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Structural brain changes associated with
antipsychotic treatment in schizophrenia as
revealed by voxel-based morphometric MRI:
an activation likelihood estimation meta-analysis
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Abstract

Background: The results of multiple studies on the association between antipsychotic use and structural brain
changes in schizophrenia have been assessed only in qualitative literature reviews to date. We aimed to perform
a meta-analysis of voxel-based morphometry (VBM) studies on this association to quantitatively synthesize the
findings of these studies.

Methods: A systematic computerized literature search was carried out through MEDLINE/PubMed, EMBASE, ISI Web
of Science, SCOPUS and PsycINFO databases aiming to identify all VBM studies addressing this question and
meeting predetermined inclusion criteria. All studies reporting coordinates representing foci of structural brain
changes associated with antipsychotic use were meta-analyzed by using the activation likelihood estimation technique,
currently the most sophisticated and best-validated tool for voxel-wise meta-analysis of neuroimaging studies.

Results: Ten studies (five cross-sectional and five longitudinal) met the inclusion criteria and comprised a total of 548 indi-
viduals (298 patients on antipsychotic drugs and 250 controls). Depending on the methodologies of the selected studies,
the control groups included healthy subjects, drug-free patients, or the same patients evaluated repeatedly in longitudinal
comparisons (i.e., serving as their own controls). A total of 102 foci associated with structural alterations were retrieved.
The meta-analysis revealed seven clusters of areas with consistent structural brain changes in patients on antipsychotics
compared to controls. The seven clusters included four areas of relative volumetric decrease in the left lateral temporal
cortex [Brodmann area (BA) 20], left inferior frontal gyrus (BA 44), superior frontal gyrus extending to the left middle frontal
gyrus (BA 6), and right rectal gyrus (BA 11), and three areas of relative volumetric increase in the left dorsal anterior cingu-
late cortex (BA 24), left ventral anterior cingulate cortex (BA 24) and right putamen.

Conclusions: Our results identify the specific brain regions where possible associations between antipsychotic drug
usage and structural brain changes in schizophrenia patients are more consistently reported. Additional longitudinal VBM
studies including larger and more homogeneous samples of schizophrenia patients may be needed to further
disentangle such alterations from those possibly linked to the intrinsic pathological progressive process in schizophrenia.
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Background
Schizophrenia is a common, complex and severe psychi-
atric disorder affecting approximately 1% of the world
population. The disorder remains a major cause of
chronic disability among young and working-age indi-
viduals and is associated with a significant health, social
and economic burden internationally [1-4]. Whereas
finding an etiology for schizophrenia has been consid-
ered the “Holy Grail” of biological psychiatry research
for more than one hundred years [5,6], its neurobio-
logical basis mostly remains elusive in terms of its major
neuropathologic, pathophysiologic, psychopharmacologic
and genetic aspects [1,7].
In the last decades, with the advent of more sophisti-

cated neuroimaging techniques such as magnetic reson-
ance imaging (MRI), which allows in vivo studies of the
brains of individuals with schizophrenia, structural brain
changes in schizophrenia have been extensively charac-
terized [8-10]. Some of these findings include smaller
mean cerebral volumes and greater mean total ventricu-
lar volume in patients with schizophrenia, with signifi-
cant decreases in both gray and white matter [11].
These findings initially have favored a dominant “neu-

rodevelopmental” model of the origin of the disease: in
the model, schizophrenia is basically a consequence of a
disruption in early brain development, long before the
clinical manifestations of disease that typically occur in
adolescence or early adulthood. Moreover, an interaction
between these early brain insults and environmental
factors delineating the brain maturation in adolescence
would be necessary to trigger psychotic behavior [7,12-17].
However, as these structural brain changes are often

subtle and their course is difficult to appreciate in an
evolving manner, it is only after robust and longitudinal
MRI studies that the possibility of progressive structural
brain changes over time has been strengthened (favoring
the addition of a “neurodegenerative” hypothesis to
the dominant “neurodevelopmental” model) [18-25].
The advent of voxel-based morphometry (VBM) was of
crucial importance in this sense, as VBM represents an
automated method of measuring whole-brain morphom-
etry by comparing groups of images on the relative local
concentration or density of gray or white matter in a
voxel-by-voxel way, thus reducing investigator bias and
providing highly reproducible results, among other
benefits [26-28].
Although a neurodevelopmental insult does not pre-

clude an associated neurodegenerative process [29], the
idea of progressive structural changes in the brain over
time, which could denote neurodegeneration, has been a
controversial issue [30-32], particularly because the
findings of different studies have at times seemed incon-
sistent. A notable example is the question of lateral ven-
tricles: whereas some longitudinal MRI and CT studies
showed no enlargement over time [33-35], others have
shown significant progression [36]; a recent meta-analysis
comprising 13 studies regarding this question identified
evidence of a progressive ventricular enlargement, conclud-
ing that the exclusively neurodevelopmental model of
schizophrenia is now challenged [30].
While the progressive nature of structural brain

