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Bias and discriminability during emotional signal
detection in melancholic depression
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Abstract

Background: Cognitive disturbances in depression are pernicious and so contribute strongly to the burden of the
disorder. Cognitive function has been traditionally studied by challenging subjects with modality-specific psychometric
tasks and analysing performance using standard analysis of variance. Whilst informative, such an approach may miss
deeper perceptual and inferential mechanisms that potentially unify apparently divergent emotional and cognitive
deficits. Here, we sought to elucidate basic psychophysical processes underlying the detection of emotionally salient
signals across individuals with melancholic and non-melancholic depression.

Methods: Sixty participants completed an Affective Go/No-Go (AGN) task across negative, positive and neutral target
stimuli blocks. We employed hierarchical Bayesian signal detection theory (SDT) to model psychometric performance
across three equal groups of those with melancholic depression, those with a non-melancholic depression and healthy
controls. This approach estimated likely response profiles (bias) and perceptual sensitivity (discriminability). Differences
in the means of these measures speak to differences in the emotional signal detection between individuals across the
groups, while differences in the variance reflect the heterogeneity of the groups themselves.

Results: Melancholic participants showed significantly decreased sensitivity to positive emotional stimuli compared to
those in the non-melancholic group, and also had a significantly lower discriminability than healthy controls during the
detection of neutral signals. The melancholic group also showed significantly higher variability in bias to both positive
and negative emotionally salient material.

Conclusions: Disturbances of emotional signal detection in melancholic depression appear dependent on emotional
context, being biased during the detection of positive stimuli, consistent with a noisier representation of neutral
stimuli. The greater heterogeneity of the bias across the melancholic group is consistent with a more labile disorder
(i.e. variable across the day). Future work will aim to understand how these findings reflect specific individual differences
(e.g. prior cognitive biases) and clarify whether such biases change dynamically during cognitive tasks as internal
models of the sensorium are refined and updated in response to experience.
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Background
Melancholia is frequently conceptualised as a biological
disorder encompassing disturbances of mood, motor func-
tion, thinking, cognition and perception [1,2]. Whilst cog-
nitive impairments in melancholia have been investigated
in detail [3,4], definitive identification of selective neuro-
cognitive impairments has not been achieved. Given the
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pressing need to examine underlying perceptual and
inferential processes in heterogeneous illnesses such as
depression [5], it is increasingly recognised that a range
of methodological approaches should be utilised in the
analysis of neurocognitive data to more accurately capture
the nature of disturbances across differing depressive
syndromes. Such refined approaches have direct utility in
enhancing understanding of group-specific psychophysical
processes across sub-types of depression.
There is typically great inter-subject variability on tests

of neuropsychological function in the major psychiatric
illnesses [6]. Meaningful interpretations of brain function
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in specific disorders is difficult given such variability. This
is further compounded by summarising an individual’s
position on a performance continuum (as with summing
errors on a task) in order to infer the presence or absence
of cognitive impairments. Furthermore, commonly utilised
neuropsychological tests in those with depressive disor-
ders typically rest upon broad construct-level approaches
(e.g. tests of ‘executive function’ or ‘attentional control’)
that do not facilitate the development of theories regard-
ing specific psychophysical disturbances in individuals.
Despite such drawbacks in assessing cognition in psychi-
atric illnesses, significant advances have been made over
the past 20 years in explaining human perceptual infer-
ence and action [7-9] using probabilistic statistical princi-
ples such as those developed through a Bayesian-based
approach [10]. The Bayesian statistical modelling approach
has been applied to individual and group cognitive data
across multiple cognitive domains, including signal de-
tection that is viewed as encompassing the processes of
attention, decision-making and executive functioning
[11,12]. Formally, the signal detection capacity of an
individual can be influenced by prior beliefs (or internal
models of the world) and the incoming sensory stream,
generating that individual’s response profiles. This, in turn,
provides an ideal platform through which to measure per-
ception and inference. In the analysis of cognitive data,
signal detection theory or SDT [13] allows modelling of
the optimal detection of stimuli, through estimating dis-
criminability and bias [14]. SDT gives rise to measures of
discriminability – how easily signal (response) and noise
(non-response) trials are distinguished – and bias, reflect-
ing how well the decision-making criterion relates to the
optimal criterion. Both constructs reflect an individual’s
internal model of the sensorium and their prior contextual
beliefs. Signal and noise trials of a task can be represented
along a perceptual strength construct in SDT, referring to
the strength of inference made to a particular stimulus –
that is, the probability that a conclusion (decision/action)
is true given its premises. Inferences during streams of
trials are continuously monitored through sensory experi-
ence and evaluation, and may then be used to update deci-
sion criteria for subsequent task performance. Rouder and
Lu [15] suggest it is reasonable to expect that on such
tasks there will be significant participant-level variability
in signal detection sensitivity, creating a need for statistical
models that capture individual processes.
Inter-subject variability is rarely modelled in neuro-

