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Abstract

GR mRNA and protein expression in the lateral OFC.

widely across the frontal cortex in psychiatric illness.

Background: The orbitofrontal cortex (OFC) may play a role in the pathogenesis of psychiatric illnesses such as
bipolar disorder and schizophrenia, in which hypothalamic-pituitary-adrenal (HPA) axis abnormalities are observed
and stress has been implicated. A critical component of the HPA axis which mediates cellular stress responses in
the OFC, and has been implicated in psychiatric illness, is the glucocorticoid receptor (GR).

Methods: In the lateral OFC, we employed quantitative real-time PCR and western blotting to investigate GR mRNA
and protein expression in 34 bipolar disorder cases, 35 schizophrenia cases and 35 controls. Genotype data for
eleven GR gene (NR3C1) polymorphisms was also used to explore possible effects of NR3C1 sequence variation on

Results: We found no diagnostic differences in pan GR, GR-1C or GR-TF mRNA expression. However, the GR-1B
mMRNA transcript variant was decreased (14.3%) in bipolar disorder cases relative to controls (p < 0.05), while GR-TH
mMRNA was decreased (22.0%) in schizophrenia cases relative to controls (p < 0.005). By western blotting, there were
significant increases in abundance of a truncated GRa isoform, putative GRa-D1, in bipolar disorder (56.1%,

p <0.005) and schizophrenia (31.5% p < 0.05). Using genotype data for eleven NR3C1 polymorphisms, we found no
evidence of effects of NR3C1 genotype on GR mRNA or GRa protein expression in the OFC.

Conclusions: These findings reveal selective abnormalities of GR mRNA expression in the lateral OFC in psychiatric
illness, which are more specific and may be less influenced by NR3C1 genotype than those of the dorsolateral
prefrontal cortex reported previously. Our results suggest that the GRa-D1 protein isoform may be up-regulated

Background

The orbitofrontal cortex (OFC) is a critical associative
area of the human cortex, which plays a central role in
emotion processing, reward encoding and goal directed
learning [1-3]. It has been implicated in the pathogenesis
of a number of psychiatric disorders including bipolar
disorder, schizophrenia and major depression [4,5].

The OFC includes regions in medial and lateral orbital
cortical areas, including Brodmann’s areas (BA) 10-14,
25 and 47 [6,7]. These regions form two connective net-
works, the medial and lateral (orbital) OFC networks,
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which have few connections between them, receive dif-
ferent inputs and project to different cortical and subcor-
tical areas [4,6]. The lateral OFC network, consisting of
central, lateral and caudal areas of orbital cortex, is char-
acterised by inputs from sensory cortical areas, such as
the olfactory cortex and visual areas in the inferior tem-
poral cortex [8]. It integrates multimodal sensory infor-
mation and is involved in reward encoding and the
evaluation of punishment [4,7]. It does not have robust
connections to/from limbic regions, the dorsolateral pre-
frontal cortex (DLPFC) or visceral control centres such
as the hypothalamus [8-10]. In contrast, the medial OFC
network consists of areas along the medial edge of the
orbital cortex, as well on the ventromedial surface of the
frontal lobe [11]. The medial OFC has strong connec-
tions with limbic regions, receives reciprocal connections

© 2012 Sinclair et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:d.sinclair@neura.edu.au
http://creativecommons.org/licenses/by/2.0

Sinclair et al. BMIC Psychiatry 2012, 12:84
http://www.biomedcentral.com/1471-244X/12/84

from the DLPFC, and projects to the hypothalamus and
periaquaductal gray [6,9,10,12]. It is thought to be
involved in emotional regulation of visceral function [4],
and in the monitoring, learning and memory of the re-
ward value of reinforcers [7]. The OFC is also impacted
by the experience of stress. Structural changes in both
the lateral and medial OFC networks have been asso-
ciated with prior experience of early life trauma or
chronic stress [13-15].

Stressful experiences may not only be linked to struc-
tural changes in the OFC, but have also been shown to
increase risk for, and contribute to the onset of, schizo-
phrenia and bipolar disorder. A number of retrospective
and prospective epidemiological studies have demon-
strated that early life stress increases the risk of psych-
osis later in life [16-20], while stress later in life can
impact the course of psychotic illness [21,22]. In many
individuals with schizophrenia or bipolar disorder, dysre-
gulation of the hypothalamic-pituitary-adrenal (HPA)
axis, the primary hormonal stress response pathway, is
also observed [23-25]. Prior studies have not directly
determined whether molecular abnormalities within the
HPA axis stress signalling pathway are present in the
OFC in schizophrenia or bipolar disorder.

Although molecular aspects of stress signalling have
not been investigated in the OFC in psychiatric illness,
other structural, functional and molecular changes
within the medial and lateral OFC networks have been
reported in bipolar disorder and schizophrenia. Struc-
tural OFC changes, such as reduced gray matter dens-
ity and reduced white matter fractional anisotropy,
have been identified in individuals with bipolar disorder
relative to healthy controls [26,27]. Decreased func-
tional activation of the lateral OFC network, and
altered functional connectivity of the medial OFC net-
work with the amygdala, are observed in bipolar dis-
order and schizophrenia during emotion processing
and regulation tasks [28-30]. Decreased metabolic ac-
tivity in the OFC networks of drug-free schizophrenia
patients has also been reported [5]. At a molecular
level, decreased glutamic acid decarboxylase 67 (GAD
67) expression has been reported in the lateral OFC in
schizophrenia and bipolar disorder [31], while increased
dopamine receptor (D3 and D4) mRNA, serotonin re-
ceptor 1A binding, N-methyl-D-aspartate receptor
binding and metabotropic glutamate receptor protein
expression have been identified throughout the OFC in
schizophrenia [32-36]. Furthermore, OFC neurons have
been identified as the targets for a number of anti-
psychotic drugs [37]. These findings suggest a role for
the lateral OFC network in the pathogenesis of both
bipolar disorder and schizophrenia, and highlight the
potential relevance of targeting OFC neurons when
treating psychotic illness.
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Despite the relevance of the OFC in bipolar disorder
and schizophrenia, and the potential role of stress in the
pathogenesis of these disorders, it is not known whether
molecular abnormalities of the stress response pathway
exist in the OFC. Recent evidence of such abnormalities
in other brain regions, involving the primary stress re-
ceptor, the glucocorticoid receptor (GR), has emerged in
schizophrenia and bipolar disorder. A network of
regions, including the hippocampus, amygdala and tem-
poral cortex, display decreased total GR mRNA expres-
sion in both schizophrenia and bipolar disorder [38-40].
In contrast, total GR mRNA expression is decreased in
the entorhinal cortex in bipolar disorder but not schizo-
phrenia, and is decreased in the DLPFC in schizophrenia
but is not significantly changed in bipolar disorder
[38,41]. Levels of GRa protein have only been examined
in the DLPFC, in which increases of a functional trun-
cated GRa isoform, putative GRa-D1, are observed in
both schizophrenia and bipolar disorder [40]. It is not
known whether GR mRNA and protein abnormalities
occur in the OFC in psychotic illness, and to what extent
GR expression patterns in the OFC mirror those
observed in the DLPFC and/or in other brain regions.

