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Abstract

Background: Previous research using whole-brain neuroimaging techniques has revealed structural differences of
grey matter (GM) in alcohol use disorder (AUD) patients. However, some of the findings diverge from other
neuroimaging studies and require further replication. The quantity of relevant research has, thus far, been limited
and the association between GM and abstinence duration of AUD patients has not yet been systematically
reviewed.

Methods: The present research conducted a meta-analysis of voxel-based GM studies in AUD patients published
before Jan 2021. The study utilised a whole brain-based d-mapping approach to explore GM changes in AUD
patients, and further analysed the relationship between GM deficits, abstinence duration and individual differences.

Results: The current research included 23 studies with a sample size of 846 AUD patients and 878 controls. The d-
mapping approach identified lower GM in brain regions including the right cingulate gyrus, right insula and left
middle frontal gyrus in AUD patients compared to controls. Meta-regression analyses found increasing GM atrophy
in the right insula associated with the longer mean abstinence duration of the samples in the studies in our
analysis. GM atrophy was also found positively correlated with the mean age of the samples in the right insula, and
positively correlated with male ratio in the left middle frontal gyrus.

Conclusions: GM atrophy was found in the cingulate gyrus and insula in AUD patients. These findings align with
published meta-analyses, suggesting they are potential deficits for AUD patients. Abstinence duration, age and
gender also affect GM atrophy in AUD patients. This research provides some evidence of the underlying
neuroanatomical nature of AUD.
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Background
The literature has long framed alcohol use disorders
(AUD) as chronic brain diseases [1]. The brain disease
model of addiction states that GM atrophy involves in
the reward circuit, as well as brain regions relevant to
decision-making [2, 3]. More importantly, this abnor-
mality of the reward circuit and decision making would
negatively reinforce to craving, which leads to substance
abuse eventually being compulsive [4]. The disease
model is supported by numerous neuroimaging studies
using structural magnetic resonance imaging (MRI) by
analysing voxel-based morphometry (VBM). However,
the pathology of this disease model requires clarification.
VBM analysis by MRI techniques has provided evi-

dence of GM deficits in cortical areas, including the pre-
frontal cortex (PFC) [5], anterior cingulate gyrus (ACC)
[6], parietal cortex [7], and in subcortical brain regions,
including the hippocampus [8], the thalamus, the nu-
cleus accumbens [9] and the amygdala [10] in individ-
uals with AUD. Those brain regions are believed to be
involved with decision-making and reward processing.
Previous meta-analysis and reviews have suggested that
GM is lower in the cingulate gyrus, striatum and insula
in AUD patients compared to control samples [11, 12],
whereas observed changes in the PFC, dorsal lateral pre-
frontal cortex, left thalamus and right hippocampus re-
main inconsistent.
One of the possibilities is that the sample gender ratio

may contribute to individual differences in GM volume.
It has been reported in some previous studies that fe-
males are more vulnerable to the effects of alcohol on
GM than males [13]. However, other studies reported
that males with AUD had lower GM in the thalamus
and putamen compared to their nondrinking peers,
whereas females with AUD had greater GM in the thal-
amus and putamen [14]. The gender ratio in Xiao et al.
[11] was not examined, which could have affected
findings.
Another possibility posits that the samples age and the

age at onset could moderate the rate of GM atrophy. For
example, adolescent brains are especially susceptible to
the effects of alcohol [15]. It was reported that those
who started drinking before the age of 16 are more likely
to develop alcohol dependence than those who started
after 21 [16]. Alternatively, Sullivan et al. [17] reported a
controversial age-alcoholism interaction showing that
older individuals with alcohol dependence obtain greater
deficits than controls because older brains are more sus-
ceptible to alcohol, regardless of the duration of alcohol
dependence. Thayer et al. [18] reported that samples
under the age of 25 would suffer serious GM atrophy
and different brain regions seemed to suffer the effect,
where increase of GM atrophy in the left lateral orbito-
frontal cortex was correlated with age in the samples

over 25 years old. On the other hand, Xiao et al. [11] did
not find evidence for any effect of age. The results from
these previous studies were therefore inconsistent.
Apart from age and gender, the duration of time after