psychological studies of depressed individuals. Moreover,
commonly used aggregation methods have the potential
to lead to statistical effect estimates that may poorly
represent group heterogeneity [15]. Bayesian statistics
offer the ability to pre-specify prior knowledge through
the specification of priors [16]. A Bayesian approach to data
analysis is also appealing in the setting of decision- making
in the face of uncertainty because it embodies the same
type of assumptions – and hence represents the same con-
structs – as emerging models of human decision-making
[17,18]. When considering group data using SDT, individ-
ual subject variability can be modelled using hierarchical
Bayesian techniques [15], allowing estimation of data-
driven posteriors of mean bias and discriminability as
well as their variance or precision (the inverse of variance)
[11,12]. When cognition is variably disrupted, as arguably
is the case in depression, inter-subject estimates of bias
and optimal judgement may be influenced, which can
ideally be modelled through hierarchical Bayesian SDT
analyses. There are several reasons as to why such an
approach may offer significant benefit.
In health, cognitive ‘priors’ can be viewed as personal

beliefs that are optimised towards the most likely value
of a given percept [19]. In depression, however, such
processes may be suboptimal in different ways across
individuals, extending variously across perceptual, inferen-
tial and performance domains. It has been suggested that
depression is associated with distorted inference (e.g.
“arbitrary inference”) at certain levels of severity (e.g.
psychotic depression [20]), yet despite recent theoretical
research with Bayesian modelling in depression [5,21]
no studies have employed Bayesian statistics to model
cognitive capabilities in depressive illnesses such as melan-
cholia. Most studies to date have attempted to delineate
underlying mechanisms of negative cognitive biases [22]
based on the notion that depressed individuals have a
characteristically negative view of the self, world and
future [20,23]. Several studies have shown that attention
is selectively drawn to negative information (e.g. [24]), and
that memory of negative information is enhanced [25].
However, few studies have provided a formal quantitative
framework for modelling individual level disturbances
from empirical psychophysical data. While some studies
(e.g. [26]) have established evidence for neurobiological
correlates of response bias, it remains to be seen whether
cognitive biases extend across depression as a whole or
whether they are specific to given individuals or sub-set
diagnostic groups. From the findings to date it is evident
that there is an unmet need in elucidating basic mecha-
nisms of neurocognitive dysfunction across individuals
with depression.
We propose that biases in emotional stimulus processing

in depression can be accurately captured through investiga-
tion of different depressive sub-types using a hierarchical
Bayesian emotional SDT framework. Employing an emo-
tional word ‘go/no-go’ task, which requires responding and
inhibition of responding to serially presented, randomly
sequenced positive, negative and neutral words, we
hypothesised that each depressed sub-set would show less
optimal responding (poorer discriminability) across emo-
tional signal conditions as compared to the control group,
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but that the melancholic sub-set would show more dif-
ficulty in detecting true signal trials from noise trials,
particularly on emotional signal conditions (i.e. lower
sensitivity) compared with non-melancholic and control
participants.

Methods
Sample
Participants consisted of 20 melancholic and 20 non-
melancholic depressed individuals, recruited through a
specialist depression clinic at the Black Dog Institute in
Sydney, Australia. A healthy control group of 20 partici-
pants was recruited through the community. The study
was approved by the University of New South Wales
Human Research Ethics Committee and all study partic-
ipants gave informed consent prior to taking part.

Psychiatric and neurological screening
Exclusion criteria for healthy controls included a lifetime
history of a mood and/or psychotic disorder as screened
by the MINI [27]. Depressed participants were considered
eligible if they had a current major depressive episode, but
no (hypo) mania or psychosis identified on the MINI.
Those with depression were additionally required to meet
a current (past 7 days) level of depression severity of 11 or
more on the QIDS-SR16 [28], indicative of at least moder-
ate depression severity. All participants were required to
be fluent in English, and the age range for inclusion
was between 18 and 75 years. Exclusion criteria for all
participants consisted of current or past drug or alco-
hol dependence, current or past history of neurological
disorder (i.e. neurodegenerative conditions, stroke, central
nervous system infection, tremor), a history of brain injury
with significant impairment (i.e. neurotrauma from haem-
orrhage, oedema, hypoxia), invasive neurosurgery and/or
an estimated full scale IQ (WAIS-III) [29] score of below
80 as assessed by the WTAR [30]. An additional exclusion
criterion for depressed participants was having received
electroconvulsive therapy within the preceding six months.
Current medication was recorded. In addition to the
above screening, all participants completed the Global
Assessment of Functioning (GAF) [31] and the State-Trait
Anxiety Inventory (STAI) [32]. Patient groups were
assessed for observable psychomotor disturbance using
the CORE measure [33]. Screening was conducted by
trained research assistants.
Delineation of depressive sub-types (melancholic versus