changes in schizophrenia is not yet fully understood,
they are thought to be in some degree due to a combin-
ation of abnormalities of synaptic plasticity, abnormal
brain maturation and distinct environmental factors
[37]. For many years, although a significant number of
individuals involved in neuroimaging studies had used
antipsychotic drugs, the role of drug treatment as a
cause of these changes has been scarcely investigated
[38]. Thus, among the environmental factors, a major
current question is the role of antipsychotic medications
in the progression of structural abnormalities, i.e., to
determine to what extent these global brain volume
changes are uniquely a consequence of schizophrenia
(a progressive pathophysiology of the illness) or an effect
of antipsychotics (including the potentially different role
of typical and atypical classes) [38-43].
Antipsychotic medications are the cornerstone of the

treatment of schizophrenia and have a positive effect on
the prognosis, not only by leading to a general improve-
ment in the long-term outcomes of patients but also by
reducing the severity and frequency of positive and
negative psychotic symptoms, including suicide risk as
well as behavioral disturbances [44-49]. Classical (typ-
ical) antipsychotics (e.g., haloperidol) predominantly act
by blocking dopamine D2 receptors in mesostriatal,
mesolimbic and mesocortical regions and the thalamus,
directly contributing to the amelioration of psychotic
symptoms that are thought to be a result of abnormally
increased dopaminergic activity in these pathways [50-53].
New-generation (atypical) antipsychotics (e.g., clozapine),
despite their activity in reducing dopaminergic activity
through dopamine D2 receptors blockade, have binding ac-
tivity at various others receptors, including a higher affinity
for the serotoninergic 5-HT2Areceptors (high 5-T2A/D2

binding ratio) involved in the treatment of positive and
negative symptoms [53,54]. Although this differentiation
has clinical relevance, especially with regard to distinct
side-effect patterns, the mechanisms of action of these
drugs are not yet fully understood, and the definition of
atypicality remains a matter of discussion [53-55].
Neuroimaging has a potential role in research aimed

at a better understanding of structural brain changes
secondary to antipsychotic usage. In the last years, nu-
merous studies have been undertaken to address these
questions, involving variable subsets of schizophrenia
patients with different disease duration, age of onset,
time of exposition to antipsychotics and degrees of
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clinical severity [30,56,57]. In addition, an important
limitation of most of these studies is the small sample
size used [57], which decreases statistical power and
limits more definitive conclusions. Finally, only a few
studies have used the VBM approach [39,57]. All these
aforementioned factors make data interpretation diffi-
cult, reinforcing the need for meta-analytic studies in
this area using homogeneous morphometric methodolo-
gies and including multiple samples of patients.
A tool for voxel-wise meta-analysis of neuroimaging

studies is the anatomic likelihood estimation technique
(ALE). ALE incorporates multiple data sets of published
coordinates generated by different VBM studies of a
given disorder, automatically identifying through a
whole-brain activation likelihood map those statistically
significant (i.e., the most consistent) brain differences re-
ported across these studies [58-60]. By avoiding the bias
inherent in those studies employing manual ROIs and
allowing the application of a statistical procedure, by
depicting regional brain differences with good spatial
resolution and by affording more definitive conclusions
than single VBM studies, ALE is considered the most so-
phisticated and best-validated method of coordinate-
based voxel-wise meta-analysis [61,62].
Although a number of well-written and comprehensive

literature reviews have been conducted in recent years
addressing the role of antipsychotics in the progression
of structural brain changes over time in schizophrenia
[38,39,41,43], these approaches to date have been only
qualitative. No published study to date has used the ALE
quantitative approach to conduct meta-analyses of VBM
investigations comparing schizophrenia patients on anti-
psychotics versus unmedicated patients and healthy con-
trols, or comparing schizophrenia patients before and
after antipsychotic usage. Considering that some VBM
studies have investigated samples comprised of as few as
15 schizophrenia patients, it is timely to apply a meta-
analytic approach addressing this question, to quantita-
tively synthesize the findings of different studies, thus
affording greater statistical power through the use of
larger samples.
In this study, therefore, we sought to quantitatively re-

view the relevant literature on the association between
antipsychotics and structural brain changes in schizo-
phrenia through a meta-analytic approach of VBM
studies by using the ALE method. By quantitatively inte-
grating the different foci of structural changes reported
in each study, our objective was to establish whether a
consistent anatomical pattern across these reported foci
can be observed and determine the clusters of significant
topographic convergence, ultimately providing a neuro-
anatomical basis for these changes. We also questioned
whether the meta-analytic approach might aid in differ-
entiating between the effects of antipsychotics and those
solely related to the disease itself. Alternatively, it might
help to organize the data from distinct studies even
without further clarifying this dilemma. In this sense, we
hypothesized that the quantitative meta-analytic ap-
proach, by more consistently identifying the regions af-
fected by antipsychotics, might help to delineate the
regional patterns of brain involvement associated with
antipsychotic medications and to verify the overlaps with
the classical patterns of brain involvement associated
with the pathophysiological process during the develop-
ment of psychosis. The identification of areas of struc-
tural brain alterations associated with antipsychotic
exposure that differ from those areas commonly associ-
ated with the disease would aid in achieving a better
understanding of this question.