Based on evidence of structural and functional abnor-
malities of the lateral OFC network in psychiatric ill-
ness, its functional relevance to psychiatric illness as an
integrator of sensory information, and its possible sensi-
tivity to stress, we hypothesised that GR mRNA and
protein dysregulation would be evident in the lateral
OFC, as in the DLPFC, in schizophrenia and bipolar
disorder. Therefore, in this study we explored GR ex-
pression in lateral OFC in both schizophrenia and bipo-
lar disorder, using a cohort of 104 post-mortem
samples. We sought to 1) determine whether expression
levels of specific GR exon 1 mRNA transcript variants
are altered in the lateral OFC in schizophrenia and bi-
polar disorder cases relative to controls, 2) quantify ex-
pression of GRa protein isoforms in the lateral OFC in
schizophrenia and bipolar disorder compared to con-
trols, and 3) determine if selected human GR gene
(NR3C1) polymorphisms relate to GR mRNA or protein
expression in the lateral OFC.

Methods

Tissue collection

These studies were carried out in accordance with the
declaration of Helsinki, after approval by the Human Re-
search Ethics Committee at the University of NSW
(#HRECO07261). Written informed consent for use of tis-
sues in the study was obtained from next of kin. Brain
samples from the Stanley Medical Research Institute
(SMRI) Array Cohort were collected by pathologists in
the Office of the Medical Examiner in several states [42].
The selection process, clinical information, diagnoses of
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patients and processing of tissues have been described
previously [42]. DSM-IV diagnoses were made inde-
pendently by two senior psychiatrists based on medical
records and, when necessary, telephone interviews with
family members. Exclusion criteria included anyone over
age 70, anyone with a history of seizures or other neuro-
logic disorders that might affect brain pathology, and
anyone with evidence of such conditions on neuropatho-
logic examination. Diagnostic groups did not differ sig-
nificantly according to age, RIN, PMI, hemisphere or
brain weight, and were balanced for gender, race, and
hemisphere. Brain pH was significantly lower in the
schizophrenia and bipolar disorder groups than in the
control group (both p<0.05). There were a significantly
greater number of female cases in the bipolar disorder
group than in the schizophrenia or control groups
(p<0.05). The SMRI supplied total RNA, genomic DNA
and crude protein homogenate from 35 schizophrenia
cases, 34 bipolar disorder cases and 35 control indivi-
duals (Table 1). The region of the lateral OFC sampled
was between the branches of the orbital sulcus, in
BA11L as defined by Ongur and Price [43].

Endpoint PCR analysis

Endpoint PCR was performed to amplify GR exon 1
mRNA transcript variants in cDNA from schizophrenia,
bipolar disorder and control OFC tissue (pooled from all

Table 1 Demographic details of cases used in this study
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cohort samples) and from universal human ¢cDNA from
normal human tissues (Biotaq, Gaithersburg, MD).
Primer sequences were as follows: GR-A forward
primer ATCACTTTCACTTCTGCTGG, reverse pri-
mer CAGTGGATGCTGAACTCTTGG, GR-1B forward
primer GCCGGCACGCGACTCC reverse primer CAG-
TGGATGCTGAACTCTTGG, GR-1C;.3 (detecting all
GR-1C variants and henceforth called simply GR-1C)
forward primer GCTCCTCTGCCAGAGTTGAT reverse
primer CAGTGGATGCTGAACTCTTGG, GR-1D for-
ward primer ACAACCTTTCCCAGAGTC reverse pri-
mer CAGTGGATGCTGAACTCTTGG, GR-1E forward
primer CGTGCAACTTCCTTCGAGT reverse primer
CAGTGGATGCTGAACTCTTGG, GR-1F forward pri-
mer GTAGCGAGAAAAGAAACTGG reverse primer
CAGTGGATGCTGAACTCTTGG, GR-1H forward pri-
mer CTGACAGCCCGCAACTTGGA reverse primer
CAGTGGATGCTGAACTCTTGG. Each reaction con-
tained forward and reverse primers (0.2 mM), ¢cDNA
(approximately 4.5 ng/ul), dNTPs (0.2 mM), MgCl, (2 -
4 mM) and RedHot DNA polymerase (0.5 U; Thermo
Scientific, Waltham, MA) in 1x reaction buffer. The
reaction mix including cDNA was incubated at 94°C
(3 min), followed by 40 cycles of 94°C (30 s), 53 - 62°C
(30 s, or 90 s for GR-1A) and 72°C (30 s), then
72°C (10 min) and 4°C overnight. Products were run on a
1% agarose gel alongside a 100 bp ladder (Fermentas,

