD diagnostic status and/or symptom trajectory 
(e.g., [23, 24, 26–30]). However, most of these exist-
ing prognostic risk classification models cannot be 
applied beyond acute medical care settings, as they 
mainly include acute biomedical and hospital patient 
record information. To promote large-scale applicabil-
ity within a broader population, it would be preferable 
to develop prognostic screening instruments based on 
self-report data. This approach would enable recently 
trauma-exposed individuals to fill out the instrument 
without requiring involvement of a health care pro-
fessional. Moreover, this could promote user empow-
erment, engagement and sense of self-control and 
thereby increase its uptake and acceptability [31]. How-
ever, the currently available studies using self-report 
data only prognostically classify PTSD outcomes in the 
first 3 months post-trauma, for example 1 month post-
trauma in adults after emergency department (ED) 
admission and 3  months post-trauma in family mem-
bers of intensive care unit (ICU [32, 33]). Thus, there is 
a lack of studies using self-report data to predict PTSD 
over a longer time period post-trauma. Moreover, 
prior to large-scale implementation of derived prog-
nostic screening instruments, external validation in an 
independent sample to investigate generalizability of 
model performance is required [34]. To date there are 
few studies performing external validation of machine 
learning models: for example in ED patients assessing 
PTSD course at 6  months (Area Under the Receiver 
Operator Characteristic [ROC] curve [AUC] of external 
validation set ranging between 0.46 [low] and 76 [fair]; 
[35]), and at 12 months (AUC of external validation set 
ranging between 0.78 [fair] to 0.86 [good]; [24]). To 
date, no studies have performed external validation of 
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prognostic risk screening instruments within a broader 
civilian population.

There is a growing focus on examining sex (i.e., biol-
ogy) and gender (i.e., social identity) in traumatic stress 
studies, with twice as many studies incorporating sex or 
gender in the last five years compared to earlier periods 
[36, 37]. This is considered especially relevant as women 
are commonly found to have a higher conditional risk 
of PTSD development than men following compara-
ble trauma exposure [20, 38–40]. Moreover, we recently 
found differences between men and women in trajecto-
ries assignment and within-trajectory differences [41]. 
We observed that women were more often assigned 
to the recovery trajectory while men were more often 
assigned to the delayed trajectory, and women had higher 
symptom severity in the resilient trajectory than men 
[41]. This emphasizes the need for adequate methodo-
logical approaches such as stratification or disaggregation 
when establishing classification models (see also SAGER 
guidelines in [42]) to prevent considerable bias and incor-
rect trajectory assignment in the underrepresented group 
(in this case women). Yet, although gender and/or sex 
have been included as prognostic features, only few stud-
ies investigated differential prognostic value of risk and 
protective factors for later PTSD outcomes between men 
and women (e.g., [36, 43–45]). Furthermore, no stud-
ies have investigated whether deriving prognostic risk 
screening instruments separately for women and men is 
relevant for improving early PTSD risk detection.

In summary, there is a need for accurate prognos-
tic risk screening instruments for PTSD, validated both 
internally and externally, that can be widely implemented 
in recently trauma-exposed civilians. We will derive 
full machine learning classification models for men and 
women separately. We will also derive classification mod-
els using a minimal feature set to eventually develop a 
prognostic risk screening instrument for men and women 
separately. These models will be derived using the exist-
ing TraumaTIPS prospective cohort of N = 852 adults 
(65% men) with (suspected) acute serious injury [18]. 
This involves training and internally validating supervised 
machine learning classification models for women’s and 
men’s risk to follow an adverse PTSD symptom trajec-
tory. This will be measured over the course of 1 year fol-
lowing acute civilian trauma. These models will be based 
on self-report information on known PTSD risk and pro-
tective factors collected early post-trauma. Subsequently, 
we will externally validate the classifications models in a 
broader population using the newly established 2-ASAP 
(Towards Accurate Screening and Prevention for PTSD) 
cohort consisting of recently trauma-exposed adults, of 
which the study protocol is described below.

Goals of the current study
Primary study objectives
The primary objective is to perform external validation 
of both full and minimal feature set supervised machine 
learning-based classification models assessing individ-
ual risk to follow an adverse PTSD symptom trajectory 
over the course of 1 year following acute civilian trauma. 
The classification models will be derived from the Trau-
maTIPS cohort in men and women separately.