abstinence from alcohol could also potentially affect
GM. Recent research reported a sustained compensatory
effect on GM in the cingulate gyrus and insular regions,
that is, no more significant GM atrophy was found after
abstinence from alcohol, suggesting that abstinence from
alcohol potentially allows for structural recovery in GM
in AUD patients [19]. However, this effect diminished in
the pre-cuneus that the GM atrophy reappeared with a
longer abstinence duration. In other words, individuals
with alcohol dependence could experience correspond-
ing atrophy in GM after abstaining from alcohol. Mann
et al. reviewed similar cases in AUD patients [20].
Therefore, the current study will perform meta-
regression analyses of abstinence duration for AUD to
provide comparable replication.
The current research includes newly published studies

on AUD (within the past 21 years) and performed an an-
isotropic effect size-signed differential mapping (AES-
SDM) for neuroimaging studies. A meta-analysis using
the SDM toolbox identified the most consistent brain
changes in space with the coordinate information re-
ported in previous studies. We aimed to establish the
most consistent brain structural abnormalities of AUD,
using all published, whole-brain structural MRI studies
that do not bias findings to a priori hypothesised re-
gions. Then, the impact of AUD abstinence and other
individual differences on the GM morphology with the
latest studies and a larger sample size of AUD patients
was examined. From the literature reviewed above, we
hypothesised that, firstly, the GM of the AUD group
would differ significantly from the control group, and
these differences would show consistency with previ-
ously published meta results; Secondly, mean abstinence
duration in the studies and individual parameters of the
samples, such as mean age and gender ratio would have
effects on the GM atrophy.

Methods
Data source
A systematic and comprehensive search strategy was
used to collect studies in PubMed (https://www.ncbi.
nlm.nih.gov/pubmed/), CENTER (Cochrane Library)
(https://www.cochrane.org/), Embase (www.embase.
com), and Google Scholar (http://scholar.google.com/)
from Jan 2000 to Jan 2021. DSM-V combines diagnostic
criteria for abuse and dependence into a unitary diag-
nostic category of AUD. This study utilised a combin-
ation of the following keywords: (1) voxel-based
morphometry; VBM; morphometry; volumetry; grey
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matter; or structural MRI and (2) alcohol dependent; al-
coholism; alcohol abuse or alcohol use disorder.

Inclusion/exclusion criteria
The reference lists of identified studies and relevant the-
oretical reviews were then manually checked for add-
itional studies.
The inclusion criteria: (1) subjects with alcohol abuse

disorder, alcohol dependence disorder or alcohol use
disorder that met the DSM-IV-TR or International Stat-
istical Classification of Diseases and Related Health
Problems-10th Revision (ICD-10) diagnostic criteria; (2)
use of VBM to analyse the GM differences in patients
with AUD and control subjects; (3) results of whole-
brain GM alterations reported in MNI space; (4) partici-
pants aged ≥18, and all participants provided informed
consent; (5) thresholds for significance corrected for
multiple comparisons; (6) peer reviewed studies; and (7)
articles published in English (for quality check purpose).
The exclusion criteria: (1) studies used a region-of-

interest (ROI) or seed voxel–based analysis only; (2)
studies included participants aged < 18 years old; (3)
studies analysed white matter changes or cortical thick-
ness only; (4) research material comprised review arti-
cles, theoretical papers or animal experimental studies;
(5) Chinese articles; (6) studies included patients with
other comorbid psychiatric disorders; and (7) original
coordinates were not reported, and the author did not
respond to email inquiries (Fig. 1).
To evaluate the perceived studies’ quality, the follow-

ing criteria was applied: (1) group matching, (2) method
of alcohol use diagnosis, (3) group matching on drug use
levels, (4) samples size, (5) method used to collect alco-
hol use history, (6) the use of GM volume or density co-
variates, (7) MRI machines, smooth kernels, corrected
level. Each criterion was independently assessed by two
independent reviewers who scored a numerical value

from 0 to 5 to evaluate quality. The sum was used in a
meta-regression to check the effect of quality.