Control group

Bipolar disorder group

Schizophrenia group

(n=35) (n=34) (n=35)
Diagnostic subtype - BP1=27, BP2=4, BPNOS =2, SCZ(disorganised) =1, SCZ(paranoid) =8,
schizoaffective =1 SCZ(undifferentiated) = 26
Age (years) 442 (31-60) 454 (19-64) 426 (19-59)
Gender 9F, 26 M 18F, 16 M 9F, 26 M
Hemisphere 16 L, 19R 19L, 15R 17 L, 18R
pH 6.61 +/— 027 643 +/—0.30 648 +/— 024
PMI (hours) 294 4+/-129 379 +/- 186 314 4/- 155
RIN 723 +/- 087 734 +/- 088 736 +/— 061
Manner of death natural =35 natural = 19, suicide=15 natural =28, suicide=7
Age of onset (years) - 253 +/—92 213 +/— 6.1
Duration of illness (years) - 202 +/— 96 213 +/-102
Lifetime antipsychotics (fluphenazine - 10212 +/-22871 85004 +/— 100335
equivalents, mg)
Antidepressant use yes=0, no=35 yes=19, no=15 yes=9, no=26

Type of antidepressant* -

Smoking around time of death yes=9, no=9, unknown=17

SSRI=9 (fluoxetine=5) SNRI=4,
SARI=5, TCA=6, other=1

yes=15, no=6, unknown=13

SSRI=4 (fluoxetine=2), SNRI =0,
SARI=2, TCA=2, other=2

yes =23, no=4, unknown=8

Demographic details of controls, bipolar disorder cases and schizophrenia cases used in this study. *Note- some individuals took multiple antidepressant
medications. Abbreviations: BP1 = bipolar disorder type I, BP2 = bipolar disorder type I, BPNOS = bipolar disorder not otherwise specified, SCZ = schizophrenia,
M =male, F=female, L =left, R=right, PMI=post-mortem interval, RIN =RNA integrity number, SSRI =selective serotonin reuptake inhibitor, SNRI = serotonin—
norepinephrine reuptake inhibitor, SARI = serotonin antagonist and reuptake inhibitor, TCA = tricyclic antidepressant. Data quoted are mean (range) +/—

standard deviation.
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Waltham, MA), and visualised on the Chemidoc XRS Mo-
lecular Imager (Bio-Rad, Hercules, CA).

Quantitative real-time PCR (qPCR) analysis

Total RNA was extracted by the SMRI from lateral OFC
tissue of 34 schizophrenia cases, 31 bipolar cases and 34
controls using Trizol Reagent (Invitrogen, Carlsbad,
CA). cDNA was then synthesised from total RNA using
the Superscript First-Strand Synthesis Kit (Invitrogen,
Carlsbad, CA), and qPCR analysis conducted as previ-
ously reported [44]. Pre-designed TagMan gene expres-
sion assays (Applied Biosystems, Foster City, CA)
targeting pan GR (cat. # Hs00230818_ml), GR-1B
(Hs01005211_m1) and GR-1C (Hs01010775_m1l) were
used. Custom Tagman primer/probes were also designed
to target the exon 1-2 boundary of GR-1F (forward
primer, CTCGGTGGCCCTCTTAACG; reverse pri-
mer, CAGGAGTTAATGATTCTTTGGAGTCCAT; probe,
CAGAGAGACCAGTTGATATT) and GR-1H (forward
primer, GCGTGTCGGAGAGAGAACT; reverse primer,
GGGTTTTCTTCTCTACCAGGAGTTA; probe, TCCA
TCAGTGAATATCAACTGTT). Four ‘housekeeper’ genes:
B-actin (ACTB; Hs99999903_ml), beta-2-microglobulin
(B2M; Hs99999907_m1), TATA-binding protein (TBP;
Hs00427620_m1) and ubiquitin C (UBC; Hs00824723_m1)
were assayed. Serial dilutions of ¢cDNA, pooled from all
cohort samples, were included on every qPCR plate for
quantification of sample expression by the relative stand-
ard curve method. For qPCR gene expression analysis,
reactions were performed in triplicate. Normalisation to
the geometric mean of four housekeeper genes was then
performed, and population outliers excluded if their nor-
malised expression values were greater than 2 standard
deviations from the group mean. For each analysis, be-
tween 32-34 control individuals, 30-31 individuals with
bipolar disorder and 31-33 individuals with schizophre-
nia were retained after outlier removal. To estimate the
relative abundances of each GR mRNA variant within
each individual, relative amounts of each transcript were
calculated by the 2°2“* method [45], using the ACTB
housekeeper as internal control gene and pan GR mRNA
as the calibrator.

Western blotting

Western blotting was conducted as previously described
[40,46], using crude protein homogenates supplied by
the SMRI from the lateral OFC of 35 schizophrenia
cases, 34 bipolar cases and 35 controls. The P-20 anti-
GRa primary antibody (sc-1002X, Santa Cruz Biotech-
nology, Santa Cruz, CA) was used for detection of GRa
in this study. Antibody specificity has been previously
demonstrated, with amelioration of GRa immunoreac-
tivity by pre-incubation of this same P-20 antibody batch
with blocking peptide [40]. Seven micrograms of protein
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homogenate was heated (95°C, 5 min), run on 10% bis-
tris polyacrylamide gels (Bio-Rad) and transferred onto
nitrocellulose membranes (Bio-Rad) at 100 V for 30 min.
Blots were probed with the P-20 anti-GRa primary anti-
body (1:2000 dilution in 5% skim milk), followed by goat
anti-rabbit secondary (1:2000; Millipore, Billerica, MA).
After stripping (stripping buffer: 25 mM glycine, 1.5%
sodium dodecyl sulfate, pH 2.0), blots were incubated
with anti-B-actin primary antibody (1:10000; MAB1501,
Millipore), followed by goat anti-mouse secondary
(1:5000; Millipore). Blots were exposed to autoradio-
graphic film (Amersham, Bucks, UK) and quantified
using Quantity One analysis software (Bio-Rad). Dupli-
cate samples were run in separate experimental runs,
with the same batch of each antibody used for all runs.
Within each run the total intensity of each immunoreac-
tive band was normalised to an internal control (pooled
sample from entire cohort) loaded onto the same gel,
and to the B-actin band detected in the same lane. The
average [-actin across the two experimental runs did not
significantly differ between diagnostic groups. Popula-
tion outliers in each diagnostic group were excluded if
the sample normalised quantity value was greater than 2
standard deviations from the group mean. The geomet-
ric mean of both runs was then calculated, expressed as
a percentage of the control mean for each band. For
each analysis, between 34-35 control cases, 33—34 bipo-
lar disorder cases and 34—35 schizophrenia cases were
retained after outlier removal.

