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Abstract

Background: The exact cerebral structural and functional mechanisms under the auditory verbal hallucinations
(AVHSs) in schizophrenia are still unclear. The Deutsch “high-low” word illusion might trigger attentional responses

mimicking those under AVHs.

Methods: We therefore have invited 16 patients with first-episode, paranoid schizophrenia, and 16 age- and

gender-matched healthy volunteers to undergo the “oddball” event-related potentials elicited by the illusion. The
clinical characteristics of patients were measured with the positive and negative symptom scale.

Results: Besides the longer reaction time to the illusion, the standard P2 latency was shortened, the N2 latency was
prolonged, and both N1 and P3 amplitudes were reduced in patients. The P3 source analyses showed the activated
bilateral temporal lobes, parietal lobe and cingulate cortex in both groups, left inferior temporal gyrus in controls,
and left postcentral gyrus in schizophrenia. Moreover, the N1 amplitude was positively correlated with the paranoid
score in patients.

Conclusions: Our results were in line with previous neurophysiological and neuroimaging reports of hallucination
or auditory processing in schizophrenia, and illustrated a whole process of cerebral information processing from N1
to P3, indicating this illusion had triggered a dynamic cerebral response similar to that of the AVHs had engaged.

Keywords: Auditory hallucinations, Deutsch “high-low” word illusion, Event-related potentials, Paranoid schizophrenia

Background

Schizophrenia is a severe mental disorder with persistent
perceptual and cognitive impairments [1, 2], such as se-
mantic processing deficits [3—5] and attention problems
[6]. Auditory hallucinations especially auditory verbal hal-
lucinations (AVHs) are one of the characteristic symptoms
of the disorder, which might range from single words or
phrases to voices giving commands, comments, insults, or
encouragement [7]. Many attempts to understand the
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neural correlates of AVHs have been trialed in recent
years. For instance, the AVHs, with more ambiguous or
salient signals often accepted as real and meaningful, were
demonstrated broadly involved in the processes of atten-
tion, cognition, and emotion of a patient with schizophre-
nia [8]. It has been shown that the semantic processing of
auditory information contributed to the generation of
AVHs in a general population [9], but this contribution
has not proven in patients with schizophrenia [10].

On the other hand, some scholars consider the rela-
tionship between illusion and hallucination, and suggest
that the hallucination is the illusion of the reality [11, 12].
Thus, the illusion-related processing might be used as a
specific probe to study AVHs. Deutsch [13] reported a
musical illusion, a dichotic listening phenomenon that
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happened when a participant received one sine-wave se-
quence from one ear and another simultaneously pre-
sented but phase-reversed sequence from the other ear, i.e.,
when one ear received the high tone, the other ear received
the low tone and vice versa. In this case, although the high
and the low tones were delivered to both ears, right-
handed participants typically perceived a single low tone at
one ear alternating with a single high tone at the other re-
gardless of how the earphones are positioned [13, 14].
Later, Deutsch [15] used words, such as “high” and “low”,
to replace the tones, and developed a Deutsch “high-low”
word illusion. Listening to this pattern through stereo
loudspeakers for a while, English-speaking people had re-
ported hearing English words which were actually not pre-
sented, such as “buy loan”, “long time”, “no, no” and
“boatman” [15]; while the healthy Chinese-speaking people
and Chinese patients with cluster A personality disorders
had reported hearing Chinese words which were related to
their personality traits [16, 17].

The neuroimaging evidences have suggested that the
abnormalities related to auditory hallucinations were in
the auditory “what” pathway including anterior and poster-
ior temporal cortices and in the “where” pathway including
the superior temporal, inferior parietal and superior frontal
cortices [7, 8]. For instance, the functional neuroimaging
studies have associated AVHs with brain areas involved in
speech generation, speech perception and auditory pro-
cessing [18—-20]. The areas activated during hallucinations
were the temporal and prefrontal cortical areas [21, 22], or
the inferior frontal/ insular, anterior cingulate, temporal as
well as some subcortical regions [23, 24].

