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changes in young people with clinical and
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Abstract

Background: The anterior insula cortex is considered to be both the structural and functional link between
experience, affect, and behaviour. Magnetic resonance imaging (MRI) studies have shown changes in anterior insula
gray matter volume (GMV) in psychosis, bipolar, depression and anxiety disorders in older patients, but few studies
have investigated insula GMV changes in young people. This study examined the relationship between anterior
insula GMV, clinical symptom severity and neuropsychological performance in a heterogeneous cohort of young
people presenting for mental health care.

Methods: Participants with a primary diagnosis of depression (n= 43), bipolar disorder (n= 38), psychosis (n= 32),
anxiety disorder (n= 12) or healthy controls (n= 39) underwent structural MRI scanning, and volumetric
segmentation of the bilateral anterior insula cortex was performed using the FreeSurfer application. Statistical
analysis examined the linear and quadratic correlations between anterior insula GMV and participants’ performance
in a battery of clinical and neuropsychological assessments.

Results: Compared to healthy participants, patients had significantly reduced GMV in the left anterior insula
(t= 2.05, p= .042) which correlated with reduced performance on a neuropsychological task of attentional set-
shifting (ρ= .32, p= .016). Changes in right anterior insula GMV was correlated with increased symptom severity
(r= .29, p= .006) and more positive symptoms (r= .32, p= .002).

Conclusions: By using the novel approach of examining a heterogeneous cohort of young depression, anxiety,
bipolar and psychosis patients together, this study has demonstrated that insula GMV changes are associated with
neurocognitive deficits and clinical symptoms in such young patients.
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Background
Located between the frontal, temporal and parietal lobes,
the insular cortex processes a vast array of information
including visceral sensory, visceral motor, vestibular, pain,
temperature, language, visual, auditory, and tactile informa-
tion [1,2]. A meta-analysis of 162 functional neuroimaging
studies [3] highlights that the anterior insula is consistently
activated during the expression of emotion including anger
[4], sadness [4], fear [5], disgust [6], happiness or joy [7-9],
trust [10], and surprise [11], as well as social emotions
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[reviewed in [12]]. Furthermore, the anterior insula has
been implicated in visual-tactile [13] and auditory-visual
[14] integration, as well as olfactory and gustatory function
[15-17], suggesting that the insular cortex integrates these
special visceral senses with behavioural and emotional
events [18,19]. These processes arise through elaborate and
extensive structural connections between the insula and
various cortical, basal nuclei, limbic and thalamic areas
[reviewed in [20]]. Thus, the insular cortex is considered to
be the structural and functional link between experience,
affect, and behaviour [21].
Functional network analysis suggests that the insular

cortex processes information through high-level cognitive
control and attentional processes, mediating “salience
switching” between other large functional networks
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involved in externally-oriented attention and internally-
oriented cognition [reviewed in [22]]. Functional magnetic
resonance imaging (fMRI) studies have reported that the
bilateral anterior insula, together with the anterior cingu-
late cortex, show increased activation during working
memory, target switching and cognitive control tasks
[23,24]. Furthermore, an fMRI study on attentional transi-
tioning found that the bilateral anterior insula and anterior
cingulate cortex operate as a cognitive-control network,
and that the right anterior insula plays an essential role of
switching between the central executive network and the
default-network [25]. Cumulatively, the insular cortex, and
in particular the anterior insula, appears to mediate the
processing of experience, affect and behaviour [21] via
high-level executive functioning and salience switching
[22].
Changes in insula GMV have been implicated in the

