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Abstract

among adolescents.

MDD and SCZ and healthy controls.

adolescents to better diagnose psychiatric disorders.

Background: Early diagnosis of adolescent psychiatric disorder is crucial for early intervention. However, there is
extensive comorbidity between affective and psychotic disorders, which increases the difficulty of precise diagnoses

Methods: We obtained structural magnetic resonance imaging scans from 150 adolescents, including 67 and 47
patients with major depressive disorder (MDD) and schizophrenia (SCZ), as well as 34 healthy controls (HC) to
explore whether psychiatric disorders could be identified using a machine learning technique. Specifically, we used
the support vector machine and the leave-one-out cross-validation method to distinguish among adolescents with

Results: We found that cortical thickness was a classification feature of a) MDD and HC with 79.21% accuracy
where the temporal pole had the highest weight; b) SCZ and HC with 69.88% accuracy where the left superior
temporal sulcus had the highest weight. Notably, adolescents with MDD and SCZ could be classified with 62.93%
accuracy where the right pars triangularis had the highest weight.

Conclusions: Our findings suggest that cortical thickness may be a critical biological feature in the diagnosis of
adolescent psychiatric disorders. These findings might be helpful to establish an early prediction model for
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Background

Psychiatric disorder is among the most important causes
of mortality in humans, which affects the quality of life
and increases the social burden [1-3]. Psychotic (such as
schizophrenia [SCZ]) and affective disorders (such as
major depressive disorder [MDD]), as two typical
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psychiatric disorders, have extensive comorbidities with
each other [4, 5]. Approximately 80% of patients with
SCZ experience depressive episode in the early disorder
stages [6]. The depression prevalence among patients
with SCZ can be as high as 40% [7, 8]. Moreover, pa-
tients with MDD have been shown to have a higher risk
of developing a psychotic disorder. In addition, depres-
sion often precedes psychotic symptoms in people with
a high risk of SCZ [9, 10]. The presence of psychotic
symptoms in patients with depression is considered a
clinical depression subtype known as psychotic depres-
sion, which is associated with increased depressive
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symptom severity [11, 12]. Further, both MDD and SCZ
significantly impair working memory, planning, shifting
and so on [13, 14]. In addition, MDD and SCZ have sig-
nificant genetic similarities [15, 16]. This complex rela-
tionship between MDD and SCZ sometimes can impede
diagnoses by psychiatrists.

Adolescence is the critical period during psychological
development in which most psychiatric disorders are ini-
tially detected [17, 18]. Similarly, there is an overlap in
the clinical characteristics of adolescents with MDD and
SCZ [19]. At this stage, although there are not wide ef-
fects on behaviors influenced by psychiatric disorders,
they can have significant negative effects later in life and
are potential health threat for future generations [20,
21]. Prior to severe symptoms during adulthood, SCZ
often begins developing during early adolescence [18, 22,
23]. Compared to patients with adult-onset SCZ, those
with early-onset often exhibit more severe psychotic
symptoms, poorer therapeutic outcomes, and greater
disability [24, 25]. In structural neuroimaging studies, al-
though a meta-analysis by Van et al. found a thinner
cortex in adult patients with SCZ (especially in the
frontal and temporal lobe regions), Thormodsen et al.
reported no significant difference in the cortical thick-
ness between adolescent patients with SCZ and healthy
adolescents [26, 27]. These findings indicate changes in
cerebral cortex of the adolescent patients with SCZ may
take time to develop.

The first episodes of affective disorder, including
MDD, appear at adolescence and cause serious distress
to the patients and their guardians [28, 29]. In the symp-
toms of MDD, appetite and weight changes, energy loss,
and insomnia can be seen among adolescents while con-
centration problems and anhedonia/loss of interest are
more frequent among adults [30]. Structural neuroimag-
ing studies have reported reduced cortical thickness in
the dorsal lateral prefrontal cortex, lingual gyrus, and
pre- and postcentral gyrus in patients with early-onset
depression [31]. Reynolds et al. reported a thicker bilat-
eral dorsal-lateral prefrontal cortex and left caudal anter-
jor cingulate cortex in MDD adolescents [32].
Contrastingly, previous studies have reported no signifi-
cant differences in the cortical thickness at the whole-
brain level between adult patients with MDD and
healthy controls [31, 33]. Consistent with findings on
SCZ, these findings indicate there are a lot of differences
in symptoms and brain morphology between adolescents
and adults with depression. Therefore, pathophysio-
logical mechanisms might differ between adolescents
and adults with MDD.