On the other hand, the electroencephalography (EEG)
provides noninvasive measures with superior temporal
resolution (in milliseconds) of brain activities, and it is
more suitable to capture the rapidly occurring processes
than the neuroimaging techniques such as fMRI or PET
[25]. Using the event-related potentials (ERPs), many
hallucinations related cognitive deficits in schizophrenia
have been documented. The N4 (N400) potential, con-
sidered as a semantic priming related component, has
been widely used to explore different aspects of language
disturbance in schizophrenia [5], though it was not clear
whether this component was a neurophysiological biomarker
of the semantic processing dysfunction in schizophrenia
[26, 27]. The N4 was more negative when examining
the processes of context use while it was normal or re-
duced when examining the primary processes of initial
activation within the semantic networks [5]. The com-
ponent P3 (P300), considered as an attention-related
cognitive potential, has also been trialed in illusion studies
[28, 29]. In schizophrenia, the reduced and prolonged P3
component has been consistently observed [30-32], which
was also related to the auditory hallucination and clin-
ical symptom severities [33, 34]. More specifically, a
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left-lateralized reduction of P3 component which was
closely related to the decrease of the normal left-dominance
function of processing syllables and complex tones [35], was
also related to the impairments of the temporal lobe in
schizophrenia [34, 36, 37]. Therefore, P3 potential might be
one of the endophenotypic markers of schizophrenia
[38], and might help to disclose the mechanisms under-
lying AVHs.

However, due to the difficulty to employ on-going hal-
lucinations (such as AVHs) to trigger an ERP study,
there is no investigation illustrating the dynamic changes
under AVHs up to date, for instance, in a time window
of N1-P3 components. Moreover, since the various AVH
contents [7] could hardly be used to trigger an ERP, we
would like to adopt the Deutsch “high-low” word illusion
as a stimulus in the present study, expecting that the word
illusion triggered ERPs indicate the specific pathology of
AVHs in schizophrenia. Therefore, we have hypothesized
that 1) patients with schizophrenia have a reduced P3 over
the scalp topography and 2) there is a prominent cerebral
generator responsible for the word illusion processing.

Methods

Participants

Sixteen healthy participants were recruited from medical
staff and the community. They were physically healthy,
did not suffer from any psychiatric or neurological disor-
ders. Sixteen patients were diagnosed as having paranoid
schizophrenia with auditory hallucinations in the acute
phase according to the criteria of the International Clas-
sification of Diseases-10 [39] after a semistructured clin-
ical interview by two experienced psychiatrists (LZ &
WW) separately. All patients had experienced their first
acute episode with relatively short disease durations, and
displayed moderate to low levels of psychopathology as
accessed using the Positive and Negative Syndrome Scale
(PANSS) [40] (Table 1). All participants were confirmed
to have no other confounding factors including affective
or schizoaffective disorder, nor prior history of head injury,
alcohol or tobacco abuse, psychoactive substance abuse,
central nervous system inflammation, nor neurocognitive
or other disorders influencing the decisional capacity
(understanding, appreciation, reasoning, and expression
of choice of an action) through the semistructured clin-
ical interview. The demographic data, medical history,
and medication information were listed in Table 1. There
was no age (¢=-1.33, p = 0.20) or gender (y* =2.032, p =
0.15) difference between groups. Six patients were medica-
tion free and the remaining patients had been treated with
atypical antipsychotics at regular doses for no more than
2 weeks (also see Table 1). A recent CT or MRI scan was
available in order to ensure that all patients were free from
any organic brain lesions. There was no statistically sig-
nificant difference in educational level between the two
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Table 1 Demographic data in patients with schizophrenia
(n=16) and healthy volunteers (n=16)

Schizophrenia Controls
Gender (f/m) 5/11 9/7

224+58/16-36 204 +1.6/19-25

Age (in years; mean + SD/ range)

Positive and negative syndrome
scale (mean +SD)

Total 596+ 137 -
Positive scale 144+44 -
Negative scale 98+37 -
General psychopathology scale  31.2+94 -
Lack of action 463+178 -
Thinking disorder 9.31+£298 -
Irritation 569+2.12 -
Paranoid 481+138 -
Depression 9.81£2.81 -
Others 9.38+250 -
Disease history (in months) 21+0.7 -
Medication
olanzapine 6 -
risperidone 3 -
quetiapine 1 -

groups. All participants were extreme right-handers ac-
cording to a Chinese translation of the Edinburgh
Handedness Scale [41]. The study was approved by the
Ethics Committee of Zhejiang University College of
Medicine (No. ZGL201307-2-1). Two PhD candidates
(YX & HC) were available to explain the written in-
formed consent by presenting a Powerpoint presenta-
tion, showing a hypothetical EEG experiment onsite,
and showing a signed written informed consent to the
participants or their next of kin. YX and HC were also
available to aid in the proper filling of the required
demographic information, questionnaire and the in-
formed consent, and to ensure corrective feedbacks. In
particular, all patients were ensured to have a free ex-
pression of choice, and to fully understand the study
protocol information (i.e., its atraumatic features, and
its usefulness for scientific research and for disease un-
derstanding). These patients had to repeat the consent
information orally to one experienced psychiatrist (from
ZL & WW) and one PhD candidate (YX & HC). All adult
participants gave their written informed consent to par-
ticipate. For patients of 16—17 years old, we have obtained
the written informed consent by their next of kin, through
a surrogate consent procedure, regarding participating in
our study. The study also conformed to the Helsinki Dec-
laration concerning human rights and informed consent
and followed correct procedures concerning treatment of
humans in research.
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Stimuli and procedure