Secondary study objectives
First, to investigate the predictive value of new potential 
risk and protective factors based on self-report informa-
tion for PTSD risk in men and women separately. Sec-
ond, to derive an updated prognostic classification model 
assessing individual risk to follow an adverse PTSD symp-
tom trajectory by adding information on potential risk 
and protective factors to the supervised machine learn-
ing classification models in men and women separately. 
Third, we will assess differences in common co-morbid 
psychological symptoms to PTSD and functional and 
economic outcomes between recently trauma-exposed 
individuals classified as low versus high risk based on the 
derived and validated prognostic screening instrument. 
Last, we will compare the accuracy of the prognostic 
screening instrument with current best-practice screen-
ing instruments for PTSD.

Methods
Participants and study design
The 2-ASAP cohort will include N = 863 adults (strati-
fied by sex irrespective of self-identified gender for 
consistency with the existing TraumaTIPS cohort data 
[50% women, 50% men], taking previously established 
PTSD trajectory prevalence and dropout rates in the 
TraumaTIPS cohort into account [18],  N = 436 females, 
N = 427 males) who were recently exposed to a (traffic) 
accident with injuries or violence (i.e., assault, threat, 
robbery or theft by force). We will include civilian vic-
tims of accidents, crime and calamities who have been 
reached out by Victim Support Netherlands (Slachtoffer-
hulp Nederland), the largest institute in the Netherlands 
to provide emotional and practical support upon (mostly 
police) referral; or who were presented for medical evalu-
ation of (suspected) traumatic injuries by emergency 
transportation to the ED of an Urban Level-1 Trauma 
Center in Amsterdam (Amsterdam University Medical 
Center [UMC]). Inclusion criteria of the 2-ASAP cohort 
are: age 18 years or older; experience of a traumatic event 
according to Diagnostic and Statistical Manual of Men-
tal Disorders 5th edition (DSM-5) PTSD A criterion (i.e., 
exposure to actual or threatened death, serious injury or 
sexual violence [3]) maximally 2 months post-trauma at 
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baseline; the traumatic events need to be directly expe-
rienced by the participant themselves, have an acute 
onset and external cause of a civilian nature; and have 
the potential to lead to serious physical injury (i.e., not 
a preceding medical condition). Exclusion criteria are: 
evidence of homocidality; suicidality, injuries due to 
intentional self-inflicted injury; evidence of ongoing or 
repeated trauma exposure, such as ongoing domestic vio-
lence; evidence of an inability to understand study proce-
dures, risks or being otherwise unable to give informed 
consent; evidence of being unable to follow protocol (due 
to any reason, including visual or cognitive or physical 
impairment precluding completion of protocol); impair-
ment in ability to use or no regular access to e-mail and 
mobile phone required for completion of online informed 
consent and internet-connected smartphone, tablet or 
computer for completion of online assessments; insuffi-
cient understanding of Dutch language to follow proto-
col. The 2-ASAP cohort was approved by the institutional 
review board of Amsterdam UMC (2022.0030).

Procedures
Participants will be recruited in collaboration with Vic-
tim Support Netherlands and ED of Amsterdam UMC. 
Potential participants will be identified via electronic cli-
ent or patients records within 18–24  days post-trauma 
and invited for study participation by the recruitment 
sites. Potential participants who have contacted us for 
study participation will receive a participant’s informa-
tion letter, and will be called for an eligibility screening 
(T0). Upon meeting all inclusion criteria and none of 
the exclusion criteria, we will obtain informed consent 
online or through postal services. After inclusion, a base-
line (T1) and 4 follow-up assessments (T2-T5) will be 
performed via online self-report questionnaires at 3, 6, 
9 and 12  months post-trauma (see Fig.  1). The baseline 
assessment needs to be completed within 2 months after 
their traumatic event and includes self-report question-
naires on demographic, medical and traumatic event 
characteristics; potential risk and protective factors for 
PTSD; PTSD symptom severity and other adverse out-
comes; and current best-practice PTSD screening instru-
ments (see Table  2; measures section). The follow-up 

assessments include PTSD symptom severity and other 
adverse outcomes (see Table 2; measures section).