AES-SDM
Regional differences in GM between patients with AUD
and controls were analysed with AES-SDM (AES-SDM;
http://www.sdmproject.com/) [21]. In brief, the main
steps of AES-SDM were as follows: Firstly, we extracted
peak coordinates to recreate txt file in the included stud-
ies, the effect size, such as P- or Z- values for clusters
were transformed into t-statistics by SDM online con-
version utilities (https://www.sdmproject.com/utilities/
?show=Statistics). A total of 23 txt files were generated.
Secondly, we imported 23 txt files into the SDM soft-
ware and recreated a sdm_table. Finally, we conducted
pre-processing, mean analysis, sensitivity analysis, het-
erogeneity analyses, meta-regression analysis of mean
age, the proportion of males, abstinence duration (days),
age at onset and duration of dependence. The studies
were given different weights based on number of partici-
pants and quality of research, weighted by the square
root of the sample size and quality of each study [21].
A whole-brain voxel-based jackknife sensitivity ana-

lysis assessed the reproducibility of the results. The ana-
lysis was repeated 23 times, with each iteration leaving
out a different study. Conclusions can be drawn if differ-
ences for a brain region remain significant in more than
75% of the sensitivity analyses. Variables assessed with
the meta-regression analysis included mean age, the per-
centage of males and abstinence duration as well as age
at onset and duration of dependence (less than half of
the 23 studies provided this information). Heterogeneity
analyses determined if there were significant, unex-
plained differences between studies. Funnel plots and
Egger tests identified conflicting studies and publication
bias [22].

Fig. 1 Flowchart of the selection of VBM studies in patients with AUD for meta-analysis
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Results
Demographic and clinical characteristics of patients with
AUD and controls
The current research included 23 studies in the meta-
analysis based on the search strategy. In total, there were
846 patients with AUD (male = 658; female = 188; mean
age range: 22.95–53.6 years) and 878 controls (male =
679; female = 199; mean age range: 24.63–53.7 years).
Table 1 illustrated the demographic information. No dif-
ferences were found in age, gender or education between
AUD and control groups in each study.

Regional GM differences
The pooled AES-SDM meta-analysis map revealed sig-
nificant lower GM in the right cingulate gyrus, right in-
sula and left middle frontal gyrus in AUD patients
compared to controls (Fig. 2a). Table 2 shows the peak
coordinates and the cluster breakdown. No brain areas
with increased GM were observed.

Sensitivity and heterogeneity analyses
Whole-brain jackknife sensitivity analysis of the findings
showed that the main results were highly robust. As
shown in Table 3, the whole-brain jackknife sensitivity
analysis revealed that lower GM in the right insula and
right cingulate gyrus were highly replicable, as this find-
ing was preserved when each study was removed. Lower
GM in the left middle frontal gyrus remained significant
in 22 out of 23 combinations. Finally, heterogeneity ana-
lysis results were reflected by the funnel plot and Egger
tests, and the funnel plots did not reveal any publication
bias. (see supplementary materials, Fig. S1).

Meta-regression analysis of abstinence, age and gender
The results of the meta-regression analysis on abstinence
duration from the AUD patients revealed an increasing
of atrophy in the right insula (MNI coordinate: 44, 10, −
4; 55 peak voxels; SDM z = − 4.371; p = 0.0015) with the
longer mean abstinence duration of the samples (Fig.
2b). GM in right insula (MNI coordinate: 54, − 2, 8; 532
peak voxels; SDM z = − 4.243; p = ~.000) yields a signifi-
cant negative correlation with the average age of the
samples (Fig. 2c). There was a negative association be-
tween the male ratio of the studies and GM in the left
middle frontal gyrus (MNI coordinate: − 28, 38, 32; 11
peak voxels; SDM z = − 2.682; p = 0.002) (Fig. 2d). More-
over, exploratory meta-regression analysis suggests that
the age at onset and duration of dependence in AUD pa-
tients was negatively associated with GM volume (sup-
plementary materials, Fig. S2).

Discussion
The current quantitative meta-analysis of VBM studies
included 23 original studies which demonstrated GM

reduction in AUD patients with a large samples size.
The results showed lower GM in the right cingulate
gyrus, right insula and the left middle frontal gyrus in
AUD patients compared with controls, which were
highly replicated with previously published meta-
analysis. Jackknife sensitivity analyses showed that these
results were consistent and robust [12]. Then, we found
that GM atrophy increased with longer mean duration
of abstinence of the samples in the studies. Finally, we
found that GM atrophy increased with mean age and
the age onset in the samples, and the male ratio of the
samples were more sensitive to the harmful effects of al-
cohol consumption.