Participants were seated in an armchair in a quiet and
dimly lit room while stimuli were delivered according to
the “oddball” paradigm through headphones at an inter-
stimulus interval randomized from 1500-2000 ms. The
target stimulus was a 250 ms segment (a full circle) of
the “high-low” word illusion [15] and the standard stimulus
was a 1000 Hz tone with the same duration, both edited by
Adobe Audition (Adobe Systems Incorporated). The stand-
ard stimuli were delivered 160 times (80 %) while the target
stimuli were 40 times (20 %) in a randomized order. After
a short duration of training, participants were asked to re-
spond to the target stimuli, by pressing a button using the
index finger of their artful hand as soon as possible, and
their reaction times to the target were recorded. The reac-
tion accuracies for the two groups were all nearly 100 %
due to the simplicity of the task.

ERP recording

The EEG recording were performed with 32 electrodes
embedded in an electro-cap (Electro-Cap International,
Inc.) according to the 10-20 International System and
intermediate positions (Fpl, Fpz, Fp2, F3, F4, F7, F8, Fz,
Fcl, Fc2, Fc5, Fe6, T7, T8, C3, C4, Cz, Cpl, Cp2, Cp5,
Cpé6, P3, P4, P7, P8, Pz, O1, Oz, 02, POz, M1, and M2).
Recording was made with the average reference. The
EEG was amplified by an ANT amplifier (Enschede, the
Netherlands) and the impedance of all electrodes was
kept below 10 kQ. The EEG was continuously recorded
with a sampling rate of 1024 Hz and then re-referred to
the average activity of the two mastoid electrodes (M1 and
M2) off-line. Trials containing electrooculogram (EOGQG)
and other artefacts were eliminated by ASA software
(ANT software, version 4.7., The Netherlands) using a
principal component analysis method that models the
brain signal and artefact subspaces [42]. Data were filtered
with a bandpass of 0.1-30 Hz. Epochs beginning 100 ms
prior to stimulus onset and continuing for 900 ms were
created and segments of the record contaminated by
artefacts (70 puv) were rejected from averaging.

ERPs were analyzed in terms of peak latency and
baseline-to-peak amplitude of the respective maximal
deflections in the following time windows: 50—-150 ms
and 100-300 ms for standard Nland P2 respectively;
50-150 ms, 100-200 ms, 150-250 ms, 250-400 ms for
target N1, P2, N2 and P3 respectively.

Source analyses

The statistical parametric mapping (SPM 8, http://
www.fil.ion.ucl.ac.uk/spm) toolbox for M/EEG data was
used for source analyses of the N1, P2, N2 and P3 compo-
nents elicited by word illusion segment (i.e., the target) in
both groups. The SPM 8 provides “source reconstruction
resulting in a spatial projection of sensor data into brain
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space and considers brain activity as comprising a very
large number of dipolar sources spread over the cortical
sheet based on Bayesian inversion of hierarchical Gaussian
process models” [43—45]. In the present study, the SPM
default template head model (normal cortical mesh sizes,
i.e, 8196 vertices were used for calculating) based on the
Montreal Neurological Institute (MNI) brain was used,
and the multiple sparse priors algorithm [43] was applied
to the time window of each component (again, 50—150 ms,
100-200 ms, 150-250 ms, 250—-400 ms for target N1, P2,
N2 and P3 respectively; re-referred to average reference)
for the source reconstruction, as this method gives the
most plausible results and has greater model evidence [46].
After the reconstruction, a source level statistical analysis
based on the random field theory [44, 47] was also
performed to detect any significant difference P3 sources
between groups.

Statistical analyses

The mean age and reaction time in the two groups were
analyzed by the independent ¢ test. The mean latency/
amplitude of standard N1, P2 and target N1, P2, N2, and
P3 at nine electrode sites (F3, Fz, F4, C3, Cz, C4, P3, Pz,
and P4) were analyzed using a four-way ANOVA, ie.,
Group (2) X Gender (2) X Sagittal Positions (3: frontal,
central, and parietal) X Lateral Positions (3: left, central,
and right) with the post-hoc Bonferroni test. The mean
latency/amplitude difference between two groups at each
site were analyzed by the independent ¢ test. The Pearson
correlation was applied between latency/amplitude of tar-
get N1, P2, N2 and P3 at each site and PANSS scale scores
(i.e., total score, positive scale, negative scale, general psy-
chopathology scale, lack of action, thinking disorder, irrita-
tion, paranoid, depression, others) in schizophrenia group,
while the relationship would not be recognized unless it
was significantly at three adjacent sites. The alpha level of
significance was set at .05. Based on the design of detect-
ing a group difference in one ERP parameter, for example,
the statistical power of our study reached .89 for raw, .95
for column, and .52 for interaction effects.

