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Abstract

Background: Amyloid β (Aβ) and tau proteins are considered as critical factors that affect Alzheimer’s disease (AD)
and mild cognitive impairment (MCI). Although many studies have conducted on these two proteins, little study has
investigated the relationship between their spatial distributions. This study aims to explore the associations of spatial
patterns between Aβ deposition and tau deposition in patients with MCI and normal control (NC).

Methods: We used multimodality positron emission tomography (PET) data from a clinically heterogeneous
population of patients with MCI and NC. All data were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database containing information of 65 patients with MCI and 75 NC who both had undergone AV45 (Aβ) and
AV1451 (tau) PET. To assess the spatial distribution of Aβ and tau deposition, we employed parallel independent
component analysis (pICA), which enabled the joint analysis of multimodal imaging data. pICA was conducted to
identify the significant difference and correlation relationship of brain networks between Aβ PET and tau PET in MCI
and NC groups.

Results: Our results revealed the strongly correlated network between Aβ PET and tau PET were colocalized
with the default-mode network (DMN). Simultaneously, in comparison of the spatial distribution between Aβ
PET and tau PET, it was found that the significant differences between MCI and NC were mainly distributed
in DMN, cognitive control network and visual networks. The altered brain networks obtained from pICA
analysis are consistent with the abnormalities of brain network in MCI patients.

Conclusions: Findings suggested the abnormal spatial distribution regions of tau PET were correlated with
the abnormal spatial distribution regions of Aβ PET, and both of which were located in DMN network. This
study revealed that combining pICA with multimodal imaging data is an effective approach for distinguishing
MCI patients from NC group.
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Background
Amyloid β (Aβ) and tau proteins have been recognized
as two important factors that cause Alzheimer’s disease
(AD) and Mild cognitive impairment (MCI) [1, 2]. Many
studies have focused on these two proteins separately [3,
4], and Brier MR et al. [5] have calculated the correlation
between the deposition of the two proteins on the voxel-
wise based on neuroimages. However, little imaging
study has investigated the correlated brain networks of
these two proteins thus far.
Several brain image studies have been carried out with

different technologies [6, 7]. Multivariate statistical para-
digms (such as principal component analysis (PCA) or in-
dependent component analysis (ICA)) assess distributed
alterations and their interrelationships in multiple neuro-
imaging data. ICA is a data-driven analysis method to
study brain networks conducted by neuroimaging. It was
widely used in functional magnetic resonance imaging
(fMRI) [8, 9], magnetoencephalography [10], electroen-
cephalography [11], structural MRI [12], and PET imaging
[13]. As a variation of ICA, parallel ICA (pICA) could esti-
mate independent components in multimodal data [14]. A
prior study reported that the multivariate techniques
could be sensitive for early diagnosis of AD [15]. pICA
was used to identify the mechanism of Aβ deposition that
leads to neurodegeneration and cognitive decline in MCI
and AD patients [16, 17]. Moreover, Fu L et al. [18] con-
ducted on the spatial correlation network of Aβ protein
and fluorodeoxyglucose (FDG).
Study has found the regions of interest (ROI) were

correlated with the scale scores in MCI patients [19],
while other paper examined whether ROI regions con-
tribute to distinguish patients from normal people [20].
Tapan Gandhi et al. [21] utilized K-fold cross-validation
method to validated the wavelet coefficients of EEG data
and pointed out that K-fold cross-validation was a rigor-
ous method.
The goal of our research includes two aspects. Firstly,

we use pICA method to explore the significant difference
and correlation of spatial distribution between AV1451
(tau PET) and AV45 (Aβ PET). Secondly, we combine
pICA with multimodal imaging data to distinguish MCI
patients from NC group.

Materials and methods
Subjects
Tau PET and Aβ PET images were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative(ADNI) web-
site (http://adni.loni.usc.edu/), belonging to ADNI-3 phase
[22]. The unified preprocessing description of the collected
PET data in ADNI database was added in Additional file 1.
A total of 140 individuals (65 patients with MCI and 75
NCs) who both had tau and Aβ PET images were included
for pICA analysis.

We also recorded scores for the Mini–Mental State
Examination (MMSE) [23], and Clinical Dementia Rat-
ing (CDR) [24] from the ADNI database as well as the
CSF-Aβ value and CSF-Tau value.