non-melancholic depression) proceeded according to the
clinical criteria presented by Parker et al. [34]. These
criteria are based upon characteristic clinician rated
scores (by trained psychiatrists in the current study)
across a number of domains and include presenting
clinical features (e.g. symptoms as well as signs of psy-
chomotor disturbance), previous response to drug and
non-drug treatments, developmental factors, personality
factors and family history [1,2]. The focus of the current
study on perceptual accuracy but not reaction time
tempered circularity between diagnostic assignment (e.g.
cognitive slowing in melancholia) and signal detection
performance. Previous research [35] has shown the
prototypic diagnostic approach used in the current
study (involving symptom and non-symptom data) to
be more strongly differentiating of melancholic and
non-melancholic depression than use of the DSM-derived
[31] melancholic specifier criteria which consider symp-
toms only.

Neuropsychological testing procedures
All study participants took part in a brief neuropsycho-
logical assessment administered by a trained research
assistant, with tests taken from the CANTAB [36], that
included the Stockings of Cambridge (SOC), Intra/Extra-
Dimensional Shift (IED), Rapid Visual Information Process-
ing (RVP) and Affective Go/No-Go Task (AGN). All testing
took place in a sound-attenuated room that housed a
desktop computer running CANTAB eclipse version 3.0
software. Additional computer hardware (touch screen
and response/press pad) allowed recording of behavioural
responses to the stimuli. The focus on the present report
is on the AGN.
The AGN is a test of emotional word discrimination

that requires responses to ‘go’ trials, and inhibition of
responses on ‘no-go’ trials, to negative, positive and neu-
tral stimuli. The task consists of 20 blocks with 18 words
in each block. The first two blocks are used for training
and are not further analysed. Two word categories are
presented within each block. No two consecutive blocks
present the same word combinations. For each block
there are nine signal trials and nine noise trials. Prior to
the onset of each block participants are primed with
what word categories to expect. As depicted in Figure 1,
each block requires detection of signal and noise (posi-
tive, negative or neutral emotional word) categories, with
six possible signal/noise combinations, in the following
order of administration (repeated three times, giving
the 18 blocks): positive (signal)-neutral (noise); positive–
negative; neutral-positive; neutral-negative; negative-
neutral; negative–positive.
Words appear for 300 milliseconds one at a time in

the centre of the computer screen, followed by a 900
millisecond inter-stimulus interval (ISI). Each block
hence lasts for 22 seconds. Participants rest between
blocks for five seconds, allowing preparation for the
following block. Analysis variables from the AGN con-
sisted of hits (correct responses to signal trials), false
alarms (incorrect responses to noise trials), misses (incor-
rect rejections to signal trials) and correct rejections (to
noise trials).
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Figure 1 Overview of task design showing positive signals with negative noise trials and positive signals with neutral noise – comprising
the positive signal condition. The same design – with varying noise – was consistent in the negative and neutral conditions.
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Hierarchical Bayesian modelling of AGN data
A hierarchical Bayesian graphical model for SDT (as de-
tailed in [11,12]) was used for the AGN data. As a statistical
technique, such modelling – with the use of Markov chain
Monte Carlo (MCMC) sampling – allows for integration of
a prior distribution (prior beliefs/knowledge) with data
from the behavioural task to obtain approximations of the
posterior distributions of the outcome parameters. AGN
blocks were categorised by emotional signal condition
(positive, negative, neutral): thus, three specified models
were used for the current analysis. Alternating noise
conditions were pooled together for each of the signal
conditions. For example, a positive signal distribution in
the current study had a noise distribution that included
both negative and neutral stimuli. We modelled individual
participant responses to the task (counts of hits and false
alarms) to generate posterior estimates of discriminability
and bias from hit and false alarm rates, separately for each
of the emotional signal conditions, with uniform prior
distributions hence assigning equal probabilities to all pos-
sible states.
The modelling approach is represented in Figure 2. By