Results

The mean reaction time was significantly prolonged (¢ = -2.51,
p=002) in patients with schizophrenia (384.6 ms + 90.7)
compared to that in healthy participants (317.8 £ 55.3).
Each participant clearly showed ERP traces to standard
and target stimuli at all 32 electrodes. The grand averages
at selected nine electrodes are shown in Fig. 1. Some de-
tailed data, such as the mapping of each potential compo-
nent, is omitted, for the sake of data presentation brevity.

Morphology triggered by standard stimuli
In each participant, the N1 and P2 to the standard stimuli
were clear.
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N1 component

For standard N1 latencies, no significant main effect of
either group (F(1, 28) =1.01, MSE =2073.67, p=0.32),
gender (F(1, 28)=0.01, MSE=17.30, p =0.93), sagittal
(F(2, 112)=3.15, MSE=1130.73, p=0.08), or lateral
(F(2, 112)=0.23, MSE =45.63, p=0.75) was detected.
For standard N1 amplitudes, no significant group (F(1,
28) =1.60, MSE=52.89, p=0.22) effect was detected,
but main effect of sagittal (F(2, 112) = 42.39, MSE = 122.34,
p<0.01), lateral (F(2, 112)=6.33, MSE=6.88, p<0.01),
and gender (F(1, 28) = 6.09, MSE =201.08, p =0.02) were
all significant. The standard N1 amplitudes were more
pronounced at frontal (-3.9 pV + 0.4, p<0.01, 95 % CI
[1.2, 2.6]) and central (-3.6 pV +0.4, p<0.01, 95 % CI
[1.0, 2.0]) sites compared with those at parietal (-2.1 gV +
0.3); at central (-3.3 pV +0.4) sites compared with those
at left (-2.9 pV +0.3, p<0.01, 95 % CI [0.1, 0.8]); and in
males (-4.1 pV £0.5) compared with those in females
(=23 pV £ 0.5, p=0.02, 95 % CI [0.3, 3.2]).

P2 component

For standard P2 latencies, there was significant main effect
of group (F(1, 28) =9.81, MSE =62121.12, p <0.01), with
shortened P2 latencies in schizophrenia (204.1 ms +7.2)
compared to that in controls (234.7 ms+6.7, 95 % CI
[10.6, 50.7]). Main effect of the gender (F(1, 28) =0.54,
MSE =3392.27, p = 0.47), sagittal (F(2, 112) = 0.68, MSE =
235.13, p=0.51), or lateral (F(2, 112)=2.90, MSE =
830.89, p=0.08) was not significant. For standard P2
amplitudes, no significant main effect of group (F(1,
28) =0.23, MSE =3.18, p=0.63) or gender (F(1, 28) =
2.30, MSE = 31.63, p = 0.14) was detected, but of sagittal
(F(2, 112) = 6.00, MSE = 10.19, p < 0.01) and lateral (F(2,
112) =11.09, MSE=9.98, p <0.01) sites were all signifi-
cant. The standard P2 amplitudes were more pronounced
at central sites (2.5 uV +0.3) compared with those at
frontal (1.9 uV £ 0.3, p<0.01; 95 % CI [0.2, 1.1]) and par-
ietal (2.0 pV £0.2, p=0.03; 95 % CI [0.1, 1.0]); at central
(2.5 pV £ 0.3) sites compared with those at left (2.0 pV +
0.2, p<0.01; 95 % CI [0.2, 0.8]) and right (1.8 pV +£0.2,
p<0.01; 95 % CI [0.3, 1.0]).

Morphology triggered by target stimuli
In each participant, the N1, P2, N2, P3 (but not N4) to
the target stimuli were clear.