Methods
Data sources and paper selection
We conducted a systematic computerized literature
search via the MEDLINE/PubMed (http://www.ncbi.
nlm.nih.gov/pubmed), EMBASE (http://www.embase.
com), ISI Web of Science (http://newisiknowledge.com/
wos), SCOPUS (http://www.scopus.com) and PsycINFO
(http://www.apa.org/psycinfo) databases for VBM stud-
ies investigating the role of antipsychotic drugs in
structural brain changes in samples of patients with
schizophrenia. We used the following search keywords
in different combinations to generate a list of potentially
useful studies: “schizophrenia” (as well as variants, in-
cluding “psychosis” and “schizoaffective”), crossed with
“antipsychotics”, “antipsychotic agents” or “neurolep-
tics” and neuroimaging stems, including “MRI”, “mag-
netic resonance imaging”, “VBM” and “voxel-based
morphometry”. The search was performed through
August 2012, and no restrictions on date of publication
or language were applied. We carefully examined all ti-
tles and abstracts resulting from these searches to deter-
mine which articles met the criteria for inclusion. The
full text of all selected articles was evaluated, and the
references for each article were also screened to identify
additional eligible papers. All studies were obtained
from peer-reviewed journals.
We selected studies considering the following inclu-

sion criteria: a) original research articles; b) quantitative
automated whole-brain analyses were performed; c) the
VBM method was used [26,63]; c) the samples included
subjects with schizophrenia using typical or atypical
antipsychotics, and comparisons were performed with
healthy controls or medication-free subjects, or schizo-
phrenic patients were compared through serial MRI ex-
aminations both at baseline and after specific treatment
with an antipsychotic; d) the results were normalized to
the Talairach [64] or Montreal Neurological Institute
(MNI) [65,66] standardized stereotactic spaces; e) after

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
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VBM analyses, the peak coordinates of structural brain
changes specifically associated with antipsychotics (i.e., after
controlling for confounding effects such as the effects of
disease, disease duration, etc.) were explicitly reported. In
cases where the coordinates were not reported, attempts
were made to contact the corresponding author for
further details (e-mail and phone contact). The PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) flowchart detailing all the steps of the
systematic review is provided in Figure 1.

Meta-analytic techniques
As aforementioned, meta-analysis was carried out by
using the ALE method as introduced by Turkeltaub in
Figure 1 PRISMA flowchart of search results.
2002 [58], with revision by Laird in 2005 [59], Eickhoff
in 2009 [60] and Turkeltaub in 2011 [67]; data process-
ing was performed through the GingerALE 2.1 program
[59,60,67] (http://www.brainmap.org). The analyses were
conducted in Talairach space [64], and, when necessary,
we spatially renormalized the MNI coordinates [65,66]
published in some studies to Talairach coordinates [64],
using the Lancaster’s transform (“icbm2tal”) [68,69].
Briefly, ALE is a method that determines the existence

of anatomical convergence among results from different
samples and studies, assuming an uncertainty in the
location of each reported focus, which should be consid-
ered in terms of Gaussian probability density distribu-
tions that surround themselves. Therefore, the focus of

http://www.brainmap.org
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maximal activation (peak coordinates) represents the
center of a three-dimensional Gaussian probability [58].
As recently proposed in the revised ALE algorithm,
the use of pre-determined full-width half maximum
(FWHM) values for the Gaussian probability distribu-
tions in the analyses is no longer required. The values
are now empirically determined on the basis of a quanti-
tative uncertainty model whereby the coordinates re-
ported by studies with larger samples are more spatially
accurate than those from smaller ones, thus requiring
smaller FWHM values [60].
As ALE seeks to determine statistically significant con-

vergence of activation probabilities between experi-
ments, refuting the null hypothesis that the foci are
homogeneously distributed throughout the brain [70],
the modeled three-dimensional Gaussian probabilities of
all foci reported in each experiment are summed in a
voxel-wise manner, resulting in modeled activation
(MA) maps [60,70]. The voxel-wise union of each com-
puted MA map yields the “true ALE scores”, which
demonstrate the convergence of foci through the whole
brain across the entire set of studies. Permutation analyses
conducted in ALE meta-analyses (using GingerALE, for
example) are anatomically unconstrained, including not
only the predominant foci within gray matter but also the
foci within the deep white matter. Thus, it is a whole-brain
analysis that allows conjoint analysis of gray and white mat-
ter foci. Finally, to determine the statistical significance, i.e.,
to assess the validity of convergence found in the true ALE
scores over a random convergence (noise), an automated
comparison is performed with a computed empirical null
distribution of random ALE scores. For this purpose, from
each MA map, a voxel is randomly selected and its prob-
ability is computed, and the union of these probabilities (as
done for the true scores) yields the random score [60].
As described in previous meta-analyses of VBM stud-

ies, we adopted a threshold for the map of final ALE
scores with a false discovery rate (FDR) corrected at p <
0.05 [71-73] and a cluster extent threshold of 100 mm3

[72,74]. In addition, we chose the resultant coordinates
to be reported for all submaxima in a single ALE cluster
(all extrema). Significant clusters were overlaid onto an
anatomical Talairach template, Colin1.1.nii (http://www.
brainmap.org/ale), using the Mango software (version
2.6, 2012, Research Imaging Institute, University of
Texas Health Science Center, USA; http://ric.uthscsa.
edu/mango).