Data acquisition and preprocessing
The acquisition parameters for all scanners have been
described in the Additional file 1. PET images were
coregistered, averaged, normalized (standardized
image and voxel size), and smoothed to produce a uni-
form resolution (8 mm full-width at half-maximum).
PET scans require dynamic 30-min six-frame (5-min
each) acquisition beginning 30 min after the injection
of 18F-labeled AV1451 and 18F-labeled AV45. We nor-
malized all images spatially according to the PET Montreal
Neurological Institute (MNI) brain space template;
subsequently, we scaled and averaged the same images
using Statistical Parametric Mapping 12 (SPM12: https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/) by MATLAB
2014a on the Centos 6.5 operating system. The images
adopted were acquired using Siemens, GE, and Philips PET
scanners in a resting state. The spatial normalization in-
cluded a 12-parameter affine transformation; this process
was followed by a nonlinear iterative spatial transformation
using SPM12.

pICA
More details about pICA were introduced in [25]. Utiliz-
ing multimodal imaging data, pICA identifies the inde-
pendent components of each image modality. It also
estimates the correlation between these components, as
well as different image modality. Using Akaike Informa-
tion Criterion (AIC) and Minimum Description Length
Criterion, the number of independent components of each
mode were identified [20]. In order to balance the fitting
accuracy and complexity of the independent component
model, we chose the lowest independent component set
of AIC values. In each modality, the contribution of each
independent component to the variance across all subjects
is expressed by the loading parameters performed in pICA
analysis. Making all the components more intuitive, we set
the z-score to be |z| > 2.5. The number of independent es-
timated components is eight [18]. In this study, independ-
ent components of tau PET and Aβ PET were identified
by pICA method, furthermore the most significantly dif-
ferent regions in tau PET and Aβ PET among patients
with MCI were found. For tau PET spatial distribution,
the voxel-wise two-sample t-test was used to found the
significantly different components between MCI patients
and NC. The ROI features for later analysis were identified
by components with significant differences. Aβ PET car-
ried on the same process.
Moreover, the Pearson’s correlation coefficients for all

pairs of tau PET and Aβ PET independent components

Li et al. BMC Psychiatry          (2019) 19:165 Page 2 of 9

http://adni.loni.usc.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


were calculated and the variations of age, sex, and all the
statistical values were assessed. Significant relationships
between Aβ and tau accumulation were measured by
Pearson’s correlation coefficients, and these coefficients
should be corrected for multiple comparisons. The false
discovery rate (FDR) was performed (p < 0.05) on the re-
sults. Classification analysis separately assessed the con-
tribution of each component to the classification of MCI
and NC.

K-fold cross-validation
The process of cross-validation is to divide the data into
subsets, and then select one subset for calculation, while
other remaining subsets are used to verify the accuracy of
the previous analysis. It considers the initial subset as the
training set and the other subsets as the test set [26].
K-fold cross-validation is a common data analysis

method. The advantage of K-fold cross-validation is that
all samples are used for training and testing, and each
sub-sample is treated as a test data only once. Based on
our sample size, we set the K value as 5. Therefore, all data
were randomly divided into five groups. Four groups were
combined in the pICA, and the last group was used to de-
tect the validity of ROI features extracted from the pICA
results. The above process was repeated for five times. A
single estimation was obtained from the averaged 5 times
calculation values [27].

Statistical analysis
A two-sample t test was conducted to identify any sig-
nificant differences in age or MMSE, CSF-tau and CSF-
Aβ. The Mann-Whitney test was conducted to identify
any significant difference in CDR score. A chi-square
test was performed to identify significant differences
with respect to sex or between patients who were
APOE4 carriers and noncarriers.

Results
Patient characteristics
The characteristics of all 140 subjects are listed in
Table 1. No significant difference was observed in
sex, age, or APOE4 between the MCI and NC groups.
Cognitive performance, estimated from CDR and
MMSE results, was significantly worse in MCI group
than in NC group.