N1 component

For target N1 latencies, there was no significant main
effect of group (F(1, 28) =2.52, MSE =8990.30, p =0.12),
sagittal (F(2, 112) = 2.89, MSE =423.23, p = 0.06) or lateral
(F(2, 112) = 0.31, MSE = 34.37, p = 0.74) either, but signifi-
cant gender effect (F(1, 28) = 6.65, MSE = 23685.54, p =
0.02) was found, with prolonged N1 latencies in females
(152.3 ms £ 5.6; 95 % CI [3.9, 34.0]) compared with those
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Standard
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P3

solid (n=16) lines

Fig. 1 ERP grand averages in controls and schizophrenia at nine electrode sites. Controls are presented in dashed (n = 16), and schizophrenia in

100 ms

in males (133.4 ms + 4.8). For target N1 amplitudes, signifi-
cant main effects of group (F(1, 28) = 6.81, MSE = 627.10,
p=0.01) and of sagittal sites (F(2, 112)=40.88, MSE =
612.90, p < 0.01), but not of gender (F(1, 28) = 0.20, MSE =
18.29, p =0.66) or of lateral sites (F(2, 112) = 3.02, MSE =
32.24, p=0.08) were detected. The target N1 amplitudes
were more pronounced at frontal (-11.1 gV + 0.8, p < 0.01;
95 % CI [2.7, 6.0]) and central (-11.5 pV +0.8, p<0.01;
95 % CI [3.3, 6.3]) sites compared with those at par-
ietal (-6.8 pV +£0.5), and was decreased in schizophre-
nia (-8.2 pV £0.9) compared with those in controls
(-11.3 uV £0.8; 95 % CI [0.7, 5.5]) (Table 2).

P2 component

For target P2 latencies, no significant effect of group
(F(1, 28)=1.21, MSE =5772.50, p=0.28), gender (F(1,
28) =4.00, MSE = 19091.32, p = 0.06), sagittal (F(2, 112) =
3.16, MSE = 698.30, p=0.06) or lateral (F(2, 112)=0.48,
MSE =46.24, p = 0.55) was detected (Table 2). For target
P2 amplitudes, main effect of group (F(1, 28) =0.24,
MSE =67.55, p=0.63) or gender (F(1, 28) = 0.64, MSE =
176.07, p = 0.43) was not significant, while main effects of
lateral (F(2, 112) =7.02, MSE =152.49, p <0.01), and of
sagittal (F(2, 112) = 14.50, MSE =107.78, p < 0.01) were
detected. The target P2 amplitudes were more pronounced
at central sites (3.7 pV + 1.3) compared to those at left
(1.9 pv £0.9, p<0.01; 95 % CI [0.7, 3.0]) and at right

(8.9 uV 0.8, p<0.01; 95 % CI [0.6, 2.4]), and were de-
creased at frontal sites (1.0 uV + 1.0) compared to those
at parietal (3.6 pV + 1.0; 95 % CI [0.7, 4.5]) (Table 2).

N2 component

For N2 latencies, significant group (F(1, 28)=7.59,
MSE =50393.81, p=0.01) and gender effects (F(1, 28) =
4.75, MSE =31539.64, p=0.04) were found, with pro-
longed N2 latencies in females (266.0 ms+7.6; 95 % CI
[1.3, 42.4]) compared with those in males (244.2 ms + 6.6),
and in schizophrenia (268.9 ms + 7.3; 95 % CI [7.0, 48.2])
compared with that in controls (241.3 ms + 6.8). There
was no significant main effect of sagittal (F(2, 112) = 0.003,
MSE =0.877, p =1.00), or lateral (F(2, 112) =2.97, MSE =
249.50, p =0.06) sites (Table 2). For N2 amplitudes, no
group (F(1, 28) =0.47, MSE =146.09, p =0.50) or gender
(F(1, 28) = 0.06, MSE = 17.16, p = 0.82) effect was detected,
but main effects of sagittal (F(2, 112) =11.72, MSE =
267.57, p <0.01), and of lateral (F(2, 112) = 8.15, MSE =
58.22, p<0.01) sites were significant. The N2 ampli-
tudes were more pronounced at frontal (-1.5 pV +1.2)
compared with those at central (1.0 pV £ 1.3, p<0.01;
95 % CI [0.6, 4.3]) and parietal (1.8 pV +£1.0, p<0.01;
95 % CI [1.2, 5.5]) sites, were decreased at central
(14 pV+1.3, p<0.05) compared with those at left
(0.0 pV£0.9, p=0.01; 95 % CI [0.2, 2.6]) and right
(0.0 pV £ 1.0, p<0.01; 95 % CI [0.3, 2.4]) sites (Table 2).
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Table 2 Latencies and amplitudes of ERP components to target
stimuli in controls and schizophrenia

Site N1

Latency Amplitude

Controls Schizophrenia Controls Schizophrenia
F3 13945+21.76 14146+ 14.05 —-1348+£799 -9.18+342
Fz 14091 +21.14 14702+ 2797 -1281+£502 —8.63+3.89*
F4 14024 +19.10 14372+£2069  —1150+£4.09 —-855+462
a3 13914+ 2119  146.22 + 26.66 -1260+£441 -9.96+3.38
Cz 137.74+1717 14421+ 27.19 -1400£6.06 —9.52+3.60"
C4  13835+£1693  14427+29.15  —12.18+460 —9.18+357*
P3 13219+1784  140.55 + 30.68 —7.27 £2.79 —5.74+258
Pz 13353+ 1837 141.77+£3592 —9.04 £345 —534+ 265
P4 13640+1974 13988+2793  —742+255  —493+274*