Measures
PTSD symptom severity
PTSD symptom severity over the past month will be 
measured at all assessments using the Dutch validated 
version of the PTSD checklist for DSM-5 (PCL-5; [46, 
47]. This self-report questionnaire consists of 20 items 
corresponding to the DSM-5 diagnostic symptoms of 
PTSD, measuring how much participants have been 
bothered by each symptom, ranging from not at all (0) 
to extremely (4) on a 5-point Likert scale. Domain scores 
will be calculated based on summing the corresponding 
DSM-5 symptom clusters: intrusions (5 items), avoidance 
(2 items), negative alterations in cognitions and mood (7 
items), and hyperarousal (6 items). The total score will be 
calculated by summing all items, resulting in a total score 
ranging from 0 to 80, with higher scores indicated higher 
PTSD symptom severity.

Risk and protective factors
Both known and potential new risk and protective factors 
for following an adverse trajectory of PTSD symptoms 
will be measured at baseline. The following known risk 
and protective factors will be included for the primary 
objective: demographic and health characteristics; medi-
cal and psychiatric history; current trauma characteris-
tics; peri-traumatic distress; psychological and physical 
symptoms; alcohol use; social support; post-traumatic 
cognitions; prior trauma [21, 23, 48, 49].

For the secondary objective we will assess potential 
new risk and protective factors for following an adverse 
trajectory of PTSD symptoms. These factors are known 
to be associated with PTSD, but are not yet investigated 
prospectively in relation to PTSD symptom course or 
without adequate sized samples. These include pre-
trauma and immediate post-trauma chronotype; sleep 
characteristics; perceived psychological resilience to 
cope with adversity; and female hormonal status; acute 
pre-trauma and acute post-trauma general health and 
related impairments; and acute pre-trauma psychological 

Fig. 1 Study design of the 2-ASAP cohort study
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symptoms [50–54]. See Table  1 for an overview of all 
measures.

Secondary outcomes
Secondary outcomes include co-morbid psychological, 
functional and economic outcomes; and the current best-
practice PTSD screening instruments. See Table 1 for an 
overview of all measures and assessment timing.

Covariates
Throughout the assessments, we will assess various fac-
tors with known potential confounding effects on PTSD 
symptom severity and other adverse psychological out-
comes, including new traumatic events; received psycho-
logical treatment and medication use; pre-existing and 
new medical conditions; pain and health impairments; 
and Body Mass Index (BMI), nicotine use and caffeine 

Table 1 Measurements Conducted at Baseline Assessment (T1) and Follow-up Assessments (T2, T3, T4, T5)

PCL-5 PTSD Checklist for DSM-5 [47], IES-R Impact of Event Scale-Revised [55], PC-PTSD5 Primary Care PTSD Screen for DSM-5 [56], GPS Global Psychotrauma Screen 
[57], MIRROR Mobile insight in risk, Resilience, and Online Referral [58], LEC5 Life Events Checklist for DSM-5 [59], CBS checklist Centraal Bureau voor de Statistiek 
[60], PDEQ Peritraumatic Dissociative Experiences Questionnaire [61], PDI  Peritraumatic Distress Inventory [62], SSL-D short version Sociale Steun Lijst-Discrepanties 
[63], VVV Verkorte Vermoeidheidsvragenlijst [64, 65], PTCI short version Short version of Posttraumatic Cognitions Inventory [66], DASS-21 Depression, Anxiety, and 
Stress Scale [67], HADS Hospital Anxiety and Depression Scale [68], AUDIT Alcohol Use Disorders Identification Test [69], WHOQOL-BREF World Health Organization 
Quality of Life-BREF [70], EQ-5D-5L EuroQol (Quality of Life) 5-Dimension 5-Level [71], WHO5 World Health Organization Well-Being Index [72], iMCQ  iMTA (Institute 
for Medical Technology Assessment) Medical Cost Questionnaire [73], iPCQ iMTA Productivity Costs Questionnaire [74], RES Resilience Evaluation Scale [75], Nocturnal 
mentation = Assessment of Nocturnal Dream Mentation [76], PSQI short version = Pittsburgh Sleep Quality Index short version [77], ISI = Insomnia Severity Index [78], 
MCTQ = Munich Chronotype Questionnaire [79]