GM atrophy in the ACC, insula and middle frontal gyrus
The results revealed a significant GM atrophy in the
ACC and right insula in AUD patients compared to con-
trols, which aligns with previously published reviews [11,
12]. The ACC is related to a range of cognitive func-
tions, including impulse control and assessment of re-
sponses and behaviour [23, 24]. Craving for alcohol in
AUD patients is related to abnormal brain circuits pro-
jected from the ACC to the nucleus accumbens, and
GM volume changes may form the structural basis of
this [25]. In the healthy controls, inhibitory control was
found to be associated with activation in the ACC [26].
However, in healthy adults with a family history of alco-
holism, higher impulsivity was associated with lower ac-
tivation in the ACC [27]. Compared to health controls,
smaller GM volume in the ACC was found in alcohol
users with higher impulsivity [28]. However, the current
studies included in our meta-analysis are not longitudin-
ally designed, and we cannot make a firm conclusion
about the causal relationship between GM atrophy and
alcohol consumption.
Apart from the ACC, the insula is also an important

hub for transmitting salient information to the pre-
frontal cortices involved in decision-making [29], to the
limbic system involved in emotional responses [30] and
to the brain reward system via the ventral striatum in-
volved in substance abuse [31]. Functional brain imaging
studies have revealed a correlation between insula activ-
ity and cravings for alcohol and drugs [32]. The current
study reported consistent results: GM in the right insula
was lower in the AUD group compared with the con-
trols, replicating previous results.
The current study also demonstrated brain changes

not observed in the two previous meta-analyses [11, 12].
The GM in the left middle frontal gyrus in AUD patients
were lower than that in the controls. The middle frontal
gyrus is thought to play an important role in cognitive
functions, including working memory capacity and fluid
intelligence [33]. Yang et al. [12] found that shrinkage of
GM in the left middle frontal gyrus correlates to lifetime
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Fig. 2 Meta-analysis results. a Regions showed lower GM in AUD patients than controls. b Meta-regression analysis indicated that GM in the right
insula was significantly negatively associated with duration of abstinence in AUD patients. c Meta-regression analysis indicated that GM in the
right insula was significantly negatively associated with mean age in AUD patients. d Meta-regression analysis showed that GM in the left middle
frontal gyrus was significantly negatively associated with male ratio in AUD patients. Blue colour represents GM reduction

Table 2 Lower grey matter in patients with AUD compared with controls in the meta-analysis

Anatomical regions MNI coordinates
x, y, z

SDM
value

p value Number of
voxels

Breakdown

AUD < controls

Right median cingulate / paracingulate
gyri (BA24)

2,6,42 −4.438 ~ 0 249 Right median cingulate / paracingulate
gyri, BA24
Left median cingulate / paracingulate
gyri, BA24

Right insula, BA 48 40,0,4 −4.581 0.000010***** 3641 Right insula, BA 48
Right rolandic operculum, BA 48
Right inferior frontal gyrus, opercular
part, BA 44,48
Right precentral gyrus, BA 4,6

Left middle frontal gyrus, BA 46 −28,42,30 −3.573 0.00015**** 106 Left middle frontal gyrus, BA 46
Left middle frontal gyrus

AUD = Alcohol abuse disorders; MNI = Montreal Neurological Institute; SDM = signed differential mapping; BA = Brodmann area; *****p < 0.00001; ****p < 0.0001
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alcohol consumption. Previous studies reported that the
prefrontal function of alcohol users experiences grad-
ually damage, which may be related to an increase in al-
cohol consumption, which is likely to promote increased
craving and weaken behavioural control, thereby con-
tributing to further alcohol consumption [34, 35].
We replicated previous meta-analysis findings in

the ACC and right insula, which identified deficits of
GM in the ACC and insula as potential neuroana-
tomical diagnostic biomarkers in AUD patients.
However, GM loss in parietal, temporal and subcor-
tical brain regions was not replicated. One possible
explanation is that, with our increased sample size,
the observed group effect disappeared, suggesting
that GM deficits of these brain areas do not repre-
sent stable markers of AUD. Another possible ex-
planation posits that, in the current study, we failed
to control whether patients had received effective
treatment as drugs may influence these brain re-
gions. A previous animal study in rats found that
naltrexone treatment during early abstinence resulted
in subtle brain changes potentially distinguishable
from non-treated abstinent brains, suggesting the ex-
istence of an intermediate state associated with brain
recovery from alcohol exposure induced by medica-
tion [36]. Future studies should consider drug treat-
ment effects on GM volume.