P2

Latency Amplitude

Controls Schizophrenia  Controls Schizophrenia
F3 22048 +2761 22581 +£13.90 0.29+457 1.84+4.76
Fz 21895+2764 22557+21.76 0.56+6.98 215+£540
F4 21938+2854 22545+ 21.93 048+5.78 0.83 £4.49
c3 2237112828 22954+16.73 1.51+£6.63 2.85+5.90
Cz 22335+3324 22905+ 2191 3.72+£10.13 4.75+7.85
Cc4 22628+ 3357 22960+ 21.26 1.69 +6.86 197 +£533
P33 21877+£2920 23063+1616  3.06+493 2711488
Pz 21877 +2897 22392+2144  484+6091 533£461
P4 22298+3198 22538+ 22.96 2.50+5.00 259+5.19

N2

Latency Amplitude

Controls Schizophrenia  Controls Schizophrenia
F3 24383 +3862 26953+2237% —-0.88+4.58 -239+565
Fz 24340+3707 27057 +20.78% —-123+£739 -2.01£6.81
F4  24566+3507 26782+2589 —064+602 —290+6.69
a3 24279+3883 26898+ 2384* 081+642 -0.08+473
Cz 24340+3878 27289+31.77% 267 +9.83 1.09+7.51
C4  24188+3560 26532+2357* 1321668 —0.62+ 565
P3 24297 £3960 266.05+ 22.88 258 +£554 0.12£4.59
Pz 24645+3550 26996+2053  397+7.69 208+4.10
P4 24479+3932 26435+2574  201+550 025505

P3

Latency Amplitude

Controls Schizophrenia  Controls Schizophrenia
F3 34039+ 1976  33329+2425 1071+£9.06  485+530%
Fz 33429+2132 33500+2484 14191663 6.10+6.37**
F4 336.79+2098 33542+ 2935 12.84+5.12 550+ 6.12%*
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Table 2 Latencies and amplitudes of ERP components to target
stimuli in controls and schizophrenia (Continued)

a 33057+2850 32407+26.16 11.88£581 4.18 £4.05**
Cz 32336+3669 32084+ 27.69 14.54 +7.98 5.61 £ 4.60%*
C4  32880+3131 32926+32.19 12.88 £5.58 4.96 +443**
P3 32526+2955 32816+ 2397 11.07+£4.13 4.70 £ 4.84**
Pz 322.14+3182 32847 +30.16 13.67 £ 546 6.16 £4.00%*
P4 33008+27.20 33024+34.17 1081 £4.49 518 £367**

*p <.05, **p <.01 vs controls; sample sizes of controls and schizophrenia were
both 16. Latencies (in ms) and amplitudes (in uV) were presented as mean + SD

P3 component

For P3 latencies, no significant effect of group (F(1, 28) =
0.01, MSE=62.79, p=0.92), gender (F(1, 28)<0.01,
MSE =0.06, p = 1.00) or lateral (F(2, 112) = 2.87, MSE =
581.59, p =0.07) was detected, but significant main ef-
fect of sagittal (F(2, 112)=7.58, MSE =3357.89, p<0.01)
was detected, with prolonged latencies at front sites
(335.9 ms + 4.2) compared with those at central (326.0 ms +
5.5, p=0.01; 95 % CI [2.3, 17.7]) and parietal (326.9 ms +
5.3, p=0.03; 95 % CI [0.7, 17.4]) sites (Table 2).

For P3 amplitudes, main effects of group (F(1, 28) = 20.29,
MSE = 3638.96, p < 0.01) and lateral sites (F(2, 112) = 10.98,
MSE =158.89, p<0.01) were detected, while the main ef-
fects of gender (F(1, 28) = 1.54, MSE =276.17, p =0.23) and
of sagittal sites (F(2, 112) = 0.13, MSE =4.21, p = 0.80) were
not significant. The P3 amplitudes were more pronounced
at central sites (104 pV +1.0) compared to those at left
(8.0 pV £0.9, p<0.01; 95 % CI [0.9, 3.8]) and at right
(8.9 uV +£0.8, p<0.01; 95 % CI [0.6, 2.4]), and were also
decreased in schizophrenia (5.3 pV +1.2) compared to
those in controls (12.8 pV+1.1; 95 % CI [4.0, 10.8])
(Table 2).