convention, unobserved variables are nodes without shad-
ing while observed variables are shaded, with continuous
variables represented as circular nodes and discrete vari-
ables as square nodes. It thus follows for the current model
that the observed behavioural data are represented by the
shaded grey squares, and our estimated variables, hi and fi
(hit and false alarm rates), are shown as unshaded circular
nodes. Further modelled (unobserved) parameters are
also shown in the model – in particular, ci and di which
are estimates of bias and discriminability, and the top
level of the hierarchy which formally incorporates
group-wise mean (μ) and standard deviation (σ) estimates
of both ci and di. To derive these estimates, signal and
noise trials are denoted by S and N, respectively, to which
individual (i) counts of hits (Hi) and false alarms (Fi) are
derived and, subsequently, their rates (hit rate = hi and
false alarm rate = fi). In the graphical model, ϕ is used to
calculate the cumulative distribution function of hi and fi,
whilst λ (at the top of the hierarchy) is the precision of the
c and d parameters, from which σ estimates are obtained.
For bias estimates, the optimal criterion is centred at

zero between two equal-variance Gaussian distributions
representing signal and noise distributions. A negative
bias value relative to zero indicates a preference towards
more ‘yes’ responses (as it is nearer the noise distribu-
tion), whereas higher positive values reflect a preference
for ‘no’ responses. The location of the response criterion
(positioned along a unidimensional strength construct of
perceptual accuracy) is derived from a participant’s esti-
mate as to whether a stimulus constitutes a signal or a
noise trial. For instance, a participant whose ‘yes rule’ is
further from the noise distribution requires a stronger
signal to permit detection – thus, the strength of the sig-
nal required is determined by the strength of the partici-
pant’s internal representation of that signal. In such cases,
the available perceptual evidence needs to be substantially
greater than the criterion rule to say ‘yes’ [14]. Discrimin-
ability is an estimate of the ability to differentiate between
signal and noise trials and indicates how well a signal trial
can be detected, with higher values indicating an increased



Figure 2 Graphical model for hierarchical signal detection theory.
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capacity to distinguish between signal and noise trials.
The previously developed implementation of hierarchical
SDT [12], as shown in Additional file 1, was modified and
implemented in WinBUGS [37]. Posterior distributions of
bias and discriminability were estimated using MCMC
sampling (10,000 samples), using hit and false alarm rates
over uniform (reference) priors (i.e. where all responses
are equally likely). The posterior means of bias and dis-
criminability, taken as the joint emotional signal detection
capacity of individuals in each group, is the focus of our
analyses. Convergence of all chains was assessed using R̂
(obtained by comparing two parallel chains in WinBUGS
[38]) and using Geweke’s method [39], which compares
the first 10 percent of each chain with the last 50 percent.
All chains were found to be at convergence after 10000 it-
erations using R̂ (all <1.1). However, the MCMC samples
for the positive condition in the non-melancholic group
did not converge using the criteria of Geweke [39] and,
thus, a burn-in of 5000 samples (i.e. where the first 5000
samples are discarded, followed by a further 10,000 sam-
ples being drawn) for all positive chains across all groups
was used.
The modelling approach allows for inspection of a range

of posterior distribution statistics. The 95% credible interval
(CI) estimates are reported for each of the individual distri-
butions of bias and discriminability, which are compared
according to a 95% highest posterior density (HPD) interval
difference [40]. A 95% HPD group difference estimate
(HPDd) that does not contain zero is considered “signifi-
cantly different”. This latter approach is similar to that
suggested by Lindley [41]. We also visualise the violin
plots across modelled parameters in each group for each
signal condition (using the MCMC distributions) (see
Additional file 2). Violin plots marry the traditional box
plot, representing the interquartile range, with smoothed
distributional characteristics of the samples [42].

Results
Sample characteristics
Group differences on demographic variables were assessed
using independent groups t-tests for continuous variables
and chi-square statistics for categorical variables (α set at
0.05). Group characteristics including age, gender, depres-
sion severity, STAI scores, GAF, estimated IQ and medica-
tion status (SSRI and/or other medication) are presented
in Table 1.
There were no group differences for age, gender or

estimated IQ. Both depressed groups had fewer years
of education than the control group but did not differ
from each other. Depression severity as measured by
the QIDS, as well as STAI-State and STAI-Trait scores did
not differ between melancholic and non-melancholic



Table 1 Clinical and demographic characteristics of melancholic (Mel), non-melancholic (N-Mel) and control groups

Test Variables Mel N-Mel Control Group Contrasts

Age 41.7 (13.5) 42.4 (9.1) 38.6 (15.2) § t = −0.19, p = 0.85 ‡ t = 0.68, p = 0.85 † t = 0.96, p = 0.34

% Female 65% 65% 55% § χ2 = 0.00, p = 1.00 ‡ χ2 = 0.42, p = 0.52 † χ2 = 0.42, p = 0.52