aetiology of many common psychiatric disorders in older
patients. Meta-analysis of magnetic resonance imaging
(MRI) studies has demonstrated significant insula GMV
loss in bipolar disorders [26-29] and psychosis [26,30-34],
and to a lesser extent in anxiety disorders [35-37]. The
findings relating to unipolar depression appear to be less
consistent, with some demonstrating no association [38-
41], and others showing insula GMV loss in patients with
depression [42,43]. However, as the interpretation of insula
changes in older patients is confounded by long illness
durations, associated lifestyle factors and up to 20 years of
medication use, it is important to examine if changes in
anterior insula GMV is evident in young patients at the
early stages of disease progression. A voxel-based
morphometry (VBM) meta-analysis [44] summarised that,
in comparison to healthy controls, young subjects at
enhanced clinical risk for psychosis exhibited reduced
GMV in the left insular cortex. A meta-analysis of MRI
abnormalities in young patients with bipolar disorder [45]
reported that most studies found gray matter loss in the
subgenual, prefrontal and temporal regions, though
findings between studies were inconsistent. Lagopoulos
et al. [46] conducted a cross-sectional VBM analysis of 47
young people with a heterogeneous mixture of depressive
and psychosis symptoms, finding that compared to healthy
controls, patients at early stages of illness had GMV reduc-
tions in the left insula, and this GMV loss was exacerbated
in patients at later stages of disease progression. Examining
changes within the insula of young people with emerging
disorders would thus inform models of pathophysiology
that link underlying neurobiological changes with key
symptoms, helping to inform early detection and targeted
intervention strategies [47-50].
In this study, we therefore aimed to determine whether:

a) young people with an emerging anxious, affective or
psychotic illness demonstrate evidence of anterior insular
change, relative to their age-matched controls; and b)
changes in the anterior insula relate to clinical symptoms
and neuropsychological performance, specifically in the do-
main of executive functioning.

Methods
Participants
One hundred and thirty three outpatients aged 16 to 30
years were recruited from specialist youth mental health
clinics in Sydney Australia [51,52]. Thirty-nine healthy
controls were recruited from the community in the same
region, and were screened for history of psychiatric
disorders.
Exclusion criteria for both patients and controls were

medical instability (as determined by a psychiatrist), history
of neurological disease (e.g. tumour, head trauma, epilepsy),
medical illness known to impact cognitive and brain
function (e.g. cancer), intellectual and/or developmental dis-
ability, insufficient English for neuropsychological assess-
ment and current substance dependence. All participants
were asked to abstain from drug or alcohol use for 48 hours
prior to testing and informed about a drug screen protocol.
To verify recent abstinence, participants underwent an
alcohol breath test and a saliva drug screen to determine
presence of cannabinoids, meth/amphetamines, opiates,
benzodiazepines and cocaine. The study was approved by
the University of Sydney ethics committee. Participants gave
written informed consent prior to participation in the study.
Patients were determined to have a primary diagnosis of

depression (n=43), bipolar disorder (n=38), psychosis
(n=32) or anxiety disorder (n=12) by a psychiatrist,
according to DSM-IV-TR criteria [53]. At the time of
assessment, 15% of patients were not taking any psycho-
tropic medications; 51% were taking a second-generation
antidepressants, 42% an atypical antipsychotic medication,
7% were taking a mood stabiliser and 2% were taking stimu-
lants. Of those medicated, 48% were taking more than one
of these psychotropic medications; for the majority of these
patients (40% of those medicated) this polytherapy included
an anti-psychotic.

Clinical assessment
All participants underwent clinical and neuropsychological
assessment as previously described [54,55]. A psychiatrist
conducted the clinical assessment (in a semi-structured
interview format) to inform the diagnostic classification and
to determine the nature and history of any mental health
problems. Participants’ educational level was assessed as the
cumulative completed number of years in school, university
and/or advanced diploma course. The assessment included
the Social and Occupational Functioning Assessment scale
[SOFAS; [56]] to assess general social and occupational
functioning, the Hamilton Depression Rating Scale [HDRS,
17-item; [57]] to quantify current (over the last 7 days)
mood symptoms, and the Brief Psychiatric Rating Scale
[BPRS; [58]] to quantify current general psychiatric



Hatton et al. BMC Psychiatry 2012, 12:45 Page 3 of 10
http://www.biomedcentral.com/1471-244X/12/45
symptom severity. The 24-point BPRS Total score is further
subtyped by subscores assessing depression (somatic con-
cern, anxiety, depression, suicidality, guilt, self-neglect),
positive symptoms (hostility, grandiosity, suspiciousness,
hallucinations, unusual thought content, bizarre behaviour,
conceptual disorganization), negative symptoms (self-neg-
lect, blunted affect, emotional withdrawal, motor retard-
ation, uncooperativeness), mania (elated mood, conceptual
disorganisation, tension, uncooperativeness, excitement, dis-
tractibility, motor hyperactivity) and disorientation (dis-
orientation, mannerisms & posturing). As the BPRS
disorientation subscore comprises of only two items, the
measure was not considered statistically robust and was
omitted from this study.