Source analyses

The source reconstruction of N1, P2 and N2 elicited by
word illusion segments showed maximal activated areas at
right parahippocampal gyrus (MNI coordinates: x = 29,
y=-10, z=-14; Brodmann area 28), right fusiform
gyrus (x =46, y=-30, z=-21; Brodmann area 20) and
right insula (x=43, y=9, z=7; Brodmann area 13) re-
spectively in controls, while at right fusiform gyrus (x = 46,
y = -30, z=-21; Brodmann area 20), right parahippocam-
pal gyrus (x =29, y=-10, z = -14; Brodmann area 28) and
left fusiform gyrus (x =-44, y=-32, z=-21; Brodmann
area 20) respectively in schizophrenia.

The source reconstruction of P3 elicited by word
illusion segments showed activated areas included bilat-
eral temporal lobes, parietal lobe and cingulate cortex in
both groups (Fig. 2). Specifically, the P3 source having
maximal activity was at left inferior temporal gyrus (MNI
coordinates: x = -50, y=-7, z=-41; Brodmann Area 20)
in controls and at left postcentral gyrus (x =-17, y = -56,
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Fig. 2 P3 source reconstruction (maximum intensity projections) in
controls and schizophrenia

z = 67; Brodmann area 7) in schizophrenia. Moreover, the
source level statistical analyses showed a significant reduc-
tion of activity (p < 0.01) in left inferior temporal cortex in
schizophrenia compared with that in controls (Fig. 3).

Relationship between ERP and clinical data

The correlation test showed some associations between N1
amplitude and the PANSS scales (for detailed data, please
see Additional file 1), but only paranoid scale score was
significantly correlated with N1 amplitude at parietal
area (P3, r = .66, p = 0.005; Pz, r=.77, p = 0.001; P4, r = .618,
p=0.011) according to our ad hoc criteria. The scores of
positive scale and thinking disorder, which contain the
items of hallucinatory behavior, were not related to any
ERP components (including those to the standard stimuli).

Discussion

As hypothesized, we have found that the P3 elicited by
the Deutsch “high-low” word illusion was significantly
reduced and its maximal source located at a different
brain area in patients with schizophrenia than those in
the healthy volunteers in the present study. In combination
with the decreased N1 and prolonged N2 components in
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schizophrenia, the findings suggested an impaired process-
ing of the stimulus within a very short time window which
might be linked with the pathology in AVHs. This is the
first study to illustrate the dynamic changes to an illusion,
in a time window of N1-P3, in schizophrenia.

The reaction times to the target stimuli were prolonged
in schizophrenia compared with those in controls, which
was consistent with previous studies [33] on the one hand.
Together with reduced P3, the prolongation indicated a
breakdown in the preparatory brain state which was crit-
ical for stimulus processing and later motor execution
[48] in schizophrenia on the other hand.

A frontal-central scalp distribution of the standard/
target N1, a more central standard/target P2, and a
frontal-bilateral distributed N2 were also consistent with
the previous documentation [49-52]. The reduced audi-
tory target N1 has been reported in schizophrenia previ-
ously [49, 50]. The lowered N1 was thought to reflect the
impaired ability to filter out irrelevant information in pa-
tients with schizophrenia [53, 54], as well as the lowered
competition ability between auditory probes and halluci-
nations for auditory resources in psychiatric patients [25].
Moreover, as an exogenous component representing the
early auditory processing, the N1 reduction also reflects
the abnormalities in frontal-temporal lobe [55]. Similarly,
the shortened standard-P2 latencies in patients replicated
previous findings [52, 56, 57], indicating a faster process-
ing speed for non-targets [56], which might reflect the
impaired attention shifting to task-irrelevant stimuli. The
prolonged N2 latencies in patients also replicated the
results in the first-episode schizophrenia [58], which
indicated a delayed stimulus-classification time in this
pathology.

Similar to the scalp-distribution of the classical P3 [59],
the P3 in our study was midline-distributed. The P3 re-
duction in our schizophrenia group was also consistent
with previous researches [30-32], indicating a high-level,
attention-dependent cognitive deficit when discriminating
stimuli in the disorder [60]. This impairment of atten-
tional allocation was associated with left temporoparietal
cortices, which was involved in auditory-verbal imagery

Fig. 3 Source level statistical parametric maps displaying decreased P3 activations in schizophrenia vs controls. Significant P3 source reductions
were at left inferior temporal cortex [MNI coordinates: x = —44, y =2, z=—-34, t =3.14, p=0.002]




Xu et al. BVIC Psychiatry (2016) 16:33

monitoring as demonstrated in schizophrenia [61]. Ford
et al. [25] also interpreted the diminished classical P3 in
patients with schizophrenia with auditory hallucinations
as they preferentially attended to voices through the in-
ternal auditory channels, resulting in insufficient cortical
resources to process an external stimulus.