Years of education 14.4 (2.7) 14.1 (2.7) 17.1 (3.7) § t = 0.43, p = 0.41 ‡ t = −2.66, p <0.01 † t = −3.00, p <0.01

Estimated IQ 108.1 (8.5) 109.2 (6.4) 114.3 (11.8) § t = −0.46, p = 0.65 ‡ t = −1.91, p = 0.06 † t = −1.70, p = 0.10

QIDS-SR16 16.6 (4.0) 16.6 (4.4) 0.9 (1.2) § t = 0.00, p = 1.00 ‡ t = 16.92, p <0.01 † t = 15.39, p <0.01

STAI-State 49.1 (15.3) 48.3 (9.7) 28.7 (8.1) § t = 0.19, p = 0.85 ‡ t = 5.28, p <0.01 † t = 7.00, p <0.01

STAI-Trait 59.1 (11.4) 62.9 (8.3) 34.2 (7.4) § t = −1.20, p = 0.24 ‡ t = 8.17, p <0.01 † t = 11.55, p <0.01

CORE (Non-interactiveness) 4.4 (3.3) 0.9 (1.7) - § t = 4.28, p <0.01

CORE (Retardation) 4.9 (4.1) 1.6 (2.9) - § t = 3.00, p <0.01

CORE (Agitation) 1.5 (2.4) 0.2 (0.7) - § t = 2.38, p < 0.05

CORE Total 10.8 (7.6) 2.7 (4.4) - § t = 4.14, p <0.01

GAF 54.3 (15.6) 67.5 (9.7) 94.5 (2.2) § t = −3.23, p <0.01 ‡ t = −11.43, p <0.01 † t = −12.17, p <0.01

SSRI% yes (n) 30% (6) 40% (8) - § χ2 = 9.69, p <0.01

Other med%yes (n) 80% (16) 35% (7) - § χ2 = 27.22, p <0.01

Mean (SD) reported for all variables except for gender (% Female), SSRI (% yes and n) and Other med (% yes and n).
§ Melancholic vs. Non-melancholic.
‡ Melancholic vs. Control.
† Non-melancholic vs. Control.
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depression groups but, as anticipated, each clinical group
differed significantly from the control group. Consistent
with their classification, the melancholic group had
significantly higher (CORE-rated) psychomotor disturb-
ance scores compared to the non-melancholic group, as
well as lower GAF scores (and also in comparison to con-
trols). Lower rates of current selective serotonin reuptake
inhibitor (SSRI) usage and higher rates of medication
other than SSRI’s (e.g. tricyclics, serotonin noradren-
aline reuptake inhibitors (SNRI’s)) were observed in the
melancholic group compared to the non-melancholic
group. Raw counts of hits, misses, false alarms and correct
rejections across signal conditions in the AGN task are
displayed in Table 2, along with signal detection sensitivity
values, indexed by d-prime (d′).
Visual inspection of these frequency tables suggests

higher hit rates in the non-melancholic and control groups
compared with the melancholic group across positive and
neutral conditions. The d′ statistics (indexing the separ-
ation of the signal and noise response distributions) also
point to a reduction in signal detection sensitivity across
all signal conditions in the melancholic group compared
to the non-melancholic and control groups. To examine
AGN task performance more formally we next report on
the hierarchical Bayesian modelling.

Group effects of mean bias and discriminability
Results from the hierarchical modelling showed a signifi-
cant difference between melancholic and non-melancholic
groups in terms of their mean bias to positive signal con-
ditions (HPDd = 0.022 – 0.554). As shown in Figure 3, this
difference was driven by the melancholic group favouring
‘no’ responses (positive mean bias values) and the non-
melancholic group favouring ‘yes’ responses (negative
mean bias values), but neither depressed group differed
from the control group on this measure. This observed
differential performance between depressed groups is fur-
ther illustrated in Figure 4, with the left panel displaying
the mean posterior estimates of bias for all groups and the
right panel showing the posterior probability for the differ-
ence between melancholic and non-melancholic groups.
The violin plots (Additional file 2) provide additional
means for inspecting these differences. Individual param-
eter estimates for both bias and discriminability across the
differing signal conditions are provided in Figure 5.
Visualising the data in this manner suggests that the
group results are a valid representation of the inter-subject
variability and are not driven by outliers, clustering or
multiple sub-groups.
In terms of mean discriminability, there was a signifi-

cant difference between melancholic and control groups
during neutral trials (HPDd = -1.020 – -0.042). This
difference in posterior estimates of discriminability is
consistent with impaired discrimination capacity for neu-
tral signals in the presence of both positive and negative
noise trials. The non-melancholic group appeared slightly
less optimal than the control group in terms of discrimin-
ability to neutral signals, but this effect did not reach
significance. Hierarchical analyses of the mean bias for
negative and neutral signal conditions, and mean discrim-
inability for positive and negative signal conditions did not
reveal any differences across groups.