Genotyping

Eleven putative functional SNPs in the NR3C1 gene
were chosen for genotyping (Table 2) using genomic
DNA from 34 schizophrenia cases, 30 bipolar cases and
31 controls. Methods employed for DNA extraction and
genotyping were described when this genotype data were
first published [41]. Genomic DNA was extracted by the
SMRI with the Promega Wizard genomic kit (Promega,
Madison, WI). Briefly, genotyping was performed with
20 ng of genomic DNA, in a multiplex assay using a
Sequenom MassArray, Autoflex Spectrometer and
iPLEX GOLD chemistry. The pass rate for genotyped
samples was 99.0%. PLINK (version 1.06, http://pngu.
mgh.harvard.edu/purcell/plink) [47] was used for Hardy-
Weinberg equilibrium testing.

Statistical analysis

All data were approximately normally distributed (skew-
ness between -1.0 and 1.0). Pearson correlation analyses
were conducted with normalised mRNA or protein levels
and age, pH, PMI and RIN values. In addition, within
schizophrenia and bipolar disorder groups, correlation
analyses were performed with normalised mRNA or
protein levels and age-of-onset, duration-of-illness and
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Table 2 Details of NR3C1 (GR) SNPs analysed in this study
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dbSNP rs # location (UCSC build location, description, (common name) poly-morphism MAF HWE
Hg19, Feb 2009 (major/minor allele) p-value
rs10052957 142786701 5" UTR; 2656 bases upstream of exon 1B (Tth111]) T 0.320 1
rs72801094 142785905 5" UTR; 1860 bases upstream of exon 1B A/G 0.046 0177
rs5871845 142783949 5"UTR; exon 1B -/C 0.052 1
rs10482614 142782402 5" UTR; between exon 1 C and exon 1 H G/A 0.134 0.012
rs10482616 142781567 5" UTR; between exon 1 H and exon 2 G/A 0113 0.342
1s4634384 142780697 5" UTR; between exon 1 H and exon 2 G/A 0.490 0.687
rs6190 142780337 exon 2; non-synonymous (R23K) G/A 0.021 1
rs1800445 142779311 exon; non-synonymous (N363S) A/G 0 -
1541423247 142778575 intron; between exon 2 and exon 3, /G 0.345 0.825
645 bases downstream of exon 2 (Bcl1)
rs6196 142661490 exon 9a; synonymous (N766N) T/C 0.139 0.017
rs6198 142657621 3" UTR; inside exon 9B (A369G) A/G 0.170 0.065

Details of genotyped SNPs. Abbreviations: UCSC = University of California Santa Cruz, MAF = minor allele frequency, HWE = Hardy-Weinberg Equilibrium,

UTR = untranslated region.

fluphenazine-equivalent antipsychotic drug measures. If
significant correlations with demographic variables were
observed, analysis of covariance (ANCOVA) with Fisher’s
LSD post-hoc analysis was used to determine group dif-
ferences according to diagnosis, gender, hemisphere and
smoking. To determine effects of manner of death and
antidepressants, ANCOVA and LSD post-hoc tests were
performed after the schizophrenia and bipolar disorder
groups were sub-divided according to suicide status
(positive/negative) or history of antidepressant use
(positive/negative). Analysis of variance (ANOVA) was
used if no correlations were seen. Main effects ANO-
VAs, with diagnosis and genotype as independent fac-
tors, were used to identify the effects of genotype on
mRNA and protein expression, and also identify any
genotype-diagnosis interactions.

Results
GR mRNA expression in the OFC in schizophrenia and
bipolar disorder
We determined by endpoint PCR that the GR-1B, GR-
1C, GR-1F and GR-1H mRNA transcript variants are
expressed in the OFC (Figure 1). The GR-1B, GR-1C,
GR-1F and GR-1H mRNA transcripts were abundant in
universal human ¢cDNA, which was used as a positive
control. GR-1E was not detected in OFC tissue but was
present in universal cDNA. GR-1A; 3 and GR-1D were
not detected in OFC tissue or universal cDNA (Figure 1).
Expression levels of the GR-1B, GR-1C, GR-1F and GR-
1H mRNA transcripts were then quantified by qPCR.
For analysis of GR mRNA levels, in order to control for
variation in input material between samples, data were
normalised to the geomean of raw expression values for
TBP, UBC, ACTB and B2M mRNAs. No housekeeper

individually, nor the geomean of all four, varied signifi-
cantly between diagnostic groups (Figure 2I).

Next, we determined whether OFC GR mRNA tran-
script expression was influenced by brain cohort demo-
graphic variables. RIN was significantly correlated with
levels of all transcripts (all r<0.27, p <0.05), while brain
pH was significantly correlated with pan GR, GR-1B and
GR-1F mRNA transcript levels (all r<0.23, p<0.05).
Brain weight, age and PMI did not correlate with any
GR mRNA measures.