When processing the Deutsch “high-low” word illusion,
both our groups displayed activated areas of the bilateral
temporal lobe, parietal lobe and cingulate cortex. Although
the activation in schizophrenia was not specific, previous
results have demonstrated that patients with schizophrenia
with persistent hallucinations including AVHs exhibited
grey matter volume decrements in the left or bilateral in-
ferior temporal gyrus [62, 63], and their dysfunctions in
speech or AVHs generation [18]. Moreover, an increased
activity in the same area was found in schizophrenia
patients prone to auditory hallucinations [64]. These in-
vestigations suggested that the impairment might be
due to the endogenous cortical activity which impeded
the processing of external stimulus.

In healthy participants, the left inferior temporal gyrus
is involved in the language and semantic memory pro-
cessing [65], such as the mental imagery tasks using lin-
guistic cues [66], the mental recall of words [67], and
the word generation test [68, 69]. Our finding that the
left inferior temporal gyrus was activated in the healthy
volunteers might be explained by these studies. In addition,
it might disclose some mechanisms behind the illusion-
triggered word-generating processes in normal people [17].

In schizophrenia, the activity at postcentral gyrus was
reported in patients performing auditory oddball task [70],
and the activity in similar brain area was documented in
patients involved in the auditory verbal imagery test [71].
These activiations were associated with the somatic [72]
and auditory [73] hallucination processing, and even con-
sistently with the processing of AVHs in schizophrenia
[20, 74, 75]. Another recent study on the impaired atten-
tional modulation in the first-episode psychosis, where
patients misidentified their own speech as of others,
also has shown an activation of the left postcentral
gyrus when patients were judging the speech to be self-
generated or not [76]. Falkenberg et al. [77] suggested
that the activation of the postcentral gyrus implied a
higher auditory processing and influenced by the atten-
tional mechanisms. Considering the documentation, the
putative P3 source at postcentral gyrus in the present
study might reflect a compensatory cerebral functioning
to discriminate external from internal stimulus-sources in
schizophrenia. In addition, with joint independent com-
ponent analysis applied in an auditory oddball paradigm
integrating ERP and fMRI data, Mangalathu-Arumana et
al. [78] found that the activity of the left postcentral gyrus
was consistent with the relationship between mean motor
response time and the P3 amplitude. In this case, the
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delayed reaction time to the Deutsch “high-low” word
illusion in our schizophrenia group fitted nicely with the
left postcentral gyrus activation for the P3 source.

The N1 amplitude at parietal area was found correlated
with the paranoid scale in patients with schizophrenia,
which was consistent with the finding that N1 amplitude
was reduced (more positive proneness) in these patients
[79], and in people with more delusion-like ideations [80].
As N1 reflected auditory detection and discrimination
[81], the reduced N1 suggested that people with paranoia
might not pay attention to the target stimuli. Instead, their
attention was redirected toward the surrounding environ-
ment to look for the false “hidden goal” [80]. The altered
attention to the Deutsch “high-low” word illusion was also
in line with a behavioral finding that the paranoid person-
ality disorder patients reported more meaningful Chinese
words when listening to the illusion [17].

However, one has to bear in mind the major design
flaws of our study. Firstly, we recruited 16 healthy vol-
unteers from medical staff and community, who might
not represent a general population. Our patients were
with auditory hallucination experience but without onsite
hallucination-attack during the test. It remains unknown
how the ERPs would be in patients with schizophrenia of
either hallucination-free or under hallucination-attack.
Therefore, our current results cannot be generalized to
other kinds of schizophrenia or mental disorders. Sec-
ondly, we did not measure personality disorder function-
ing styles in patients, nor did we correlate their styles with
the reported meaningful Chinese words immediately after
ERP tests, due to the small sample size and the small
number of meaningful words reported. Thirdly, we did
not use a hallucination as a target stimulus, but simply
used an illusion to trigger ERPs, and we omitted to
study the frequencies and contents of AVHs in our pa-
tients. Certainly, such ideas merit further investigation.
Nevertheless, we found deformed ERPs and different
cerebral sources to the Deutsch “high-low” word illusion
in patients.

Conclusions

Our results addressed the cognitive problems in schizophre-
nia relating to the illusion, thus deepened our knowledge of
hallucination processing in schizophrenia. Moreover, our
study had illustrated a whole process of cerebral information
processing from N1 to P3, indicating this illusion had trig-
gered a dynamic cerebral response which might be similar
to that of the AVHs had engaged.

Additional files

Additional file 1: Table S1. Pearson correlations between ERP latencies
and amplitudes and PANSS scores in schizophrenia (n = 16). (DOCX 26 kb)
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