Measures Instrument T1 T2 T3 T4 T5

PTSD symptom severity PCL-5 X X X X X

PTSD symptom severity IES-R X

Best-practice PTSD screener PC-PTSD5 X

Best-practice PTSD screener GPS X

Best-practice PTSD screener MIRROR X

Traumatic events LEC5 X X X X X

Demographic characteristics X

Health characteristics X X X X X

Medical conditions CBS checklist X X X

Psychiatric history X

Psychological treatment X X X X X

Current Trauma characteristics X

Peri-traumatic distress PDEQ X

Peri-traumatic Distress PDI X

Social Support SSL-D short version X

Physical symptoms VVV X

Post-traumatic cognitions PTCI short version X

Female hormonal status X

Depression, anxiety and stress symptom severity DASS-21 X X X X X

Depression and anxiety symptom severity HADS X

Alcohol use disorder AUDIT X X

Subjective stress X X X X X

Quality of Life WHOQOL-BREF X X X X X

Daily functioning and health-related quality of life EQ-5D-5L X X X X X

Wellbeing WHO5 X X X X

Medical consumption costs iMCQ X X

Productivity costs iPCQ X X

Resilience RES X

Nocturnal thoughts and dreams Nocturnal mentation

Sleep quality PSQI short version X X X X X

Insomnia severity ISI X X X X X

Chronotype/circadian rhythm MCTQ X X
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intake. See Table  1 for an overview of all measures and 
assessment timing.

Sex and gender
We will measure both sex and gender at baseline. Sex will 
be based on their reported assignment at birth, catego-
rizing individuals into male, female or other. We will ask 
participants their gender, i.e., whether they self-identify 
as men, women or otherwise.

Statistical analyses
PTSD Symptom Trajectories
First, PTSD symptom trajectories will be determined 
using an unsupervised machine learning technique, spe-
cifically latent growth mixture modeling (LGMM) on the 
repeatedly assessed PCL-5 total scores across the 1 year 
follow-up period. Hereby we empirically derive the opti-
mal latent (unobserved) trajectories based on similarities 
in initial symptom severity and change over time across 
participant subgroups. In order to increase model accu-
racy in the context of the expected imbalance in the prev-
alence of the expected trajectories (i.e., with the adverse 
outcome trajectories being relatively small compared to 
the adaptive trajectories), we will apply informative pri-
ors for the model parameters to be estimated (i.e., the 
expected number and proportions of latent trajectories, 
and the expected symptom severity immediately after 
trauma [intercept] and change over time [slope] for a 
given trajectory; [80]). This approach has already been 
established and applied to the existing TraumaTIPS 
cohort [41], resulting in an optimal model containing 4 
latent PTSD symptom trajectories. The prior param-
eters of the current analyses are derived from similarly 
observed parameters (i.e., CAPS-IV) of the 4 trajectories 
in the TraumaTIPS cohort [41]. Subsequently, we will 
determine participants’ probability of belonging to each 
observed PTSD symptom trajectories and assign partic-
ipants to one of these trajectories based on the highest 
probability. Missing data will be estimated using maxi-
mum likelihood estimation (MLE).

Accuracy of classification models
In order to externally validate the derived classification 
models from the TraumaTIPS cohort, we will perform 
the same supervised machine learning classification tech-
niques as within development and internal validation of 
the model. To select the optimal machine learning tech-
nique for model building, we compared the accuracy of 
several classification techniques in a meta-modelled sim-
ulation study using data from population characteristics 
of the TraumaTIPS cohort. Overall, ensemble techniques 

performed better than multinominal techniques regard-
ing the sample size. For model building we start with 
eXtreme Gradient Boosting (XGBoost), in case of insuf-
ficient accuracy we will continue with a Naïve Bayes clas-
sifier, followed by Support Vector Machine classifiers 
[81–83]. To guard against hyperparameter overfitting we 
will use repeated cross-validation. In addition, we will 
use random oversampling of the PTSD symptom trajec-
tory with the  smallest sample size to ensure a balanced 
set for model training. As the number of available cases 
for the delayed trajectory in the existing TraumaTIPS 
data is too small to perform reliable machine learning 
analyses, we will oversample the chronic trajectory. This 
way the model will not only focus on correctly classify-
ing participants of adaptive PTSD symptom trajectories, 
but those with an adverse trajectory as well [84]. These 
analyses will be performed in men and women separately, 
to prevent similar bias for the underrepresented sex as 
observed for the unsupervised machine learning analy-
ses. Moreover, to eventually derive a novel prognostic 
screening instrument, we will extract the minimal feature 
(item) set necessary for good accuracy from the train-
ing set. The primary metric for assessing optimal model 
selection based on training performance will be the AUC. 
The AUC reflects the accuracy in correctly classifying 
participants into their assigned PTSD symptom trajecto-
ries. Individuals are considered at risk if the model classi-
fies them into an adverse trajectory versus adaptive (i.e., 
resilient or recovering) trajectory. Identical pre-process-
ing steps will be repeated in the test set, which is subse-
quently used for internal validation to test whether the 
prognostic accuracy for the selected best model holds. 
We will assess the following accuracy parameters: AUC 
(primary parameter); cumulative gain AUC (penalizing 
incorrect classification of smallest class); f1 score; preci-
sion and recall [82, 85].