Significant diagnostic group differences in expression
of GR mRNA transcript variants were identified in the
lateral OFC. For normalised pan GR mRNA, diagnostic

]
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Figure 1 Endpoint PCR detection of GR exon 1 mRNA transcript
variants in the OFC. A) Strong amplification of the GR-1B, GR-1C
and GR-1H variants was evident in OFC ¢cDNA and in universal
human cDNA. B) Weaker amplification of the GR-1F variant was
observed in the OFC, while strong GR-1F amplification was seen in
universal human cDNA. €) No amplification of GR-1E was seen in
OFC cDNA, while weak amplification was seen in universal human
cDNA, D) No amplification of GR-1A or GR-1D in OFC cDNA or
universal human cDNA was detected. Boxes indicate expected
amplicon sizes. Abbreviations: Univ- universal human cDNA,

bp- base pairs.
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Figure 2 Expression of GR mRNA in the OFC in controls, bipolar disorder cases and schizophrenia cases. Expression of GR mRNA in the
OFC of controls (green diamonds), bipolar disorder cases (orange diamonds) and schizophrenia cases (blue diamonds). A) A trend towards an
effect of diagnosis on pan GR in the OFC was observed (ANCOVA, p=0.07), but no significant differences were seen in planned post-hoc tests
comparing controls to schizophrenia or to bipolar disorder cases; B) There were subtle diagnostic differences in GR-1B mRNA expression in the
OFC, with a 14.3% decrease in GR-1B expression in bipolar disorder cases relative to controls (p < 0.05) and a non-significant decrease in
schizophrenia cases relative to controls (10.8%, p=0.079); C and D) No significant diagnostic differences in GR-1C or GR-1F mRNA expression in
the OFC were observed; E) GR-TH mRNA expression in the OFC was significantly decreased in schizophrenia cases relative to controls (22.0%
decrease, p <0.005) and in schizophrenia cases relative to bipolar disorder cases (19.5% decrease, p < 0.05); F) GR-1B, GR-1C, GR-1F and GR-1H
mRNA transcript variants represented approximately 31.6%, 65.6%, 1.6% and 1.2% of total measured GR mRNA in the OFC respectively; G) Suicide-
negative bipolar disorder (BP non-suicide) cases displayed 24.6% lower GR-1F mRNA than controls (p < 0.05), and 25.6% lower than suicide-
positive bipolar disorder (BP suicide) cases (p < 0.05); H) Suicide-negative schizophrenia (SCZ non-suicide) cases displayed 26.5% lower GR-1H
mRNA than controls (p <0.001), and 27.9% lower than suicide-positive schizophrenia (SCZ suicide) cases (p < 0.05). I) There were no diagnostic
differences in raw mRNA expression levels of housekeeping genes TBP, UBC, ACTB or B2M individually, nor the geomean of all four.
Abbreviations: BP- bipolar disorder, SCZ- schizophrenia, CON- control. * p < 0.05, ** p < 0.005.
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group differences in expression approached significance
[ANCOVA F(2, 89)=2.74, p=0.07, co-varying for RIN
and brain pH; Figure 2A]. In planned post-hoc compari-
sons comparing controls to schizophrenia or bipolar dis-
order cases, no significant differences were identified
(both p>0.17). However, there were diagnostic differ-
ences in GR-1B and GR-1H mRNA transcript variant
levels in the lateral OFC. The effect of diagnosis on GR-
1B mRNA expression did not reach significance
[ANCOVA F(2, 87)=2.17, p=0.12, co-varying for RIN
and brain pH]. However, in planned post-hoc compari-
sons, a significant 14.3% decrease in GR-1B expression
in bipolar disorder cases relative to controls was
observed (p <0.05; Figure 2B). A trend towards a reduc-
tion in GR-1B mRNA expression was observed in
schizophrenia cases relative to controls (10.8% decrease,
p=0.079). A trend towards decreased GR-1F mRNA ex-
pression in schizophrenia and bipolar disorder cases was
seen [ANCOVA F(2, 90)=2.56, p=0.08, co-varying for
RIN and brain pH; Figure 2D], but no significant group
differences were observed by post-hoc test. For the GR-
1H mRNA transcript variant, significant group differ-
ences in expression according to diagnosis were seen
[ANCOVA F(2, 90) =5.72, p < 0.005, co-varying for RIN].
GR-1H mRNA expression was decreased in schizophre-
nia cases relative to controls (22.0%, p <0.005) and in
schizophrenia cases relative to bipolar disorder cases
(19.5%, p<0.05; Figure 2E). No effect of diagnosis on
GR-1C mRNA expression was observed [ANCOVA
F(2, 91)=1.22, p=0.30, co-varying for RIN; Figure 2C].

The relative abundances of each GR mRNA transcript
variant, relative to total measured GR mRNA, were esti-
mated within each individual. On average, the GR-1B,
GR-1C, GR-1F and GR-1H mRNA transcript variants
represented approximately 31.6%, 65.6%, 1.6% and 1.2%
of total measured GR mRNA in the OFC respectively
(Figure 2F).