Table 2 Frequencies of hits (H), misses (M), false alarms (FA) and correct rejections (CR) across signal valence
conditions and group on the go/no-go task

Positive

Group H M FA CR Hit Rate False Alarm Rate d′

Melancholic depression 911 169 100 979 0.84 0.09 2.33

Non-Mel depression 979 101 141 939 0.91 0.13 2.47

Control 964 115 134 945 0.89 0.12 2.40

Negative

Group H M FA CR Hit Rate False Alarm Rate d′

Melancholic depression 1007 71 88 991 0.93 0.08 2.88

Non-Mel depression 1041 39 72 1007 0.96 0.06 3.31

Control 1008 70 83 997 0.93 0.07 2.95

Neutral

Group H M FA CR Hit Rate False Alarm Rate d′

Melancholic depression 809 271 213 864 0.75 0.20 1.52

Non-Mel depression 861 216 221 858 0.80 0.20 1.68

Control 908 171 177 903 0.84 0.16 1.99

d′ is presented as a function of hit and false alarm rates.
(NB: within conditions, not all participant’s scores summed to the total number of trials because pre-emptive responses were not recorded - however, d′ was
calculated for the total number of trials).

Figure 3 Mean and standard deviation (SD) posterior estimates of bias and discriminability across groups. Legend: Mel = melancholic,
Non-Mel = non-melancholic. ** denotes difference between melancholic and non-melancholic groups. *** denotes difference between melancholic
and control groups.
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Figure 4 Left: Posterior distributions of MCMC sampling for the mean bias to positive signal trials for each group. Right: Posterior
density of the estimated difference between melancholic and non-melancholic groups for the bias to positive signal trials – dashed line indicating
the crossing of the difference distribution at zero.
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Comparing standard deviation model estimates
Posterior estimates of the standard deviations for bias
and discriminability across all stimulus conditions are
also shown in Figure 3. Significantly increased standard
deviation values were found in the melancholic group
compared to non-melancholic and control groups on
positive signal trials. A similar pattern was found for the
negative signal condition, with larger standard deviation
estimates found in the melancholic group compared to
the non-melancholic group. No group effects were found
for neutral bias or for any of the signal conditions for
Figure 5 Individual parameter estimates for bias and discriminability
discriminability. The increased standard deviations on
the emotional signal blocks in the melancholic group is
indicative of greater variability of mean bias values across
participants, thus reflecting a significantly broader distri-
bution of bias values compared to those values observed
in the other groups.

Sensitivity and robustness analyses of model posteriors
We conducted a robustness check of the results using
narrower priors on mean and gamma (precision) of
bias and discriminability and, additionally, a sensitivity
to positive, negative and neutral signal conditions across groups.
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analysis by uncollapsing noise conditions. These add-
itional analyses are presented in Additional file 3.
Briefly, for the hierarchical model of positive and neutral
signal conditions, differences in mean bias and discrimin-
ability were more robust to changes in prior distributions
than were the standard deviation differences. The majority
of effects were robust when the noise conditions were
unpooled. The loss of some significant effects is consistent
with the loss of power that arises when trials are split and
not pooled. Nonetheless, these additional analyses do
highlight that bias to positive signal trials, and discrimin-
ability to neutral signal trials, may be influenced by differ-
ing noise conditions.

Discussion
The hierarchical Bayesian SDT model implemented in
this paper revealed that signal detection processes in
melancholic and non-melancholic depression are signifi-
cantly influenced by stimulus type and individual subject
variability. Our modelling approach allowed interrogation
of the neuropsychological data at two levels: the mean
results across individuals in specific groups, and the
heterogeneity of the groups themselves, across the psy-
chophysical constructs of bias and discriminability. In
terms of mean differences, we observed that the melan-
cholic participants overall were less sensitive to detecting
emotional signals, while non-melancholic participants dis-
played more liberal responses to emotional signal blocks.
This provides support for our predictions that the melan-
cholic group would display difficulty in detecting signal
trials from noise trials on emotional word blocks. Also,
optimal responding was found to be reduced in the
melancholic group compared to the control group, as
evidenced by decreased mean discriminability on neu-
tral signal blocks. In terms of subject heterogeneity, we
found that there was greater inter-subject variability of
the bias estimates for the emotional signal conditions
in the melancholic group, which indicates divergent
bias estimates across individuals. Visualising the range
of individual participant responses (Figure 5) argues
against this effect being driven by outliers. Further,
changes to the precision of prior distributions had little
impact on the observed mean difference findings, sug-
gesting these findings are highly robust. Despite this,
however, when differing noise conditions were examined
there was a moderate effect, with some previously signifi-
cant differences for specific signal conditions no longer
remaining significant. The observed impact of differing
noise conditions thus warrants further consideration in
future psychophysical studies using differing emotional
and non-emotional stimuli. The main findings allow for
specific neurocognitive models to be advanced with regard
to depression and its sub-typing, namely the potential to
gain insight into underlying psychophysical mechanisms
across individuals and whether the depression is melan-
cholic or non-melancholic in type, and highlight several
important issues in the analysis and interpretation of
neurocognitive data.
Our findings align with the commonly held notion (e.g.