The persistent of GM atrophy after abstinence
The current meta-regression analysis found that the
right insula shows persistent GM reduction in AUD pa-
tients with increasing abstinence duration of the sam-
ples, which is comparable with findings in previous
studies [37, 38]. However, other studies reported diverse
results [39], where the frontal, temporal and insular re-
gions remain no different from controls after abstinence
from opioids. One key difference may be the treatment
received by patients. The current study, as well as previ-
ous studies [37, 38], failed to control whether samples
have received any treatment, what type of treatment or
the intensity, because this information was unavailable.
According to Wollman and colleagues’ 2017 study [39],
all participants received drug substitution therapy
(methadone) to achieve abstinence and no GM atrophy
was observed post treatment. Therefore, the abstinence
in the current study should not represent as recovery

but only abstinence from alcohol consumption at a be-
havioural level. In other words, it remains possible that
participants never actually achieved abstinence. Another
interpretation of our results is that the GM atrophy of
insula in AUD groups persists even with the absence of
addictive behaviour. Brain atrophy in AUD patients did
not reach the equivalent level to controls after abstin-
ence [20]. Based on the evidence in opioid dependence,
hypothetically, the GM volume may stay constant once
it recovers to normal at a neurological level [39, 40].
Since the GM volume of the insula did not eventually
recover to a normal neurological level in the current
study, it may be inferred that this insula GM atrophy
would continue to deteriorate. As a result, we suggest
further studies should consider abstinence in more
detail.
Another potential interpretation for the damage in the

insula is that the GM atrophy caused “the sense of ab-
stinence” rather than caused by abstinence. The insula
plays an important role in the craving of addictive be-
haviours and it might also facilitate withdrawal symp-
toms by translating the physiological state of withdrawal
into dysphonia [41]. This is only one of many functions
of the insula and the GM atrophy in the insula limits its
capacity to perform [42], such that the translation from
the urge of neurotransmitters into craving is limited.
There is empirical evidence in nicotine dependence to
support the theory that the GM atrophy in the insula
area has been found negatively correlated with tobacco
craving [43, 44]. However, this theory has not been dir-
ectly examined in other types of substance abuse, and
the current study observed a comparable pattern, that is,
the abstinence duration positively correlated with GM
atrophy in the insula. Hypothetically, this GM reduction
limited the capacity of the insula and reduced the crav-
ing of alcohol consumption to maintain their abstinence.

Impact of age and gender on GM atrophy
The current study demonstrates a significant negative
association between GM in the insula and average the
age of the samples, suggesting that any GM deficit would
be stronger in older AUD patients. Several previous re-
views have illustrated the same interaction between age
and GM atrophy [17, 18]. A study by Sullivan et al. [17]
assessed the impact of age independently for control and
alcoholism groups, and observed that the alcoholism

Table 3 Regions of grey matter differences in AUD patients compared with controls for sensitivity analyses

MNI coordinate SDM-Z P value Voxels Clusters Jackknife sensitivity analysis

2,6,42 −4.438 ~ 0 249 right cingulate 23/23

40,0,4 −4.581 0.000010***** 3641 Right insula 23/23

−28,42,30 −3.573 0.00015**** 106 Left middle frontal gyrus 22/23

AUD = Alcohol abuse disorders; MNI = Montreal Neurological Institute; SDM = signed differential mapping; BA = Brodmann area; *****p < 0.00001; ****p < 0.0001
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group showed effects of age in the insula, while the con-
trol group did not. Additionally, our study was consist-
ent with the results reported by Thayer et al. [18]. In
their study, insula deficits caused by alcohol were nega-
tively associated with increased age. However, some evi-
dence points out that GM volume would decrease due
to ageing regardless of external interference [45], and
consuming alcohol would reinforce the loss of GM to
eventually present an alcohol-age interaction [17, 46].
Meta-regression analysis illustrated an increase of GM