Effects of suicide and other cohort demographic variables
on GR mRNA expression

A significant effect of suicide status on GR-1H mRNA in
the lateral OFC was observed [ANCOVA F(4, 88) =3.70,
co-varying for RIN, p<0.01; Figure 2H]. Suicide-
negative schizophrenia cases displayed 26.5% lower GR-
1H mRNA than controls (p<0.001), and 27.9% lower
than suicide-positive schizophrenia cases (p<0.05). A
trend towards an effect of suicide on GR-1F mRNA was
also seen [ANCOVA F(4, 88) =1.92, co-varying for RIN,
p=0.11; Figure 2G]. By post-hoc test, suicide-negative
bipolar disorder cases displayed 24.6% lower GR-1F
mRNA than controls (p<0.05), and 25.6% lower than
suicide-positive bipolar cases (p<0.05). No significant
differences in pan GR, GR-1B or GR-1C mRNA expres-
sion between suicide-positive and suicide-negative
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schizophrenia or bipolar disorder cases were detected.
When diagnostic groups were subdivided according to
presence/absence of antidepressant use, no significant
group differences in pan GR, GR-1B, GR-1C, GR-1F or
GR-1H mRNA expression in the lateral OFC were
observed (all p>0.05). When the schizophrenia and bi-
polar disorder groups were combined and divided
according to fluoxetine use, no group differences in pan
GR, GR-1B, GR-1F or GR-1H GR mRNA expression of
individuals on fluoxetine (n=7), compared with indivi-
duals not on fluoxetine (n =58), were observed. However
a significant 16.3% increase in GR-1C mRNA expression
in individuals on fluoxetine (n=7) relative to with indivi-
duals not on fluoxetine was seen [ANCOVA F(1, 59) = 6.72,
p <0.05]. No differences in pan GR, GR-1B, GR-1C, GR-
1F or GR-1H mRNA expression according to gender,
hemisphere or smoking status were observed (all
p>0.05). In bipolar disorder cases, significant negative
correlations were seen with age of onset for pan GR and
GR-1B mRNA levels (r=-0.392, p <0.05 and r = -0.387,
p <0.05 respectively), and with time in hospital for GR-
1C mRNA levels (r=-0.363, p<0.05). No significant
correlations of lifetime antipsychotic exposure with pan
GR, GR-1B, GR-1C, GR-1F or GR-1H mRNA levels in
bipolar disorder cases were seen (all p>0.05). Within
the schizophrenia group, GR-1B mRNA levels were sig-
nificantly negatively correlated with duration of illness
(r=-0.42, p<0.05), but not with age of onset, time in
hospital or level of lifetime antipsychotic exposure. No
significant correlation of pan GR, GR-1C, GR-1F or
GR-1H mRNA levels with duration of illness, age of
onset, time in hospital or level of lifetime antipsychotic
exposure in schizophrenia cases were seen. No signifi-
cant group differences were observed in pan GR, GR-1B,
GR-1C, GR-1F and GR-1H mRNA levels when samples
were grouped according to lifetime illicit drug or alcohol
use.

GRa protein isoforms in the OFC in schizophrenia and
bipolar disorder
We tested if GRa protein isoform abnormalities exist in
the lateral OFC by quantifying GRa protein expression
in the lateral OFC using western blotting. Using this
technique previously, in combination with cloning and
in vitro expression, we established that immunoreactive
(IR) band 1 is likely to represent the full-length GRa,
and IR band 2 represents an uncharacterised 67 kDa iso-
form [46]. Of the smaller isoforms, IR band 3 putatively
represents the truncated GRa-D1 isoform, IR band 4
represents another GRa-D isoform (GRa-Dx) and IR
band 5 represents an uncharacterised 25 kDa isoform
(Figure 3A).

In the lateral OFC, GRa protein measures were not
significantly correlated with age, brain pH, PMI or brain
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Figure 3 Quantification of GRa protein in the OFC in controls, bipolar disorder cases and schizophrenia cases. A) Representative western
blot of lateral OFC protein homogenate, revealing immunoreactive (IR) bands 1-5, approximately 105, 67, 50, 40 and 25 kDa in size. IR bands 1, 2,
3 and 4 are likely to represent full-length GRa, 67 kDa GRa, GRa-D1 and GRa-Dx respectively. B) Intensities of GRa IR bands in western blotting of
lateral OFC samples. There were significant differences in intensities of IR band 3 [GRa-D1; ANOVA F(2, 97)=4.15, p < 0.05] between schizophrenia

cases, bipolar disorder cases and controls. A significant 56.1% increase in IR band 3 intensity of bipolar disorder cases relative to controls
(p < 0.005), and a significant 31.5% increase in IR band 3 intensity of schizophrenia cases relative to controls (p < 0.05) were observed. Error bars
represent SEM. Abbreviations: Bp- bipolar disorder, Scz- schizophrenia, Con- control.* p < 0.05, ** p < 0.005.

weight, with the exception of IR band 3 intensity, which
was positively correlated with PMI (r=0.21, p<0.05),
accounting for a small amount of variance. No signifi-
cant differences between schizophrenia, bipolar disorder
and control cases were observed in intensities of IR
bands 1, 2, 4 and 5 or the sum of IR bands 1-5
(Figure 3B). However, as in the DLPFC, there were sig-
nificant diagnostic group differences in IR band 3 (GRa-
DI1) intensity [ANCOVA F(2, 97)=4.15, p<0.05]. IR
band 3 intensity was increased in bipolar disorder cases
relative to controls (56.1%, p <0.005, one-tailed t-test),
and in schizophrenia cases relative to controls (31.5%
p<0.05, one-tailed ¢-test). No correlations of OFC GRa
protein measures with age of onset, duration of illness
or level of lifetime antipsychotic exposure within schizo-
phrenia and bipolar disorder cases were observed.

GR mRNA expression levels in the lateral OFC did
not correlate significantly with abundance of GRa pro-
tein isoforms, with the exception of pan GR mRNA

expression, which correlated positively with GRa IR
band 5 abundance (r =0.23, p <0.05).

Relationships between NR3C1 gene polymorphisms, GR
mRNA expression and GRa protein isoform abundance in
the OFC

The relationship between NR3C1l genotype and GR
mRNA expression was explored in the lateral OFC using
genotype data for 11 single nucleotide polymorphisms
(SNPs, Table 2). When analysed by main effects ANO-
VAs, there were no significant relationships between
NR3C1 genotype (at any of the genotyped SNPs) and ex-
pression of pan GR, GR-1B, GR-1C or GR-1H mRNA
transcript variants in the lateral OFC. For the
rs10052957 (Tth111l) SNP, a significant, dose-dependent
relationship between genotype and GR-1B mRNA
expression was previously seen in the DLPFC. For
this rs10052957 SNP, there were no main effects of
genotype on pan GR [F(2, 80)=0.96, p=0.39], GR-1B
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[F(2, 78)=0.68, p=0.51], GR-1C [F(2, 82) =0.44, p =0.65]
or GR-1H [F(2, 80) = 0.048, p =0.95].