Individual tau PET and Aβ PET components
Each kind of data was found three components with
significant differences between MCI and NC group.
They were discovered to frequently occur (see Table 2
(tau), Table 3 (Aβ), Fig. 1 (tau), and Fig. 2 (Aβ)). We
recorded the maximum |z| and P values in each re-
spective region. We detected the networks with sig-
nificant differences in tau PET group as follows: visual

network (VN) including right fusiform gyrus; left lin-
gual gyrus; left middle temporal gyrus; right inferior
occipital gyrus. The cognitive control network (CCN)
including right inferior frontal gyrus (opercular part);
right precentral gyrus; right middle frontal gyrus; right
parahippocampal gyrus. The default-mode network
(DMN) including left amygdala; right anterior cingu-
late and paracingulate gyri. We detected significant
differences in the following networks in Aβ PET
group: The VN including right middle occipital gyrus.
The CCN including the right middle frontal gyrus;
right inferior frontal gyrus (opercular part); right in-
ferior parietal but supramarginal and angular gyri; left
postcentral gyrus; right superior temporal gyrus. The
DMN including left middle temporal gyrus and right
precuneus gyrus.

Correlated tau PET and Aβ PET components
We also found the correlated networks. One pair of com-
ponents with the highest correlation (R = 0.5989) was iden-
tified between the tau PET and Aβ PET. They were largely
colocalized with the DMN. These components mainly con-
tained bilateral precuneus, bilateral angular gyrus, left an-
terior cingulate cortex, left superior frontal gyrus, left
middle temporal gyrus, left middle frontal gyrus, left infer-
ior frontal gyrus (Fig. 3).

Feature test
Using the method of five-fold cross validation, we de-
tected the regions with significant differences ex-
tracted by pICA analysis in distinguishing MCI from
NC group. Figure 4 and Table 4presented the contri-
bution of these differential components in the two
proteins to classification. The final improvements in
the ACCs of all features and the AUCs were respect-
ively 78.57 and 80.75% for tau protein, 75 and 83.67%
for Aβ protein, and 82.14 and 84.38% after the fusion
of the two proteins. In the original data, the accuracy
rate was only slightly more than 50%. The accuracy

Table 1 Demographic data of all subjects

MCI NC p

N (total N = 80) 65 75 –

Age 73.27 ± 5.75 76.27 ± 6.22 0.3721b

Genger (male:female) 71:69 65:75 0.423a

APOE4 (carriers:noncarriers) 32:33 33:42 0.348b

MMSE 25.7 ± 2.3 27.9 ± 1.7 < 0.001a

CDR 0.5 – < 0.001c

CSF-Tau 251.3 ± 104.9 254.6 ± 128.2 0.89a

CSF-Aβ 1036 ± 358 875 ± 321 0.30a

Data are presented as a mean ± standard deviations. p was obtained using
athe two-sample t test, bthe chi-square test and c the Mann-Whitney test
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has been improved and the area under the curve
(AUC) has been increased, which suggested features
obtained by pICA analysis were effective. The mean
values of ACC, AUC, Sensitivity (SEN), and Specifi-
city (SPE) were from five experiments (Table 4).

Discussion
Group comparison of tau PET and Aβ PET in brain
networks
MCI patients exhibited that components with significant
differences for tau and Aβ protein were mainly in DMN,
VN, CCN and subcortical networks (SN). These networks
are parts of the intrinsic connected networks (ICNs) of hu-
man brain. ICNs exhibit a consistent distribution of activity
during rest and tasks, which are associated with specific
neurocognitive functions [28]. DMN has been considered as
a critical role in supporting internal mentation and monitor-
ing external environment [29]. Evidence suggested that Aβ
deposition was most likely to occur in DMN, probably due
to high synaptic activity [30]. Tau deposition is primarily

targeted at high-level cognitive networks such as DMN [31].
Altered connections within DMN in AD and MCI have also
been reported in the study [32]. Greicius MD et al. [33]
demonstrated that there were close links between DMN
and episodic memory processing. Visual function is a major
complex sensory domain affected by mental diseases [34].
The abnormalities in VN are associated with the aberrant
processing of visual information and visual hallucinations
[35]. A prior study indicated that the impairment of ventral
visual function, including wrong recognition of an object,
face and color, were also well noted in MCI patients [36].
Therefore, our results might discover the abnormalities of
the visual network in MCI patients may be affected by the
presence of tau and Aβ proteins. Several studies suggested
that emotion regulation involved increased activity in cor-
tical regions was associated with CCN [37]. The impaired
response of CCN to verbal memory is partly responsible for
the decline of memory ability in AD/MCI patients [38]. In
addition, the Aβ accumulation is a major trait of the patho-
genesis of dementia. Recent studies has observed that there