Results
The systematic search yielded 1163 abstracts, of which
68 were initially selected for a full-text screening. One
study, by Massana et al. [75], was excluded, as the
stereotactic coordinates were not reported in the paper
nor provided by the authors after request (personal
communication). Another study, by Schaulfelberger
et al. [76], was excluded because significant peak coordi-
nates of structural brain changes were found only with
small volume correction analysis.
Finally, ten studies [77-86] met the inclusion criteria

(PRISMA flowchart in Figure 1). Additional data were
necessary for the maps and peak coordinates reported in
the study by Molina et al. [86] and were provided by the
authors after submitting a request via e-mail (personal
communication). Table 1 illustrates the clinical and
demographic variables of the subjects included in the
ten selected studies, which encompassed a total of 548
individuals (298 patients using typical or atypical anti-
psychotics and 250 controls). For the effect of reported
coordinates included in this meta-analysis, five selected
studies were classified as longitudinal [78,79,81,82,84]
and five as cross-sectional [77,80,83,85,86]. Table 2
provides details on the methodologies of each selected
study.
Most of the patients enrolled were using atypical anti-

psychotics (234; 78.5%), which in these samples included
olanzapine, risperidone, quetiapine, sertindole, amisulpiride,
clozapine and ziprasidone. From the subset of studies
which specifically described the number of patients who
had taken each antipsychotic [77,78,80,82-86], olanzapine
and risperidone were the most frequently used drugs
among these 179 patients treated with atypicals, being used
for 40.7% (73) and 30.1% (54) of the patients, respectively.
Typical antipsychotics used when considering all the se-
lected studies were chlorpromazine, sulpiride, haloperidol,
thioridazine, droperidol, trifluoperazine, zuclopenthixol,
fluphenazine and clotiapine. Additional file 1 summarizes
the data concerning the antipsychotic drugs used by the
patients of these selected studies.
Overall, 105 foci were retrieved in the analysis of the

ten studies, 71 of which were related to volumetric gray
matter and/or white matter deficits, and 34 to volumet-
ric excesses. Additional file 2 demonstrates in the stereo-
tactic space the foci of reported structural brain changes
according to the class of antipsychotics (when available)
and the type of alteration in the meta-analyzed studies.
As some of the selected studies showed different effects
for the use of antipsychotics, i.e., showed areas of both
volumetric excesses and volumetric deficits, the meta-
analysis was performed separately for those coordinates
related to volumetric deficits and for those related to
volumetric excesses. Patients using antipsychotic medi-
cations had four significant clusters of volumetric defi-
cits in comparison to controls: 1) a cluster of 408 mm3

located in the left lateral temporal cortex, BA 20 (peak
voxel at Talairach coordinate −48, -16, -20); 2) a cluster
of 192 mm3 located in the left inferior frontal gyrus, BA
44 (peak voxel at Talairach coordinate −48, 6, 22); 3) a
cluster of 120 mm3 located in the left superior frontal

http://www.brainmap.org/ale
http://www.brainmap.org/ale
http://ric.uthscsa.edu/mango
http://ric.uthscsa.edu/mango


Table 1 Clinical and demographical data from subjects included in the selected studies

Reference Subjects (n) Gender of
patients (F/M)

Age of
patients
(years)a

Education
(years)a

Duration of
illness

Handedness
(R/L/A)Patients Controls Total

Typical Atypical Healthy
subjects*

SP MF

Dazzan et al.
2005 [77]

32 30 – – 22 84 21/41 25 ± 8 to 28.4
± 7.8

12.3 ± 1.8 to
12.3 ±2.1

19 to 22
weeksb

54/8

Girgis et al.
2006 [78]

– 15 15 15 – 30 8/7 23.6 ± 5.9 13.1 ± 3.2 105.3 ± 94.6
weeksa

NA

Whitford et al.
2006 [79]

– 25 26 25 – 51 10/15 22.1 ± 3.2 NA 5.9 ± 8.2
monthsa

21/4

Douaud et al.
2007 [80]

– 25 25 – – 50 7/18 15.9 ± 1.5 to
16.5 ± 1.3

NA 1.4 ± 0.7
yeara

20/5

Théberge et al.
2007 [81]

16 16 16 – 32 2/14 25 ± 8 11-13 243 ± 120
weeksa

12/3/1

Stip et al.
2009 [82]

– 15 – 15 – 15 4/11 28.3 ± 9.07 10.6 ± 3.5 5.8 ± 6.2
yearsa

NA

Tomelleri et al.
2009 [83]