Self-report
All participants completed a self-report assessment that
included: the Kessler-10 [K-10; [59]] which is a brief
instrument designed to detect psychological distress [60];
the Depression Anxiety and Stress Scales [DASS; [61]],
which measures the three related negative emotional states
of depression, anxiety, and tension/stress; and, the Social
Interaction Anxiety Scale [SIAS; [62]] which measures
social interaction anxiety.

Neuropsychological assessment
As part of a broader battery [described previously,
[54,55,63]], a trained research psychologist administered
standardised tests to examine the following functions:

a) Premorbid IQ: This was estimated from the Wechsler
Test of Adult Reading [64] where participants are
scored on their ability to pronounce 50 English
language words of increasing complexity.

b) Mental flexibility: The Trail-Making Test part B
assessed “mental flexibility” [TMT-B; [65]], whereby
participants were required to draw a line connecting
consecutive targets alternating between numbers and
letters. Raw timed scores were converted to age-
adjusted z-scores according to normative date [66].

c) Verbal fluency: This was assessed via a subtest of the
Controlled Oral Word Association Test [COWAT;
[65]] which assessed the generation of words starting
with the letters F, A and S, within a one-minute
interval. Age- and educational-adjusted z-scores were
derived from normative data [66].

d) Set-shifting: This was measured using the Intra-
Dimensional/ Extra-Dimensional task (IED) from the
Cambridge Automated Neuropsychological Testing
Battery [CANTAB; [67]]. The total error score
(adjusted) was used, measuring the subject’s efficiency
to attend to specific attributes of compound stimuli
(e.g. a line and a shape), then shift attention from one
attribute (e.g. select the shape) to another (e.g. now
select the line).
e) Sustained attention: This was measured via the Rapid
Visual Information Processing task (RVP-A), of the
CANTAB [67]. The A prime measure was used,
reflecting the participant’s accuracy at detecting a target
sequence of numbers (e.g. 4-5-3) within 2 minutes of
pseudo-random numbers (e.g. 3-6-9-4-5-3-7- etc.).

f ) Spatial working memory: This was assessed by the
longest sequence length of patterns recalled in the
Spatial Span (SSP) task of the CANTAB [67].

Magnetic resonance imaging acquisition and analysis
Participants underwent structural MRI scanning using a 3-
Tesla GE scanner at Southern Radiology MRI Diagnostic
Services within the Brain and Mind Research Institute,
Camperdown, NSW Australia. The images where acquired
using a customized MP-RAGE 3D T1-weighted sequence
to resolve anatomy at high resolution (0.9mm isotropic
resolution); TR=7264msec; TE= 2784msec; pulse angle=
15; coronal orientation; FOV 230 mm3; matrix of 256 x
256 x 196.
Volumetric segmentation was performed with the Free-

Surfer application version 5.1 (http://surfer.nmr.mgh.har-
vard.edu/) and technical details of these procedures have
been previously described [68-78]. Briefly, this process
involves the motion correction and averaging of two
volumetric T1-weighted images [79], removal of non-brain
tissue [78], transformation of the scans to the standard
Talairach space, segmentation of the subcortical white
matter and deep gray matter volumetric structures [71,72],
intensity normalization [80], tessellation of the gray matter/
white matter boundary, topology correction [70,81], surface
deformation along intensity gradients to optimally place the
gray/white and gray/cerebrospinal fluid borders [68,69,82],
and finally cortical representations were parcellated into
anatomical structures. Results were visually inspected and
any inaccuracies were manually edited. FreeSurfer’s pro-
cedure for measuring cortical thickness have been vali-
dated against histological analysis [83] and manual
measurements [84,85], and morphometric procedures
have been demonstrated to show good test-retest reliability
across scanner and field strengths [76].
Several structures clearly delineate the anterior insular

cortex, as described in the Destrieux atlas and utilised in
the FreeSurfer segmentation process [86]. The circular sul-
cus of the insula demarcates the insula along three boarders;
the anterior segment separates the insula from the orbital
gyri, the superior segment separates the insula from the
opercular segment of the inferior frontal gyri, and the
inferior segment separates the insula from the superior as-
pect of the superior temporal gyrus. Finally the central sul-
cus of the insula isolates the posterior insula (long insular
gyrus) from the anterior insula (short insular gyri).
The intracranial volume (ICV) was measured to correct

for differences in head size [87]. Region of interest (ROI)