atrophy in right cingulate gyrus with age at onset in
AUD patients. Other studies found that age at onset
plays an important role to GM atrophy in AUD patients.
For example, those who started drinking before 14 years
old were more likely to develop alcohol dependence than
those who started drinking after 21 [16]. Moreover, less
activation of the cingulate gyrus was also found in ado-
lescents who started drinking after 14 years old com-
pared with no or minimal alcohol users [47]. Our results
were different from these two but not contradictory be-
cause the previous studies primarily focused on
adolescent-onset patients, as the adolescent are more
susceptible to the effects of alcohol [15]. Our samples
are adult-onset patients, which means the relationship
between age at onset and GM atrophy in AUD patients
was possibly not absolute linear and requires further
investigation.
Additionally, the GM of middle frontal gyrus de-

creased when the dependence duration increases in
AUD patients, which was consistent with the previous
analysis that increased alcohol consumption duration
will lead to neuronal loss and accelerate with brain atro-
phy [48, 49]. Our results suggested that further research
should include this information as these might have im-
pact on brain structure. Considering that the age at the
time of assessment was correlated with age at onset in
alcohol studies, the brain region affected by age and age
onset might also be affected by the duration of illness,
that longer duration was related to higher GM atrophy.
However, we found the brain regions are affected by age,
age onset and illness duration are different. It is import-
ant to point out that the results of age at onset and dur-
ation of dependence should be interpreted with
cautious, where less than half of the 23 studies had re-
ported the information to be included in the meta-
regression analysis, which makes the results cannot be
generalised to the whole samples. To address this point,
we suggest future studies to report the details of the ill-
ness duration.
Finally, the present research revealed a negative associ-

ation between GM in the left middle frontal gyrus and
the gender of the samples, showing that males are more
vulnerable to the harmful effects of alcohol on GM than
females. Other studies have reported gender differences

in GM proportion in intracranial content [50] and age-
gender interactions in the hippocampus [45]. Though
our study was not consistent with the results reported
by Hommer et al. [50], which included a more balanced
gender ratio (male = 43; female = 36) in their analysis
compared to the current study (male = 658; female =
188). Therefore, the lack of female cases in the present
work potentially obscured the impact of gender on GM
atrophy.

Limitation
There were several limitations for the current study.
Firstly, the analysed data comprised the coordinates in
the published studies rather than the original data which
may result in less accurate findings [51]. Secondly, the
heterogeneity of methodologies in VBM studies includ-
ing MRI machines, smooth kernels and corrected level,
for example FWER or FDR, might represent a critical
factor and couldn’t be controlled for. However, we
examine these potential confounders by using quality of
the study, which did not affect our results (supplemen-
tary material Fig. S3). Thirdly, the current study could
not control whether participants had previously smoked,
concurrent drinking [52], cardiovascular disease [53].
The studies did not record this information but may
contribute to GM thinning in AUD patients. Fourthly,
alcohol use disorders and other psychiatric disorders are
commonly co-occur co-morbidities, our current results
could not be generalised to comorbidity population (Al-
cohol Use Disorder and Co-Occurring Mental Health
Conditions). We suggested that future studies of this
field should provide a more detailed comparison be-
tween patients with and without comorbidity.

Conclusions
The current research reported partially consistent results
with previous reviews. It reported that GM was lower in
the insula, cingulate gyrus, and middle frontal gyrus in
the AUD group compared to controls. Moreover, there
was lower GM in the insula with increased mean abstin-
ence duration of the samples in the studies. GM atrophy
deteriorated more with an increased mean age in our
samples, and the males of the samples were reported to
be more sensitive to the GM atrophy among AUD pa-
tients. The current study included studies which re-
ported their treatments and others did not, making it
unable to fairly determine the impact of treatment on
GM atrophy. The future research should consider
reporting their treatment with more details and placing
heterogeneous analysis on the effect of treatment.
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