25 45 79 – – 149 25/45 39.73 ± 10.94 NA 14.13 ± 10.7
yearsa

67/3

Deng et al.
2009 [84]

6 14 11 – – 31 11/9 26 ± 10 to 29.9
± 13.5

NA NA 18/2

Chua et al.
2009 [85]

15 5 – – 25 45 10/10 29 ± 8.6 12 ± 2.9 40.8 ± 50.8
weeksa

NA

Molina et al.
2011 [86]

– 30 31 – – 61 14/16 34.1 ± 10.6 NA 13.4 ± 5.9
yearsa

NA

*Matched for age and gender to the patients groups; a= mean ± SD; b = median (±SD); NA= data not available; SP = same patients evaluated repeatedly in
longitudinal comparisons; MF = medication-free subjects.
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gyrus, extending to the left middle frontal gyrus, BA 6
(peak voxel at Talairach coordinate −22, 12, 48); and 4) a
cluster of 104 mm3 located in the right rectal gyrus, BA
11 (peak voxel at Talairach coordinate 4, 38, -24). In
addition, patients using antipsychotic medications also
had three significant clusters of volumetric excesses in
comparison to controls: 1) a cluster of 416 mm3 located
in the left dorsal anterior cingulate cortex, BA 24 (peak
voxel at Talairach coordinate −2, 24, 6); 2) a cluster of
152 mm3 located in the left ventral anterior cingulate
cortex, BA 24 (peak voxel at Talairach coordinate −4, 2,
26); and 3) a cluster of 264 mm3 located in the right pu-
tamen (peak voxel at Talairach coordinate 24, -4, 4). The
final maps with the resultant significant areas of volu-
metric deficits and excesses in patients using antipsy-
chotics through the selected studies are displayed in
Figures 2 and 3, respectively.
We also conducted sub-analyses comparing the effects

of typical and atypical antipsychotics. Three studies did
not report peak coordinates according to typicality and
were excluded from these sub-analyses [81,84,85].
Volumetric decreases with typicals were found in only
one study [77], and thus these foci could not be meta-
analyzed. Volumetric increases with typicals were
found in two studies [77,83], but no significant clusters
were found. Volumetric decreases with atypicals were
reported in three studies [79,80,86], retrieving one
significant cluster of 456 mm3 located in the left
temporal lobe, BA 20 (peak voxel at Talairach coordin-
ate −48, -16-, -20). Finally, volumetric increases with
atypicals were reported in five studies [77,78,82,83,87],
retrieving two significant clusters: 1) a cluster of 160 mm3

located in the right putamen (peak voxel at Talairach
coordinate 26, -10, 8); and 2) a cluster of 112 mm3

located in the left thalamus (peak voxel at Talairach coord-
inate −2, -26, 4).

Discussion
Among the several variables that could possibly deter-
mine or contribute to the brain structural changes ob-
served in patients with schizophrenia in the numerous
neuroimaging studies performed in recent years – in-
cluding those specifically related to the illness (age of
onset, duration, severity) and the individual (age, gender,
scholarity) – it is the role of antipsychotics that remains
a critical question, although possibly still beyond a
definitive answer.
A relatively low number of studies have addressed this

issue, which is made more difficult by the complex task
of harmonizing or balancing the effects of all the other
possible variables, and by the crucial necessity of more
homogeneous samples of patients, not only with respect
to the variables related to the illness and individuals but
also to those related to antipsychotics (class, years of



Table 2 Summary of the methodologies used for each selected study

Reference Design Methods Stereotactic
space

Statistical
threshold

Full-width
half-maximum
kernel

Type of
analysis

P value Controlling for

Dazzan
et al.
2005 [77]

Cross-
sectional

Comparison of subjects
using typical and atypical
antipsychotics versus
drug-free patients

Talairach Corr NA Whole-
brain
analysis

P
≤0.002

Age, gender, duration of
illness, total symptom
scores, length of
treatment, premorbid IQ,
years of education

Girgis
et al.
2006 [78]

Longitudinal Comparison between
patients using atypical
antipsychotics (from baseline
to 6-week follow-up) versus
healthy controls

Talairach Unc 12mm Whole-
brain
analysis

P
≤0.001

Age, gender, follow-up
interval, years of educa-
tion, socioeconomic
status, duration of illness,
total symptom scores

Whitford
et al.
2006 [79]

Longitudinal Comparison between
patients using atypical
antipsychotics
(at first episode psychosis
and at 2-3-year follow-up)
versus healthy controls

Talairach Corr 12mm Whole-
brain
analysis

P <
0.05

Age, gender, handedness,
follow-up interval

Douaud
et al.
2007 [80]

Cross-
sectional

Comparison of subjects using
atypical antipsychotics versus
healthy controls

MNI Corr 8mm Whole-
brain
analysis

P <
0.01

Age, gender, handedness,
socioeconomic status

Théberge
et al.
2007 [81]