Possible effects of NR3C1 genotype on GRa protein
measures were also explored in the lateral OFC. There
were no significant main effects of NR3C1 genotype on
intensities of IR band 1, 2, 3, 4, 5 or total IR bands 1-5
in the OFC. Previously, we identified an NR3C1 SNP,
rs41423247 (Bcll), which had a possible effect on GRa
protein expression in the DLPFC [41]. In the lateral
OFC, this SNP was not associated with differences in
abundance of IR band 1 [F(2, 86)=1.54, p=0.22], IR
band 2 [F(2, 85)=0.69, p=0.50], IR band 3 [F(2,
85) = 0.69, p=0.50], IR band 4 [F(2, 86)=0.61, p=0.61],
IR band 5 [F(2, 85) =0.73, p=0.49] or total IR bands 1-5
[F(2, 85) =0.43, p =0.65].

Discussion

In this study, we identified abnormalities of GR mRNA
and protein expression in bipolar disorder and schizo-
phrenia in the lateral OFC. These abnormalities particu-
larly implicated the GR-1B mRNA transcript variant in
bipolar disorder, the GR-1H mRNA transcript variant in
schizophrenia, and the GRa-D1 protein isoform in both
bipolar disorder and schizophrenia. Interestingly, the
transcript-specific patterns of GR mRNA dysregulation
within the lateral OFC in bipolar disorder and schizo-
phrenia differed from the more generalised GR mRNA
dysregulation identified in the DLPFC in these disorders
[41].

In bipolar disorder, decreased expression of the GR-1B
mRNA transcript variant was identified in the lateral
OFC, while no changes were observed in levels of pan
GR, GR-1C or GR-1H mRNA transcripts. This pattern
contrasts with the dysregulation seen in the DLPFC,
which was characterised by decreased GR-1C and GR-
1H mRNA transcripts in bipolar disorder, a subtle de-
crease in pan GR mRNA, and no change in GR-1B
mRNA [41]. These findings suggest that distinct dysre-
gulation of GR mRNA expression occurs in the lateral
OFC and DLPFC in bipolar disorder, and implicate the
transcriptional regulatory mechanisms governing GR-1B
mRNA expression in the lateral OFC in bipolar disorder.
GR-1B mRNA transcript expression is driven by a
unique upstream promoter region [48], and can be influ-
enced by sequence variation in the NR3C1 promoter re-
gion in the human DLPFC [41]. Furthermore, GR
mRNA transcript variants, including GR-1B, are likely to
be also regulated by tissue-specific transcription factors,
which mediate tissue-specific GR action [49]. It is pos-
sible that these regulatory mechanisms, and/or others
yet to be defined, are involved in dysregulation of GR-1B
mRNA in bipolar disorder. GR promoter methylation
may also play a role, since GR promoter hyper-
methylation has been associated with decreased GR-1B
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mRNA expression in the hippocampus of child abuse
sufferers [50]. Greater variation in GR-1B mRNA levels
was observed in bipolar disorder cases than schizophre-
nia cases in the lateral OFC. This was not a gender ef-
fect, since males and females displayed equivalent
variability in GR-1B mRNA expression in bipolar dis-
order. However, it may have been due in part to the in-
fluence of age of illness onset on GR-1B expression in
bipolar disorder, since more cases with later age of onset
are present in the bipolar disorder group than the
schizophrenia group, and decreased GR-1B mRNA cor-
related with later age of onset. However, the effect of this
illness parameter on GR-1B expression is difficult to in-
terpret, since earlier age of onset has been linked to
increased illness severity [51], but is associated with
higher GR-1B mRNA levels among bipolar disorder
cases, more reminiscent of normal controls. Although
GR-1B expression (which represents approximately 32%
of total measured GR mRNA) was decreased in bipolar
disorder, there was no difference in pan GR mRNA
levels between bipolar disorder cases and controls. This
may arise because other GR mRNA transcripts including
GR-1C (which represents approximately 66% of total
measured GR mRNA) may have diluted this diagnostic
effect, despite themselves being unchanged in bipolar
disorder.

In schizophrenia, a significant decrease in levels of the
GR-1H mRNA transcript variant, along with a trend to-
wards a decrease in GR-1B mRNA expression, were
observed in the lateral OFC. As observed for bipolar dis-
order, these mRNA abnormalities in schizophrenia were
more circumscribed in the lateral OFC than in the
DLPFC, where decreases in pan GR mRNA and all tran-
script variants (GR-1B, GR-1C and GR-1H) were
observed [41]. The GR-1H transcript includes exon 1H,
the GR alternative first exon which is located most prox-
imal to exon 2. The regulation of GR-1H expression by
transcription factors in its promoter region, and the
function of GR-1H, have not been characterised. Fur-
thermore, GR-1H mRNA represents only a small frac-
tion (approximately 1.2%) of total measured GR mRNA
in this study, as in other studies [52]. As a result, the se-
lective GR-1H mRNA deficits which we observe may
have limited impact on GR signalling in the lateral OFC
in schizophrenia.

The effects of antidepressant use in general, and fluox-
etine use in particular, were explored in this study, since
previous work has showed selective effects of fluoxetine
on total GR and GR-1F mRNA expression in rodent
hippocampus [53]. In our study, GR-1C mRNA expres-
sion was increased in fluoxetine users relative to non-
users. The direction of this change is consistent with the
previous study. However, unlike previously reported, we
observed no effects of fluoxetine on GR-1F mRNA
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expression in the OFC, suggesting that antidepressant
effects may vary between species and/or brain regions.