Table 2 Components with significant differences in tau

Brain regions |z| Networks P value (components) X Y Z

Fusiform_R 3.523 visual 0.0362 38 −11 −30

Lingual_L 3.176 visual 0.0362 −12 −93 −14

Frontal_Inf_Orb_R 3.298 cognitive 0.0362 48 33 −11

Precentral_R 3.517 cognitive 0.0362 58 12 43

Temporal_Mid_L 3.81 visual 0.0210 −43 −57 −7

Occipital_Inf_R 3.047 visual 0.0210 33 −57 −9

Frontal_Mid_R 3.425 cognitive 0.0210 30 40 28

ParaHippocampal_R 3.628 cognitive 0.0013 24 −5 22

Amygdala_L 3.624 subcortical 0.0013 −23 −6 −21

Cingulum_Ant_R 4.117 DMN 0.0013 −2 −18 22

Abbreviation: Frontal_Mid_R Right middle frontal gyrus, Frontal_Inf_Orb_R Right Inferior frontal gyrus(orbital part), Parietal_Inf_R Right Inferior parietal, but
supramarginal and angular gyri, Occipital_Mid_R Right Middle occipital gyrus, Temporal_Sup_R Right Superior temporal gyrus, Temporal_Mid_L Left Middle
temporal gyrus, Postcentral_L Left Postcentral gyrus, Precuneus_R Right Precuneus

Table 3 Components with significant differences in Aβ
Brain regions |z| Networks P value (component) X Y Z

Frontal_Mid_R 2.81 cognitive 0.0358 24 35 33

Frontal_Inf_Orb_R 2.97 cognitive 0.0358 38 15 31

Parietal_Inf_R 3.027 cognitive 0.0358 36 −41 42

Occipital_Mid_R 4.461 Visual 0.0117 20 −86 19

Temporal_Sup_R 3.312 cognitive 0.0117 53 −38 19

Temporal_Mid_L 2.91 DMN 0.0095 55 −20 −8

Postcentral_L 3.72 cognitive 0.0095 −27 −42 62

Precuneus_R 3.327 DMN 0.0095 0 −53 25

Abbreviation: Frontal_Mid_R Right middle frontal gyrus, Frontal_Inf_Orb_R Right Inferior frontal gyrus(orbital part), Parietal_Inf_R Right Inferior parietal but
supramarginal and angular gyri, Occipital_Mid_R, Right middle occipital gyrus, Temporal_Sup_R Right superior temporal gyrus, Temporal_Mid_L Left Middle
temporal gyrus, Postcentral_L Left Postcentral gyrus, Precuneus_R Right Precuneus
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was considerable spatial overlap of Aβ accumulating regions
with other ICNs, such as CCN [39]. Hansson O et al. [31]
indicated that the regional deposition of hyperphosphory-
lated tau aggregates in AD generally affected CCN. It has
been known that amygdala belonging to SN has a central
role in emotional learning and memory [40]. Further, recent
morphological analysis suggested there was substantial atro-
phy within the amygdala in AD/MCI [41]. According to
aforementioned findings, it can preliminarily speculate that
tau and Aβ proteins have an effect on the brain network of
MCI patients. Impairments in brain network may lead to
mental dysfunction in MCI patients.

Strongly correlated tau PET and Aβ PET networks
This study also elucidated spatially disparate relationships
between the patterns of tau and Aβ deposition across a
heterogenous MCI population. We discovered that a sig-
nificant correlated pair of components between tau PET

and Aβ PET were identified using pICA. Tau protein levels
in the bilateral precuneus, right angular gyrus, left anterior
cingulate cortex, left angular gyrus, left superior frontal
gyrus, and left middle temporal gyrus were strongly corre-
lated to Aβ protein levels in the precuneus, bilateral angular
gyrus, left middle frontal gyrus, and left inferior frontal
gyrus. They are largely colocalized with the DMN [42]. It
was well-documented that the alterations in the brain struc-
ture, function, and cognition in MCI patients were related
with alterations in brain networks [43]. Utilizing resting
state functional connectivity MRI (rs-fMRI), networks cor-
relations have been detected in patients with MCI. These
networks mainly were involved in DMN and other net-
works [44]. Although MCI is related with widespread dis-
ruption of network connections, DMN is usually most
affected. As a sensory-visceromotor link related to social
behavior, emotional control and motivation drive, DMN
played many potential roles and had a great relationship