Longitudinal Comparison between
patients using antipsychotics
(at first episode psychosis
and at 30-month follow-up)
versus healthy controls

Talairach Corr 12mm Whole-
brain
analysis

P
<0.001

Age, gender, handedness,
parental education

Stip et al.
2009 [82]

Longitudinal Comparison between
patients using atypical
antipsychotics at baseline
and at 5.5-month follow-up

MNI Corr 8mm Whole-
brain
analysis

P <
0.01

Non specified

Tomelleri
et al.
2009 [83]

Cross-
sectional

Comparison of subjects using
atypical and typical
antipsychotics versus healthy
controls

Talairach Corr 12mm Whole-
brain
analysis

P <
0.01

Gender, duration of illness,
total symptom scores

Deng
et al.
2009 [84]

Longitudinal Comparison between
patients using atypical and
typical antipsychotics (from
baseline to 8-week follow-up)
versus healthy controls

MNI Unc 8mm Whole-
brain
analysis

p<0.001 Age, gender, height,
handedness

Chua
et al.
2009 [85]

Cross-
sectional

Comparison of subjects using
atypical and typical
antipsychotics versus drug-
free patients

Talairach Corr 4.4mm Whole-
brain
analysis

p<0.002 Age, gender, handedness,
ethnicity, height, years of
education, paternal socio-
economic status, total
symptom scores

Molina
et al.
2011 [86]

Cross-
sectional

Comparison of subjects using
atypical antipsychotics versus
healthy controls

Talairach Corr NA Whole-
brain
analysis

p< 0.05 Age, gender, parental
socioeconomic status,
duration of illness

Corr = corrected for multiple comparisons; Unc = uncorrected for multiple comparisons.
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exposure, dosages, withdrawals). Indeed, the additional dif-
ficulty of recruiting subjects with a psychiatric disease that
has a low prevalence rate [88] has led to studies with rela-
tively small numbers of patients. Considering also that the
volumetric structural brain alterations in schizophrenia are
often very subtle, thus requiring large samples to suffi-
ciently increase the statistical power that would allow for
the detection of such alterations [88], it is not surprising
that sometimes the results of these distinct studies are
somewhat confusing or even contradictory [38,39,41,43].
Whereas studies on the progression of structural brain
changes in schizophrenia over time have been consist-
ently replicated through recent years, as previously ad-
dressed in the introduction, studies on the role of
antipsychotics have been presenting results ranging from
brain volumetric reductions [89] to “no effect” [90] to
volumetric enlargement [91], for example. Evidence from
studies including larger samples of subjects, however,
suggests a progressive correlation between brain volu-
metric reduction and antipsychotic use. In a multi-site



Figure 2 Areas of statistically significant brain volumetric decreases across the selected studies (displayed in the axial, coronal and
sagittal plans) in patients with schizophrenia receiving antipsychotic medications. Peak coordinates (x;y;z) in the Talairach stereotactic
space are presented. L left; R right.
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longitudinal randomized study carried out with 161
first-episode psychosis patients and 62 healthy controls,
Lieberman et al. [92] allocated patients, after a baseline
MRI scan and subsequent randomization, to haloperidol
or olanzapine groups; they found that patients using
haloperidol had a significant grey matter reduction after
12 and 52 weeks in comparison to controls, whereas
olanzapine patients did not. Also Cahn et al. [89] pro-
spectively studied 34 first-episode schizophrenia patients
(who had taken antipsychotics for up to 16 weeks) and
36 healthy controls who underwent an MRI scan at ad-
mission and after 1 year; a higher cumulative dosage of
antipsychotics (typicals and atypicals were used in the
study) was significantly and independently correlated
with total brain volume and gray matter volume reduc-
tions, as well as increased volume of lateral ventricles. A
longitudinal study by Nakamura et al. [93] (29 first-
episode schizophrenia patients, 34 first-episode affective
psychosis and 26 healthy controls) showed that schizo-
phrenia patients had smaller gray matter volumes and
larger sulcal cerebrospinal fluid and lateral ventricles in
comparison to controls. Jayakumar et al. [94] studied
18 antipsychotic-naïve schizophrenia patients and 18
healthy controls; results showed gray-matter volumetric
reductions and larger cerebrospinal fluid volumes, as
also observed by Davatzikos et al. [95] (32 first-episode
neuroleptic-naïve schizophrenia patients, 37 patients
treated with antipsychotics and 79 controls). Conversely,
some studies on this question have not found significant
structural brain changes (volumetric reductions or ex-
cesses) when comparing patients and controls. Studies
with large samples, for example, such as those by Molina
et al. [87] (16 schizophrenia patients and 42 healthy con-
trols), Tauscher-Wisniewski et al. [96] (37 first-episode
patients and 37 controls), and Puri et al. [97] (24 first-
episode patients and 12 controls), did not identify sig-
nificant volumetric differences. Recently, Ho et al. [98]
performed a large longitudinal MRI study that followed
211 schizophrenia patients over a mean of 7.2 years,
aiming to assess four potential variables (illness duration,
illness severity, use of antipsychotics and substance
abuse) that could have an effect on brain volumes. The
authors found that even considering the effects of the
other three variables, after statistical controlling, there
was still a relationship between the amount of exposure
to antipsychotics and brain volumetric reductions. Inter-
estingly, these brain volumetric changes were not solely
related to a specific antipsychotic class, but were ob-
served both with typicals and atypicals [98].
The distinct pattern of effects on the brain induced ei-

ther by typical or atypical drugs was a matter of discus-
sion in some literature reviews, which showed that
volumetric brain changes are more related to typicals
than atypicals [39,41]. Another review, however, con-
cluded that the literature on structural brain changes
and antipsychotic effects is inconsistent (as about half of