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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volumes were then corrected for ICV variation so as to pro-
vide a common space for cross-sectional morphometric
comparisons.
Table 1 Demographics and clinical symptom scores
(± standard deviation)

Demographic
variable/clinical
symptom score

Healthy
(n=39)

Patients
(n=133)

Significance
test

Female, percentage
(f/m)

66.7% (26/13) 62.4% (83/50) χ2(1,
n= 172) = 0.24

Age, years# 23.8 ± 2.4 22.3 ± 3.7 t(95.2) = 2.95**

Predicted IQ 105.3 ± 8.2 104.1 ± 8.2 t(145) = 0.73
Statistical analysis and data transformations
Statistical analyses were performed using the Statistical
Package for the Social Sciences (SPSS 19.0 for Mac). ROI
outliers beyond a standard deviation of ±3.0 were removed
from analysis. With the exception of the Wechsler Test of
Adult Reading (“predicted IQ”), all neuropsychological
scores were then converted to a standardised score (i.e. z-
score) and outliers beyond a standard deviation of ±2.5
were curtailed to values of +2.5 or −2.5 (depending on the
direction), enabling a consistent range across variables as
previously described [54,88].
Between groups (healthy, patient) analyses were con-

ducted using independent-sample t-tests, or chi-square
tests for categorical data. Pearson partial correlations (r)
explored the linear correlation between the left or right
anterior insula GMV (corrected for ICV) with patient
demographics, class of medication dosage (mg/day), clin-
ical scores and neurocognitive performance controlling for
age (n=133). Due to the small number of patients using
stimulant medication (n=3), correlations between stimu-
lants and GMV was omitted. Spearman’s correlation (ρ)
was used when data violated the assumptions of normality
and/or contained influential data points. Follow-up ana-
lysis repeated this process controlling for years of
education.
Curve estimation regression explored the quadratic

correlation between the left or right anterior insula GMV
(ICV corrected) with the same patient variables described
above (n=133). Curve estimation fits a quadratic curve to
the existing data points to examine if there is a “U-curve”
pattern to the trend, inferring that the same outcome
occurs when there is any departure from normality. This
study employed quadratic correlation to see if any changes
in anterior insula GMV (i.e. either increases or decreases
from the norm) resulted in worse clinical symptom sever-
ity and/or neurocognitive performance. Correlations were
considered significant where either r≥ .30 or ρ≥ .30
(medium effect, explains 9% of the total variance) and
p< .05 (2-tailed).
Education, years 15.1 ± 1.9 12.6 ± 2.4 t(161) = 33.08**

SOFAS 61.6 ± 12.5

K-10 Total 27.6 ± 8.0

HDRS Total 14.1 ± 7.4

BPRS Total 42.3 ± 10.2

Significant differences in gender were evaluated using a Pearson Chi-square
test. Independent samples t-tests examined differences in age, predicted IQ
and years of education. ** p< .01 (2-tailed) #As Levene’s test for equality of
variance was significant (p< .05) for age, results that did not assume equal
variance were used.
Results
Demographics
As shown in Table 1, comparison between patients and
healthy participants revealed no significant difference in
the distribution of gender nor predicted IQ, however
patients were significantly younger [t(95.2) = 2.95, p= .004]
and less educated [t(161) = 33.08, p< .001)] compared to
control subjects.
Anterior insula GMV differences between patients and
healthy participants
Table 2 shows the left and right anterior insular volumes for
patients and healthy participants. The left anterior insula
was significantly reduced in patients compared to healthy
participants [t(170) =2.05, p= .042], but there was no sig-
nificant right anterior insula GMV difference between
groups [t(79.1) = 1.85, p= .069].
Relationship between demographics, clinical presentation
and anterior insula size
Analysing patients only, there was no linear correlation
found (i.e. r< .30 or ρ< .30) between anterior insula size
and either demographics (predicted IQ, age of onset of ill-
ness, years of education), medication dosage (antidepres-
sant, antipsychotic, mood stabiliser) or clinical symptom
scale scores (SOFAS, K-10, HDRS, DASS, SIAS and BPRS
measures) when controlling for age (Table 3). A follow-up
analysis controlling for years of education did not find any
significant linear correlations (see Additional file 1).
Quadratic correlation analysis of demographics, medica-