Fig. 1 Purple nodes: significant differences between the MCI and NC groups in AV1451 were observed in right fusiform gyrus (FFG.R), left lingual
gyrus (LING.L), right inferior frontal gyrus(orbital part) (ORBinf.R), and right precentral gyrus (PreCG.R). Red nodes: significant differences were
noted in the left middle temporal gyrus (MTG.L), right inferior occipital gyrus (IOG.R), and right middle frontal gyrus (MFG.R). Blue nodes:
significant differences were observed in the right parahippocampal (PHG.R), left amygdala (AMYG.L), right anterior cingulate and paracingulate
gyri (ACG.R)

Fig. 2 Purple nodes: significant differences between the MCI and NC groups in AV45 were observed in the right middle frontal gyrus (MFG.R),
right inferior frontal gyrus(opercular part) (ORBinf.R), right inferior parietal but supramarginal and angula gyri (IPL.R). Red nodes: significant
differences were noted in the right middle occipital gyrus (MOG.R), right superior temporal gyrus (STG.R). Blue nodes: significant differences were
observed in the left middle temporal gyrus (MTG.L), left postcentral gyrus (POCG.L), and right precuneus gyrus (PCUN.R)
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with personality composition [45]. Therefore, in MCI, the
brain regions associated with DMN were damaged, result-
ing in phenomenon of metabolic reduction and amyloid ab-
normalities [46]. In the context of current models of the
AD pathophysiological cascade [47], our findings might in-
dicate that Aβ diffusion was similar to that of tau and that
the spatial distribution of Aβ and tau may be strongly cor-
related. Several studies pointed out that Aβ aggregation
may be driven by the total flow of neuronal activity, while
tau aggregation may be driven by transneuronal spread,
generating patterns of neurodegeneration that coincide
with specific functional networks and ultimately lead to
specific clinical phenotypes [48], which were similar to re-
sults in present results.

Role of multivariate analysis
Multivariate techniques are widely used in neuroimaging
data analysis. Multivariate methods mainly focus on the
level of brain regions to analyze the correlation and co-
variance of brain regions. The advantage of these methods
is that different modal neuroimaging data can be com-
bined to represent pathophysiology of a disease compre-
hensively [49]. Unlike the univariate method, multivariate
analysis has obvious advantages in studying the mechan-
ism of interregional brain cooperation [50]. Results from
multivariate analysis can be seen as a feature of neural net-
work, which is an important perspective to study the brain
damage induced by mental illness [51, 52]. In order to
guarantee the statistical results more accurate,

Fig. 3 Correlated components of AV1451 and AV45. The top presents loading parameters with a significant correlation in all participants with
AV1451 (green) and AV45 (red). Correlated components of AV1451 (left) and AV45 (right), including the medial frontal gyrus; anterior cingulate
cortex; posterior cingulate cortex; precuneus; superior temporal gyrus
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conservative corrections for voxel wise multiple compari-
sons were added in the multivariate methods. All in all,
the use of multivariate methods will help to obtain more
discriminatory features in diagnostic classification. In this
study, the combined analysis of tau PET and Aβ PET per-
formed better than that of tau PET and Aβ PET alone in
distinguishing MCI patients from NC group.

Limitations
This study has several limitations. Firstly, pICA assumes
that measurements in each image voxel are independent
and that the overall noise is uniformly distributed, and
these assumptions may not be entirely accurate for PET
data. Therefore, future research should focus more on the
diversity of data. Secondly, the lack of AD subjects in our
research is another limitation due to the incomplete data
of ADNI database. After collecting enough AD data in the
next step, we will plan to conduct a comparison and com-
bination study of AD and MCI data separately.

Conclusions
In the present study, we explored the tau PET and Aβ
PET spatial distribution pattern in MCI patients and NCs.
The pICA results revealed that the abnormal pattern de-
tected by tau PET was in agreement with the abnormal

pattern detected by Aβ PET, both of which shared the lo-
cation of the DMN. Moreover, these regions were helpful
for distinguishing patients with MCI from those in the
NC group. These results indicated that tau PET and Aβ
PET are reliable biomarkers of neurological function and
might be helpful for diagnosis.

Additional file

Additional file 1: Acquisition parameters of PET data. We have revised
in the manuscript. (DOCX 13 kb)
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