Figure 3 Areas of statistically significant brain volumetric increases across the selected studies (displayed in the axial, coronal and
sagittal plans) in patients with schizophrenia receiving antipsychotic medications. Peak coordinates (x;y;z) in the Talairach stereotactic
space are presented. L left; R right.
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the longitudinal studies did not find or report progres-
sive brain changes), and the distinct patterns of effects
determined by typicals or atypicals were inconsistent as
well [38].
To the best of our knowledge, this is the first study to

quantitatively assess with a meta-analytic approach the
question of structural brain changes and antipsychotic
use in schizophrenia by reviewing those studies which
directly assessed this question. In 2011, Leung et al. [71]
published a meta-analysis of VBM studies using the ALE
method to detect antipsychotic-related gray-matter alter-
ations in first-episode schizophrenia patients; however,
in contrast to our study, these authors employed an
indirect approach, by using subtraction analysis to com-
pare structural brain changes between two separate sub-
sets of meta-analyzed studies, i.e., a subset of studies
involving neuroleptic-naïve first-episode schizophrenia
patients and another subset of studies involving
neuroleptic-treated first-episode schizophrenia patients.
Additionally, literature reviews have hitherto been only
qualitative, encompassing a large variety of studies
carried out through distinct methodologies concerning
volume measurement techniques.
The chosen voxel-wise approach using the ALE

method confers at least one special advantage over pre-
vious reviews, which is the homogeneity of techniques
employed by the selected studies regarding volumetry
(i.e., the VBM method). Our results revealed a consistent
volumetric reduction across the selected studies in the
left temporal and frontal lobes, all of them being
previously implicated areas reported to be of significance
in studies involving patients with schizophrenia and
first-episode psychosis [10,25,56,99-104]. Indeed, there
is, for example, a body of evidence in the literature
associating typical antipsychotics and also risperidone
with decreased frontal metabolism in schizophrenia
patients [105-108]. In the study by Leung et al. [71],
subtraction analysis between the neuroleptic-treated and
neuroleptic-naïve groups of first-episode psychosis patients
revealed more extensive gray matter volumetric deficits
in neuroleptic-treated patients in bilateral insula, medial
frontal and inferior frontal gyrus, left parahippocampal
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gyrus, superior temporal gyrus and right precentral gyrus;
of interest, while there were significant gray matter deficits
in the frontal lobe of neuroleptic-naïve patients (a finding
not related to drug exposure), treated patients also showed
still more extensive frontal volumetric reductions, which
notes a possible overlapping between the disease-related
structural alterations and the effects of antipsychotics.
Another point of interest is the question of volumetric

excesses. The finding of volumetric increases in subcor-
tical regions (and in basal ganglia, more specifically) is
widely described in the ROI literature and thought to be
related to dopaminergic blockade [39] and increased
striatal blood flow [109]. Antipsychotic-related increased
volumes in the putamen, nucleus caudatus, globus palli-
dus and thalamus were found in several studies in the
literature, both among typicals and atypicals, even after
few weeks of treatment [39]. In previously neuroleptic-
naïve patients treated with atypicals, however, these
basal ganglia alterations are not usually described [39],
and atypicals seem to even reverse this effect after pa-
tients switch to them [39,43]. In this meta-analysis, the
findings of volumetric excesses were observed across
studies employing mainly atypical [77,78,82,83,86] but
also typical antipsychotics [77,83]. Significant volumetric
increases were observed in the cingulate gyrus and puta-
men, in concordance with some previous findings in the
literature. Cumulative exposure to typical antipsychotics,
for example, has been associated with a larger cingulate
gyrus, an important region for the pathophysiology of
schizophrenia [110-112]. McCormick et al. found an in-
crease in anterior cingulate volume with use of typicals
after 2–3 years in previously neuroleptic-naïve subjects;
increased atypical medication exposure, in contrast, was
correlated to decreased anterior cingulate volume [112].
Kopelman et al. also found greater anterior cingulate
cortex volumes directly related to typical medication ex-
posure [113]. This follows the same pattern of findings
reported in regard to changes in the volume of basal
ganglia structures [112], and these similarities may be
related to the fact that the anterior cingulate cortex and
basal ganglia are structurally and functionally connected,
both structures receiving direct dopaminergic innerv-
ation from the ventral tegmental area and the substantia
nigra [112]. In addition, the reported antipsychotic-
induced hypertrophy in putamen, thalamus and caudate
nucleus (observed both with typicals and atypicals) may
also be related to changes in the synaptic organization of
these D2 receptor-rich areas [84,86]. Indeed, the results
of our sub-analysis carried out with atypical antipsy-
chotics are in concordance with these findings, indicat-
ing significant volumetric increases in the thalamus and
putamen.
In considering the results of this meta-analysis, we