[3]) that those with melancholic depression exhibit cogni-
tive deficits that are observable during task performance.
However, we add the observation that those with non-
melancholic depression may also be impaired in their
ability to perform ‘optimally’ on cognitive tasks such as
the AGN. The observed trend of less optimal responding
in non-melancholic depression did not, however, reach
significance but may benefit from a focus in future studies.
While research using the AGN task in depression [43]
claims it as a measure of ‘inhibitory control’, the analytic
methods previously employed often prevent interpretation
beyond a continuum of impairment (e.g. number of errors
on a task). The current study is the first, to our know-
ledge, to utilise an affective go/no-go task in sub-types of
depression. In doing so – and through analysis of the data
using hierarchical Bayesian SDT – the findings offer an
increased understanding of the sensitivity and discrim-
inability capacity of individuals with differing types of
depression, and highlight the importance of examining
for apparent dysfunction with more refined models.
Recently, Schulz and colleagues [44] examined the
convergent validity of emotional and non-emotional
go/no-go tasks and concluded that, together, they offer
“moderate capacity” for probing the neuropsychological
construct of behavioural inhibition. Those authors also
emphasized the need for testing emotional and non-
emotional signal detection mechanisms in affective
disorders to clarify underlying cognitive-emotional contri-
butions. The diverging sensitivities across emotional and
non-emotional conditions in the depressed groups in the
current study, along with a lack of discrimination to
neutral signals in melancholia, suggests that a range of
cognitive mechanisms may be involved in responding to
differing stimuli.
Across neuropsychological studies of depression it is

evident that no single cognitive deficit model can be ap-
plied to specific groups, due to the inherent heterogeneity
of the depressive domain. However, in light of the current
findings of discrepancies in bias between signal condi-
tions, it might be possible that set-shifting impairments –
as previously reported in depression [43], and more specif-
ically in melancholic depression [45] – play an important
role. While not explicitly assessed in the current study, it
is conceivable that neuropsychological constructs such as
disrupted attention set-shifting and perseveration underlie
the observed effects. The melancholic sub-type has been
shown to be differentiated from non-melancholic depres-
sion on the basis of response selection performance [46],
where performance on compatible and incompatible trial
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types (e.g. stimulus–response compatibility tests) reflect
cognitive strengths and weaknesses. As a rule these studies
have not specified psychophysical functions of stimulus
sensitivity and discrimination capacity, and have tended to
report broader metrics of performance such as numbers
of hits and misses across subjects. From a cognitive
standpoint there is likely to be significant benefit in
modelling performance-related psychophysical mecha-
nisms (i.e. through SDT and similar analyses) in depressive
disorders and then next establishing whether this provides
insight towards any neurocognitive disease mechanisms.
We argue that the cognitive deficits observed in different
types of depression can be conceptualised in such a way
so as to explain impairments in emotion-bound optimal
decision-making.
Prior research on sensory processing offers further

insight into the findings of decreased sensitivity to emo-
tional signals and poorer discrimination to neutral sig-
nals in melancholia. Knill and Pouget [9] suggest that
perception of one’s environment is influenced by the
likelihood of the presence or absence of relevant stimuli
given an individual’s past experience (i.e. perceptual priors)
with that stimuli. These factors contribute to the relative
uncertainty over one’s environment, and allow inference
regarding the causes of percepts. We propose that the low
sensitivity to emotional signals and lack of discriminability
observed across melancholic participants may be a result
of inefficient sensory integration – possibly resulting from
constructs such as inefficient cognitive control mechanisms
(see [47]). This in turn may be a function of ‘inflexible’
priors (e.g. negative cognitive biases) and unsuccessful
updating (e.g. such as perseveration due to a failure of
emotional inhibition [48]). The observation that the
non-melancholic participants responded more frequently
to noise trials on emotional signal blocks also suggests
that they too are less sensitive to fluctuations in the emo-
tional environment. Such erroneous judgements could be
due to emotional processing biases in depression, a factor
that has been acknowledged in accounting for decision-
making impairments [5]. Research into the probabilistic
nature of decision-making [21,49,50] suggests diverse
mechanisms underlying optimal judgement. Neurobio-
logically, probabilistic learning paradigms have been
used to examine human cognition [51], with the findings
pointing to distinct roles of serotonin and noradrenaline
in learning and inhibition. Both neurochemicals have long
been implicated in depressive disorders [52] and may be
of relevance to understanding the differences observed
between and within depressive sub-types.
In addition to the behavioural changes within individuals,