tion dosage, clinical symptoms and anterior insula size
found that changes in anterior insula GMV were associated
with increased psychiatric symptom severity, as measured
by the BPRS score (Table 4). There was a significant
correlation between BPRS Total score and the right anterior
insula size [r(117) = .29, p= .006]. Similarly, there was a sig-
nificant correlation between BPRS positive symptoms
subscore and the right anterior insula size [r(117) = .32,
p= .002].
Quadratic correlation analysis also highlights a significant

correlation whereby changes in anterior insula GMV were
associated with worse social anxiety as measured by the
SIAS score (Table 4). There was a significant association
between SIAS score and the right anterior insula size



Table 2 Mean anterior insula gray matter volumes by cohort

Region of interest Healthy mean volume
(mm3±SD)

Patient mean volume
(mm3± SD)

Mean difference
(mm3± SE)

Significance test

Left anterior insula 2209 ± 214.2 2124 ± 232.2 85 ± 41.6 t(170) = 2.05*

Right anterior insula 2019 ± 182.4 1953 ± 236.1 66 ± 35.7 t(79.1) = 1.85

Independent samples t-tests examined differences between patients (n=133) and healthy participants (n= 39) in anterior insula volumes (corrected for ICV). As
Levene’s test for equality of variance was significant (p< .05) for the right anterior insula volumes, results that did not assume equal variance were used. * p< .05
(2-tailed). SD, standard deviation; SE, standard error.
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[r(122) = .28, p= .006]. Other variables analysed did not
exhibit significant correlations.
Relationship between executive functioning and anterior
insula size
Linear correlation analysis of executive function found that
there was a positive association between anterior insula
GMV and ability to perform an attentional set-shifting task
(Table 5). Specifically, there was a significant correlation be-
tween IED Total errors and left anterior insula size
[ρ(109) = .32, p= .016]. To confirm that performance in the
IED test was not influenced by either levels of education or
IQ, follow-up linear correlation analysis found that IED per-
formance was not significantly associated with either years
Table 3 Linear correlations of demographics and clinical
variables to patient anterior insula GMV

Demographic/clinical variable Left anterior
insula

Right anterior
insula

Predicted IQ r(117) = .03 r(117) =−.01

Age of onset of illness r(124) =−.02 r(124) =−.04

Years of Education r(125) =−.10 r(125) =−.05

Antidepressant dose (mg/day) r(110) = .09 r(110) = .02

Antipsychotic dose (mg/day) r(110) =−.04 r(110) =−.10

Mood stabiliser dose (mg/day) r(110) = .03 r(110) = .04

Social and occupational functioning
(SOFAS)

r(119) =−.12 r(119) =−.11

Psychological distress (K-10) r(125) = .08 r(125) = .06

Depression (HDRS) r(121) = .10 r(121) =−.04

Depression (DASS Depression
subscore)

r(116) = .11 r(116) = .00

Anxiety (DASS Anxiety subscore) r(116) =−.01 r(116) =−.03

Stress (DASS Stress subscore) r(116) = .08 r(116) = .03

Social interaction anxiety (SIAS) r(122) = .18* r(122) = .23**

Symptom severity (BPRS Total) r(116) = .12 r(116) = .03

Positive symptoms (BPRS Positive
Symptoms subscore)

r(116) = .10 r(116) = .10

Negative symptoms (BPRS Negative
Symptoms subscore)

r(116) = .12 r(116) = .02

Depression (BPRS Depression
subscore)