We will perform external validation in the 2-ASAP cohort 
in men and women separately by testing the accuracy of the 
full derived models in a first external test set and the mini-
mal feature sets in a second external test set. The classifi-
cation models are generalizable, reliable and robust when 
we achieve good accuracy, that is, AUC of preferably ≥ 0.8 
(good) and acceptable if ≥ 0.7 (fair; [86, 87]). Moreover, we 
will descriptively compare the derived models in men and 
women by applying explainable machine learning to inves-
tigate the relative contributions of the most important fea-
tures and to interpret the decision rules incorporated in the 
classification models. We will use SHAP (SHapley Addi-
tive exPlanation) values for decision tree-based non-linear 
models [88]. State-of-the-art guidelines will be followed 
in reporting results of prognostic models [89].
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New potential risk and protective factors
We will first examine the predictive value of the new 
potential PTSD risk and protective factors per above 
mentioned domains, separately for men and women, and 
adjusting for relevant covariates. The predictive value 
will be examined using multinominal logistic regression 
modelling following a recommended 3 step approach to 
add predictors to latent class models such as the applied 
LGMM [90]. To account for the number of regression 
analyses performed with interrelated data, we will cor-
rect the false discovery rate for multiple comparisons. 
Subsequently we will update the full feature classifica-
tion models in men and women separately by adding new 
potential risk and protective factors. The same machine 
learning classification techniques as in the TraumaTIPS 
cohort will be used for training and internal validation of 
the updated model.

Secondary outcomes
We will compare differences in co-morbid psychologi-
cal, functional and economic outcomes between the 
obtained risk classifications of PTSD trajectory mem-
berships, using either ANCOVA’s or linear mixed model 
(LMM) depending on the number of assessments for the 
specific outcome. Separate analyses will be performed 
for men and women, and for each investigated outcome. 
To examine at which time point potential differences 
of adverse outcomes between PTSD trajectories occur, 
we will perform false discovery rate-corrected post-hoc 
pairwise comparisons of estimated means by the LMM. 
Furthermore, we will examine the accuracy for correctly 
classifying participants in their assigned PTSD symptom 
trajectory based on total scores of the 3 current best-
practice PTSD screening instruments (i.e., GPS, PC-
PTSD-5, MIRROR). The same accuracy parameters as 
within our previous analyses will be used. Subsequently, 
we will statistically test differences in the AUC of each 
existing screening instrument with the derived PTSD 
risk classification models, using a z-test approximation 
accounting for paired data, with alpha = 0.05 (2 sided).

Power calculation
We calculated the required sample size for sufficiently 
powered accuracy for developing and updating the 
prognostic screening instruments. The required num-
ber of participants in the test sets are calculated for suf-
ficiently powered discriminatory accuracy (primary 
parameter = AUC). Power calculations were performed 
in EasyROC (version 1.3.1; [91]) for men and women 
separately, using the approach of Obuchowski for sin-
gle test regarding AUC of 2 machine learning classifiers 
[92], using a type-1 error of 0.05, and the allocation ratio 
based on previously determined prevalence of PTSD 

symptom trajectories for men in the TraumaTIPS cohort 
(see Table  2, [41]). For the purpose of external valida-
tion of the derived machine learning classification mod-
els we will require 2 independent test sets: a full feature 
and minimal feature test set. We used an AUC of 0.7 
(fair) as the minimally acceptable accuracy of our clas-
sification models instead of 0.8 (good), considering that 
external validation samples contain less homogenous 
population characteristics than training and internal vali-
dation samples and will thus likely result in lower accu-
racy. We require n = 13 cases; n = 150 non-cases for men; 
total n = 163 per test set, resulting in a total sample size 
of N = 338 (163*2 + n = 12 for 3.5% expected to delayed 
trajectory) for men. We require n = 13 cases; n = 159 non-
cases for women; total n = 172) per test set, resulting in a 
total sample size of N = 344 (172*2) for women.