research using Bayesian inference has also highlighted the
importance of perceptual variation between individuals.
Recent theoretical work on perceptual uncertainty advo-
cates the utility of modelling trial-by-trial updating across
individuals in a Bayesian framework [53], which is argued
to be of significant benefit in conceptualising the current
findings from the signal detection task. The hierarchical
modelling using MCMC in the current study yielded esti-
mates of the standard deviation of both bias and discrim-
inability performance (i.e. the extent of the differences
between measured individuals). The increased standard
deviations in the melancholic group on emotional bias
suggests differential individual performance profiles when
compared to non-melancholic and control groups. This
could be due to a range of non-cognitive factors in an
otherwise homogeneous group or may alternatively reflect
divergent cognitive strengths and weaknesses, which we
now consider.
Several lines of research have indicated that melancholic

depression is associated with diurnal variation of mood
[54], with such variation thought to impact on neuro-
psychological performance across the day [55]. Clinical
depression with diurnal variation has also been found to
result in differential performance on accessibility and re-
call of positive and negative (self-related) experiences [56],
with positive memories more likely to be retrieved when
depression is less severe in the afternoon/evening. Varying
biological influences such as cortisol hypersecretion –
shown to be specific to melancholia [57] – may play a
pivotal role in modulating cognitive function in depression
as previously suggested [58]. Such factors are important
considerations with respect to the current findings given
study participants were not all tested at the same time
of day. Furthermore, inconsistent medication regimens
across individuals within and between groups may con-
tribute to individual differences in emotional processing
biases [59], thus possibly dampening the association
between the depressed state and cognitive impairments. If
such factors were found to be unrelated – and individual
differences were indeed evident upon replication – it is
conceivable that melancholia (due to the observed
variation) may be able to be portrayed as comprising
several distinct sub-types as suggested by Parker and
Hadzi-Pavlovic [1] (e.g. functional and structural melancho-
lia). Factors such as family history, age-of-onset, presence/
absence of neuropathological changes and cardiovascular
disease would need to be clarified for any such sub-typing
model to be advanced within the current context. Given
the increased age of our sample, neuropathological changes
in some individuals cannot be excluded. Despite these
possibilities, the utility of the current findings lie first and
foremost in their ability to inform psychophysical models
of depression, with several caveats.
As indicated above, there were several study limitations.

Firstly, the analysis did not interrogate trial-to-trial
variability. Thus, the supposed dynamics of sensory
integration (stimulus–response updating), as previously
put forward [53], could not be quantified in this sample.
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In addition, the signal detection task used did not allow
for further analysis of aspects of emotional decision-
making (i.e. specific decision-making rules) beyond bias
and discriminability functions. Such specific limitations,
if overcome in future studies, would provide a more
refined model of decision-making and clinical condi-
tions themselves. It is therefore proposed that future
work should attempt to examine the utility of dynamic
models of decision-making in light of changing emo-
tional environments, along with key clinical variables, to
further establish the mechanisms by which perception
and action interact in depression.
Conclusions
There has been an upsurge of interest in framing cognitive
function in psychiatric conditions in probabilistic terms
[5,60], precipitated by research in cognitive and computa-
tional sciences that, in health, humans respond optimally
in their environments. The signal detection approach used
in the current study offers insight into the optimal
response parameters of those with depression, and ex-
tends previous suggestions of ‘emotional response biases’
in depression through psychophysical modelling. The
hierarchical models in the current paper allowed esti-
mation of the most probable response distributions, and
is an advance on previous (e.g. frequentist) attempts
that aim to elucidate neuropsychological dysfunction in
depressed groups through group averaging approaches.
Future studies should attempt to clarify how different
cognitive processes operate across different individuals.
Such work should also aim to provide a more detailed
characterization of perceptual (probabilistic) sensory up-
dating across changing environments in depression, whilst
recognising the fundamental role pre-existing cognitive
biases play in response to environmental demands.
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