r(116) = .01 r(116) =−.09

Mania (BPRS Mania subscore) r(116) = .08 r(116) = .06

Pearson partial correlations explored the linear correlations between the left or
right anterior insula GMV (corrected for ICV) with patient demographic and
clinical variables (n= 133) controlling for age. * p< .05; ** p< .01 (2-tailed).
of education [ρ(108) = .027, p= .783] or predicted IQ
[ρ(107) = .175, p= .071]. There were no significant linear
correlations with the remaining measures of executive
function, namely the SSP, TMT-B, RVP-A and COWAT
measures. A follow-up analysis controlling for years of edu-
cation found similar results; the only significant correlation
was found between IED Total errors and left anterior insula
size [ρ(109) = .32, p= .001; see Additional file 1].
Quadratic correlation analysis of executive function found

a similar positive correlation between anterior insula GMV
and the IED Total errors score (Table 5). There were signifi-
cant correlations between the number of IED Total errors
and left anterior insula size [r(106) = .31, p= .005]. There
were no significant quadratic correlations with the
remaining measures of executive function.
Table 4 Quadratic correlations of demographics and
clinical variables to patient anterior insula GMV

Demographic/clinical variable Left anterior
insula

Right anterior
insula

Predicted IQ r(117) = .03 r(117) = .04

Age of onset of illness r(124) = .07 r(124) = .09

Years of Education r(125) = .16 r(125) = .13

Antidepressant dose (mg/day) r(64) = .13 r(64) = .06

Antipsychotic dose (mg/day) r(60) = .20 r(60) = .26

Mood stabiliser dose (mg/day) r(25) = .25 r(25) = .17

Social and occupational functioning
(SOFAS)

r(119) = .12 r(119) = .13

Psychological distress (K-10) r(125) = .12 r(125) = .10

Depression (HDRS) r(121) = .17 r(121) = .19

Depression (DASS Depression
subscore)

r(116) = .13 r(116) = .02

Anxiety (DASS Anxiety subscore) r(116) = .14 r(116) = .13

Stress (DASS Stress subscore) r(116) = .19 r(116) = .09

Social interaction anxiety (SIAS) r(122) = .20 r(122) = .28**

Symptom severity (BPRS Total) r(117) = .17 r(117) = .29**

Positive symptoms (BPRS Positive
Symptoms subscore)

r(117) = .17 r(117) = .32**

Negative symptoms (BPRS Negative
Symptoms subscore)

r(117) = .10 r(117) = .06

Depression (BPRS Depression
subscore)

r(117) = .07 r(117) = .10

Mania (BPRS Mania subscore) r(116) = .16 r(116) = .22

Curve estimation regression explored the quadratic correlations between the
left or right anterior insula GMV (corrected for ICV) with patient demographic
and clinical variables (n= 133). ** p< .01 (2-tailed).



Table 5 Linear and quadratic correlations of neurocognitive executive functioning to patient anterior insula GMV

Linear correlation Quadratic correlation

Neurocognitive performance Left anterior insula Right anterior insula Left anterior insula Right anterior insula

Set Shifting (IED Total error) ρ(109) = .32** ρ(109) = .13 r(106) = .31** r(106) = .22

Working Memory (SSP) ρ(107) = .08 ρ(107) =−.00 r(104) = .20 r(104) = .16

Mental Flexibility (TMT-B) ρ(114) =−.04 ρ(114) = .04 r(111) = .02 r(111) = .10

Sustained Attention (RVP-A) r(106) =−.08 r(106) =−.05 r(103) = .13 r(103) = .05

Verbal Fluency (COWAT) r(112) = .10 r(112) = .09 r(109) = .10 r(109) = .14

Spearman’s ρ (non-normal score distribution) or Pearson’s r (normal score distribution) correlation analysis explored the linear relationship between the left or right
anterior insula GMV (corrected for ICV) against z-scores of neuropsychological assessments of executive function (n= 133), controlling for age. Curve estimation
regression explored the quadratic correlation between the same regions of interest and neuropsychological assessments of executive function. ** p< .01 (2-tailed).
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Discussion
The present study sought to investigate anterior insula
GMV changes in a heterogeneous sample of young psychi-
atric patients, and if such GMV changes related to severity
of clinical symptoms or impairments in neurocognitive
executive functioning. This study revealed that compared to
age-matched healthy participants, young psychiatric
patients have reduced left anterior insula GMV that
positively correlated with neurocognitive performance in an
attentional set-shifting task. GMV loss or gain in the right
anterior insula was associated with increased general psy-
chiatric symptom severity (BPRS Total score) and increased
positive symptoms (BPRS Positive Symptoms subscore).
The major finding from this study is that young people