have to acknowledge a number of limitations. The main
limitation concerns the challenge faced by all the se-
lected studies in this field, which is the difficulty of dis-
entangling the effects of drug treatment from those
related to the underlying pathology; the results of vari-
ous studies on this topic allow us currently only to make
hypotheses, without reaching definitive conclusions, as is
summarized in the last literature reviews [38,39,41,43].
In addition, ethical issues preclude more insightful study
designs involving, for example, placebo-treated individuals
with schizophrenia and antipsychotic-exposed healthy
controls because there is no therapeutic benefit to justify
the exposure of a healthy population to the effects of
antipsychotics. Thus, we acknowledge that the results
currently available in the literature are merely associative
and inferential, and they do not necessarily imply causality.
Independent of such facts, however, it should be noted that
the current study does not intend primarily to question the
internal validity of each published work reporting that these
changes might be associated to antipsychotics; despite any
concerns, these studies point to a possible association, and,
methodologically, they represent the best that the current
literature has to offer.
Yet, despite the strictness of the eligibility criteria

that we applied, which led to a low number of selected
studies, other limitations relate to the heterogeneity of
search space (variability both in type of antipsychotic
examined and in study designs). However, we aimed
with this study to establish whether there were clusters
of significant topographic convergence of structural
brain changes reported in the selected VBM studies,
independent of their designs. It is also possible that
some factors (such as smoothing kernel, absence of
correction for multiple comparisons and cluster size
thresholds) that vary across different VBM studies may
exert an influence on the final coordinates generated
in each study, thus also affecting the results of ALE
meta-analyses [71]. It is important to emphasize, how-
ever, that the revised ALE algorithm employed in this
meta-analysis accounts for the inter-subject and inter-
laboratory variability observed in neuroimaging experi-
ments, also employing a null distribution of spatial
independence across studies [70].
Due to the limited reported data, we could not control

for the effect of potential moderators such as illness dur-
ation and illness severity. However, the relatively large
overall sample size, combined with strict quality control,
yielded a robust meta-analytical approach. Additionally,
when meta-analyzing the available foci according to the
class of antipsychotics or type of study design in relation
to the resultant brain effect (i.e., volumetric excesses,
volumetric decreases), excessive fragmentation of the
data prevented the findings of significant foci of conver-
gence with typicals. Notably, however, there is currently
no clear evidence regarding the effects of typicality on
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brain regional changes associated with antipsychotics in
schizophrenia [38,98].
Other limitations are related to the ALE method, as

only those studies reporting peak coordinates can be in-
corporated into the meta-analysis; thus, those studies
that found no significant differences between patients
and controls (and consequently did not report peak co-
ordinates) are not included and therefore cannot influ-
ence the meta-analysis results. Thus, by considering only
studies with positive findings, ALE meta-analyses may
carry a bias that overemphasizes the idea of structural
brain changes in schizophrenia [71]. In addition, al-
though it is known that the number of included foci
affects the analyses using the ALE method, the ideal
number of foci for adequate analyses is still undeter-
mined [59].
Conclusions
In light of the current literature, despite the growing
number of studies, the difficulty in reaching more inci-
sive conclusions on this topic is still apparent. However,
it seems clear that the idea of antipsychotics as potential
agents contributing to the structural brain changes in
schizophrenia should certainly be taken into account.
These cautious conclusions are necessary based mainly
on the fact that the correlations between brain volumes
and antipsychotic use reported by some studies do not
necessarily imply any causality [98]. Indeed, it remains
elusive whether brain structural alterations in schizo-
phrenia are due to the intrinsic pathologic process, anti-
psychotic use, other variables, or even a combination of
all those [42].
Answering these questions is of great clinical import-

ance. If antipsychotics really induce potentially harm-
ful brain volumetric reductions in patients with
schizophrenia, then the risks and benefits of these
drugs should be carefully considered before prescrip-
tion; in addition, patients should be appropriately in-
formed about these particular risks and benefits [38].
More consistent answers could be achieved by studies
with high statistical power performed longitudinally,
homogeneously, with large samples, ideally multi-
centric. For now, some practical approaches such as
closely assessing the side effects of these drugs for each
patient, trying to prescribe the minimal amount that is
sufficient to reach the therapeutical objectives, and
also considering the inclusion of nonpharmacological
treatments [114] seem adequate. For the future, we ex-
pect the research to find new drugs with distinct mech-
anisms of action [114] that could not only induce
fewer undesirable effects but could also act on the
underlying disease process rather than on just one
dimension or symptom.
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