Furthermore, we calculated the required sample size for 
sufficiently powered accuracy for updating the prognos-
tic screening instruments. For this purpose, we used an 
AUC of 0.8; and require an 80:20 split of the participants 
into a training and a test set. The test sets require a sam-
ple size of n = 75 (n = 6 cases; n = 69 non-cases) for men, 
and n = 82 (n = 6 cases; n = 74 non-cases) for women. In 
order to meet the proposed rule of thumb of at least 25 
cases available in the training set, this requires to include 
a minimum of 31 cases in both samples [24]. Expecting 
minimally the same allocation ratio of the chronic trajec-
tory relative to the resilient and recovery trajectory as in 
the TraumaTIPS cohort, this translates into a total sam-
ple size of n = (74.964*5) * 1.035 (to account for delayed 
trajectory) = 388 men, and n = (79.17*5) = 396 women. 
This sample size was increased by 10% to account for 
anticipated drop-out resulting in a required sample of 
n = 427 (388*1.10) men and n = 436 (396*1.10) women. 
This leads to a total sample size of N = 863 participants.

Discussion
We presented the protocol for the 2-ASAP longitudinal 
prospective cohort study of recently trauma-exposed 
adults in the Netherlands. The primary goal of this study 
is to externally validate machine learning classification 
models (i.e., full and minimal feature sets) predicting 

Table 2 Previously Determined Sample Size and Prevalence for 
the 4 PTSD Symptom Trajectories in the TraumaTIPS cohort in van 
Zuiden et al. [41]

Men (n = 346) Women (n = 208)

Resilient trajectory 269 (77.7%) 160 (76.9%)

Recovering trajectory 36 (10.4%) 31 (14.9%)

Chronic trajectory 29 (8.4%) 17 (8.2%)

Delayed onset trajectory 12 (3.5%) 0 (0%)
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early post-trauma the individual risk to follow an adverse 
PTSD symptom trajectory over the course of 1 year fol-
lowing trauma, that we will derive from the TraumaTIPS 
cohort [18]. The secondary goals are to update the clas-
sification model by examining new potential risk and 
protective factors; and compare the classification models 
with current best-practice screening methods for PTSD. 
We will also assess differences in adverse psychological, 
functional and economic outcomes between adults clas-
sified as low versus high risk.

This is the first study to perform external validation of 
machine learning prognostic models (full and minimal 
feature sets) based on self-report data in a broad recently 
trauma-exposed adults, for men and women separately. 
External validation of prognostic classification models is 
necessary for generalizability to new and different indi-
viduals beyond those in which the model was developed 
[93]. Hence, the 2-ASAP cohort will include trauma 
exposed adults at the ED of Amsterdam UMC similar to 
those in the acute injury population of the TraumaTIPS 
cohort in which the model was developed [18], as well as 
adults from a broader trauma population with a higher 
proportion of interpersonal traumatic events at Victim 
Support Netherlands. Moreover, it is also recommended 
to have separate models for men and women to prevent 
bias and incorrect trajectory assignment for the under-
represented group (in this case women). To enable future 
large-scale implementation, self-report data to inform 
the prognostic models will be used; and a minimal fea-
ture set of the classification models will be derived. These 
sets will be transformed into a short online screening 
instrument assessing the risk of developing PTSD that is 
user-friendly for recently trauma-exposed adults to fill in.

The eventual new screening instrument will classify early 
post-trauma which individuals are at risk for developing 
PTSD. Subsequently, these recently trauma-exposed adults 
at risk for developing PTSD can benefit from preventive 
interventions, aiming to reduce PTSD prevalence and 
relatedly improve psychological, functional and economic 
outcomes [16, 17]. This will contribute to our ultimate goal 
to improve accurate screening and prevention for PTSD in 
recently trauma-exposed civilians.

Study status
Currently recruiting participants since July 2022.
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