with emerging mental disorders have reduced left anterior
insula GMV that correlates with worse executive function-
ing (Tables 2, 5), in particular, set-shifting. The asymmetry
of a larger left insula relative to the right insula is most
apparent in humans, with less hemispheric difference seen
in similar-sized lower primates [89], and this feature is
hypothesised to be due to the left insula’s role in human
language and language-associated functions [20]. This
present study’s findings that left anterior insula GMV is
positively correlated with attentional set-shifting (IED) but
not verbal fluency (COWAT), working memory (SSP) or
sustained attention (RPV-A) suggests that the left anterior
insula may be more closely involved in attentional proces-
sing rather than vocabulary memorisation. Interestingly, at-
tention is conspicuously affected in all psychiatric disorders
[90], and hence anterior insula degradation may be a core
biological marker in this neurocognitive deficit. This result
reinforces the “salience network” hypothesis [22,25] that the
anterior insula is involved in modulating reactivity to salient
internal and extrapersonal stimuli, and this attentional
executive function is impaired in young psychiatric patients
with a broad variety of disorders.
The modulation of altered afferent interoceptive input,

self-referential and belief-based states, and poorly predictive
signals has been proposed as a neuroanatomical model for
depression and anxiety [91]. One model of anxiety suggests
that neurons in the anterior insula estimate an “interocep-
tive prediction error” which signals a mismatch between
anticipated and actual bodily responses to a potentially aver-
sive stimulus [92]. Studies demonstrating increased insula
activation during emotion processing in depressive and anx-
iety-prone individuals [91,93] strengthens the argument that
degradation of the anterior insula might result in maladap-
tive motivating signal for individuals to withdraw (depres-
sion) or avoid (anxiety) situations. This study found there
was no significant relationship between clinical measures of
general anxiety (DASS) or depression (HDRS, DASS, BPRS
depression subscore) and changes in anterior insula GMV
(Tables 3 and 4), highlighting that anterior insula degrad-
ation in depression and anxiety may be a functional dysre-
gulation rather than a structural alteration.
Both increases and decreases in right anterior insula

GMV were associated with more positive symptoms
(Table 4), namely hostility, grandiosity, suspiciousness,
hallucinations, unusual thought content, bizarre behaviour,
and conceptual disorganization. It has been suggested that
since the insular cortex provides connections between the
limbic memory regions and sensory systems, altered insula
function may result in unbalanced sensory-memory integra-
tion, such as sensory hallucinations [94]. Indeed, an fMRI
study [95] of psychotic patients found auditory hallucina-
tions co-occurred with significant hyperactivity within the
right anterior insula and to a lesser extent the left insula.
One structural MRI paper investigating GMV changes in
schizophrenia [96] found that schizophrenic patients with
hallucinations had reduced bilateral insula GMVs when
compared to healthy controls, and reduced left insula
GMVs when compared to schizophrenic patients without
hallucinations. This present study demonstrates that in
younger patients, positive symptoms are related with any
imbalance of the right anterior insula GMV, consistent with
the hypothesis of a hemispheric imbalance of salience
switching [22,25] which may underlie dysfunctional sensory
awareness and interpretation [97].
Changes in right anterior insula GMV were associated

with increased clinical symptom severity as measured by
the BPRS Total score (Table 4). Other clinical scales
employed in this study specifically targeting depression
(DASS, HDRS), anxiety (DASS), psychological stress (K-10,
DASS) and social functioning (SOFAS) were not correlated
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with anterior insula GMV changes. Considering that the
BPRS Total score encompasses a depression subscore, the
significant result of the BPRS Total score is probably due to
the positive symptom subscore result discussed above.
However, since the BPRS Total score is the summation of
24 questions it might be considered to be the largest, most
robust measure of symptom severity in this study. Accord-
ingly, the BPRS Total score may be a robust measure of
symptom severity in young people arising from changes in
right anterior insula GMV.
The relationship between anterior insula GMV and