The primary GRa protein abnormality that we
observed was increased abundance of a truncated GRa
isoform, putative GRa-D1, in both bipolar disorder and
schizophrenia in the OFC. This same increase in GRa-
D1, of a similar magnitude, was seen in bipolar disorder
and schizophrenia cases in the DLPFC [40]. In vitro
experiments have revealed that the abundance of the
GRa-D1 isoform is determined not only by mRNA
transcript levels, but also by post-transcriptional mech-
anisms [46,54]. Consistent with these findings, over-
expression of the GRa-D1 isoform was observed in both
the DLPFC and lateral OFC in bipolar disorder and
schizophrenia, despite divergent patterns of GR mRNA
dysregulation in both regions. The absence of consistent
correlations between GR mRNA and GRa protein mea-
sures in this study also suggests post-transcriptional
regulation of GRa protein abundance. GRa-D1 has been
previously shown to function as a transcription factor at
glucocorticoid response elements [40], and to activate
and repress the transcription of numerous target genes
[54]. As a result, upregulation of GRa-D1 has the poten-
tial to influence diverse aspects of cellular function.
Since the OFC is an integral component of the brain’s
reward circuitry [2], and is involved in integrating sen-
sory information [4,6], it is possible that abnormal GR
signalling may impact these cognitive functions, particu-
larly during the experience of stress.

In both psychotic illnesses, a lesser involvement of the
lateral OFC than the DLPFC in GR mRNA deficits was
seen. One possible reason for this observation may relate
to the experience of stress. It is plausible that more
widespread GR mRNA dysregulation in the DLPFC than
the lateral OFC arises due to chronic illness-induced
stress in both illnesses. Stress has been shown to down-
regulate GR mRNA expression [55-58]. The DLPFC may
be more sensitive to this effect, having stronger connec-
tions than the lateral OFC (BA11L) with other stress-
sensitive regions which are involved in regulating HPA
axis activity, such as the hippocampus and hypothalamus
[3,4,6,9,10]. To explore this possibility we examined the
relationship between GR mRNA expression and suicide,
which may be associated with stressful experiences prior
to death. We observed an influence of suicide on expres-
sion of multiple GR mRNA transcript variants in the
DLPFC [41], but this influence was limited to the GR-1F
and GR-1H mRNA transcripts in the lateral OFC, sug-
gesting that the lateral OFC may be less sensitive than
the DLPFC to the (stressful) effects of suicide. In all
cases, GR mRNA or GRa protein changes in individuals
with suicide were in the opposite direction to diagnostic
differences, and therefore were not driving diagnostic
group differences. Taking into account the divergent GR
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mRNA and protein findings in this study, and in previ-
ous work in the DLPFC [40,41], it is likely that multiple
processes are involved in GR dysregulation in the frontal
cortex in psychotic illness, potentially representing a mix
of primary, consequential and/or compensatory changes.
Some of these changes may be anatomically specific,
whereas others may be more ubiquitous.

Analysis of GR mRNA expression in the lateral OFC,
in the context of sequence variation in the NR3C1 gene,
did not reveal any relationship of NR3C1 genotype to
lateral OFC gene expression. This finding is in contrast
to our previous observations in the DLPFC, in which the
rs10052957 (Tth111l) and rs6190 (R23K) SNPs impacted
expression of the GR-1B and GR-1C mRNA transcript
variants respectively [41]. Such polymorphisms may,
therefore, impact NR3C1 gene expression in an anatom-
ically specific manner. This effect could be mediated by
brain region-specific transcription factors, which may in-
fluence regional patterns of GR mRNA transcript variant
expression [59]. Such DLPFC and lateral OFC region-
specific transcription factors could differentially interact
with  NR3C1 polymorphisms, manifesting effects of
genotype in the DLPFC but not the lateral OFC. Alter-
natively, the effect of genotype on GR gene expression
may represent a gene x environment interaction, which
is not evident in the lateral OFC because this region
may be less susceptible than the DLPFC to the effects of
stress or other environmental influences. The effects of
NR3C1 genotype on GRa protein which was previously
observed in the DLPFC [41] were not seen in the lateral
OFC in this study. The mechanisms by which genotype
may impact GRa protein isoform levels in a brain
region-specific manner remain to be elucidated.

In this study, our observations of both similarities (at
the GRa protein level) and differences (at the GR mRNA
level) between schizophrenia and bipolar disorder are
consistent with the similarities and differences between
the two illnesses more generally. Bipolar disorder and
schizophrenia share similar psychotic symptoms, genetic
and environmental risk factors, HPA axis abnormalities
and some similar neuropathological changes [19,23-
25,60,61]. However, the two illnesses differ from each
other in the extent of their affective symptoms, cognitive
disturbances and in other neuropathological changes
[62-66]. Our findings support the notion that a complex
relationship exists between schizophrenia and bipolar
disorder at a neurobiological level.

Overall, we identified abnormal GR mRNA and GRa«
protein expression in the lateral OFC in schizophrenia
and bipolar disorder. Depending on the functional prop-
erties of the GRa-D1 isoform, these changes have the
capacity to impact cellular stress responses of neurons
within the lateral OFC. It has been shown that the stress
hormone cortisol, acting through GR in other brain
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regions, can impact glutamatergic and GABAergic
neurotransmitter signalling [67-72], and in excess can
cause neuronal loss and impair brain function [73-75]. It
is plausible, therefore, that high cortisol levels in some
individuals with schizophrenia and bipolar disorder may
act via glutamatergic and GABAergic mechanisms to
contribute to abnormalities (structural and functional)
in the lateral OFC network, in a process either mediated
by, or resulting in, GR mRNA and GRa protein dysregu-
lation in the lateral OFC. The possible roles of
stress and GR dysregulation in the pathophysiology
of schizophrenia and bipolar disorder, potentially through
interaction with the glutamatergic and GABAergic neuro-
transmitter systems in the prefrontal cortex, warrant fur-
ther study.

Conclusions

In this study, we provide evidence of GR mRNA and
GRa protein isoform abnormalities in the lateral OFC in
bipolar disorder and schizophrenia. These findings par-
ticularly highlight the potential importance of the func-
tional GRa-D1 isoform in psychotic mental illness.
Directions for future studies may include investigation
of mechanisms through which GRa-D1 dysregulation
may impact the function of the prefrontal cortex. Ultim-
ately, understanding the molecular basis of HPA axis
abnormalities in schizophrenia and bipolar disorder may
enable therapeutic interventions aimed at lowering stress-
related risk for psychosis.
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