clinical measures of social anxiety remains inconclusive
(Tables 3, 4). The SIAS self-report assesses fears of social
interaction situations and has been demonstrated to dis-
criminate people diagnosed with social anxiety disorder
from healthy controls [98] and other anxiety disorders [62].
In this study the SIAS score had a weak but significant posi-
tive linear correlation with the right anterior insula GMV
(Table 3), suggesting that reductions in anterior insula
GMV equate to reductions in social anxiety and vice-versa.
Future research could further investigate associations
between anterior insula GMV changes and social anxiety
severity using a larger cohort of patients in combination
with other anxiety scales such as the clinician-administered
Liebowitz Social Anxiety Scale [LSAS; [99]], the consumer-
supported Social Phobia and Anxiety Inventory [SPAI;
[100,101]], or the refined self-report SIAS [102] with the
companion Social Phobia Scale [SPS; [62]].
The influence of medication on changes in GMV remains

contentious. Antidepressants, antipsychotics and mood
stabilisers can be neuroprotective in patients and animal
models of psychiatric disorders [reviewed in [103]]. A recent
meta-analysis [104] suggest that antipsychotic medication
may contribute to some structural changes noted in
psychosis patients, though the authors concede that this
may be confounded by disease progression [105]. A ROI
MRI study of psychosis patients [106] found that insula gray
matter volume was not influenced by antipsychotic medica-
tion, and a follow-up study with bipolar patients [107]
found that insula volume was not affected by lithium or
valproate medication. In the young patients examined in
this study, there was no evidence suggesting a relationship
between antidepressants, antipsychotics or mood stabilisers
with anterior insula GMV changes. Future research could
examine how anterior insula GMV may be affected by
specific medications, as well as the impact of medication
switching over time.
Future studies can enhance the findings of this present

cross-sectional study. A longitudinal protocol is needed to
investigate the relationship between anterior insula GMV,
clinical symptoms and neuropsychological performance
over time. Furthermore, such relationships should be con-
trasted along a trajectory of clinical course and functional
impairment as proposed by McGorry, Hickie et al [49,50].
The insular cortex has also been implicated in addictive be-
haviour [108] and the relationship between anterior insula
GMV and drug and alcohol use requires further investiga-
tion. Finally, whilst this present study found that a group of
affective/psychosis patient exhibited reduced anterior insula
GMV (Table 2), increases in anterior insula GMV
correlating with increased symptom severity (Table 4) may
apply to patients with autism spectrum disorder which have
been shown to have enlarged insula GMVs relative to
healthy controls [109].

Conclusions
In summary, this study found that young people with
emerging anxiety, affective or psychotic disorders have
reduced left anterior insula GMV that is associated with
poorer neurocognitive performance on an executive func-
tioning task of set-shifting. Furthermore, patients with
changes in right anterior insula GMV exhibited increased
clinical symptom severity and more positive symptoms. By
using the novel approach of examining a heterogeneous
cohort of young depression, anxiety, bipolar and psychosis
patients together, this study has demonstrated that insula
GMV changes are associated with neurocognitive deficits
and clinical symptoms in young patients. Future studies
need to examine the longitudinal outcomes, clinical course
and functional impairment of these findings, as well as
their applicability to neurodevelopmental disorders.

Additional file

Additional file 1: Linear correlations of anterior insula GMV with clinical/
neurocognitive variables controlling for years of education. Description of
data: Linear correlations of clinical variables and neurocognitive executive
functioning to patient anterior insula GMV, controlling for years of
education. Pearson’s r (normal score distribution) or Spearman’s ρ (non-
normal score distribution) correlation analysis explored the linear
relationship between the left or right anterior insula GMV (corrected for
ICV) against patient demographic, clinical variables or z-scores of
neuropsychological assessments of executive function (n= 133),
controlling for years of education. * p< .05; **p< .01 (2-tailed).
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