Machine learning is an emerging technology in recent
years that can help us better understand the patho-
physiological mechanisms of the brain. It involves asses-
sing the similarity of a brain MRI scan with images
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obtained from a group of individuals to determine
whether the tissue is more likely from a patient or a
healthy individual [34]. Over the past decade, different
machine learning methods using various brain features
have been developed to distinguish between psychotic
and affective disorders with a good accuracy ranging
from 60 to 90% [35-38]. However, these studies on dis-
ease identification have mostly focused on adults with-
out accounting for pathophysiology differences at
different stages, especially in adolescence, which is a crit-
ical development period. It remains unclear whether
adolescent patients with MDD and SCZ can be distin-
guished via structural brain MRI scans.

Consequently, we used a support vector machine
(SVM) to determine whether it could be used to accur-
ately identify adolescent patients with SCZ and MDD at
the individual level based on anatomic brain parameters,
as well as to determine their key brain characteristics
[39]. We hypothesized that SVM could accurately distin-
guish among MDD, SCZ, and healthy controls. To our
knowledge, this is the first study to examine psychiatric
disorders (MDD and SCZ) in adolescents using a ma-
chine learning technique. This study provides the insight
of MDD and SCZ. Moreover, this study may contribute
toward the identification of adolescent psychiatric disor-
ders based on MRI scans and a scientific basis for early
clinical diagnosis of psychiatric disorder.

Methods
Participants
The patients were diagnosed using a Structured Clinical
Interview for Diagnostic and Statistical Manual of Men-
tal Disorders (SCID-1/P, Chinese version) by two psychi-
atrists in the Department of Psychiatry, The First
Affiliated Hospital of Chongqing Medical University be-
tween July 2015 and October 2017 [40]. All patients
were screened for comorbidities of depression and
schizophrenia to ensure that every patient had only one
of the disorders at the time of diagnosis. The initial sam-
ple comprised 175 participants, including 80 patients
with MDD, 61 patients with SCZ, and 34 age- and
gender-matched HC. We excluded participants aged <
10years (N =1) and > 20 years (N = 2). Moreover, we ex-
cluded 22 participants due to identified head motion ar-
tifacts after two specialists visually inspected the original
and segmentation images. Finally, we included 150 par-
ticipants, including 67 patients with MDD, 49 patients
with SCZ, and 34 HC. We assessed the history of dis-
eases for all participants to exclude any existing systemic
diseases, including neurologic diseases and morphologic
anomalies in the brain.

This study was approved by the Local Medical
Ethics Committee of the First Affiliated Hospital of
Chongqing Medical University. All methods were
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performed in accordance with the relevant guidelines
and regulations. All the study participants provided
written assent and their legal guardians provided
written informed consent.

Magnetic resonance imaging data acquisition

All the participants were scanned on a 3 Tesla GE Signa
Medical Systems (Milwaukee, Wisconsin, USA) with a
12-channel head coil at The First Affiliated Hospital of
Chongqing Medical University. We acquired high-
resolution anatomical T1-weighted spoiled gradient-
recalled images covering the whole brain (TR = 8348 ms,
TE =3272ms, 156 axial slices, flip angle =12°, field of
view = 240.128 x 240.128 x 156 mm, matrix =512 x 512,
voxel size = 0469 x 0.469 x 1 mm®).

Magnetic resonance imaging data preprocessing

The T1-weighted structural scans were processed using
FreeSurfer (version 5.3.0, http://surfer.nmr.harvard.edu)
image analysis suite to produce measures of gray matter
thickness [41, 42]. Using an automated brain segmenta-
tion process, the command “recon-all” was executed to
estimate the brain region volume based on the Desikan-
Killiany atlas [43]. Both original and processed images
were visually inspected by two specialists to identify ex-
cessive motion artifacts. According to the proposal of
Klapwijk et al., the criteria for visual quality control in
this study include: (1) whether the reconstructed image
is affected by movement; (2) whether the temporal pole
is missing in the reconstruction; (3) whether the non-
brain tissue is included in the reconstruction of the pial
surface; (4) whether parts of the cortex are missing in
the reconstruction [44]. A 4-point score was used. If ei-
ther of the two specialists thought the result of any
above item was bad (score 1), this participant would be
excluded. The Euler number of all images in this study
are 2, which indicates the high data quality for cortical
reconstruction. Moreover, no manual corrections were
applied. After the execution of the command “recon-all”
which contains a series of automatic preprocessing steps
such as Talairach transform computation and spherical
registration [45, 46], the entire cortical surface was par-
cellated into 34 regions per hemisphere [47]. Given the
reported cortical thickness abnormalities of MDD and
SCZ and the evidence that there are less individual vari-
ations in cortical thickness than in cortical gray matter
volume, we used cortical thickness as the main index
[48-50]. However, other brain structure aspects (e.g.,
cortical and subcortical volume, cortical surface area)
provide information toward a broader understanding of
these disorders; therefore, we investigated these parame-
ters as secondary indices.

Page 3 of 9

Statistical analysis

SVM is a type of multivariate classification algorithm
automatically identifying the hyperplane that differenti-
ates two labeled classes in a training data feature set.
Subsequently, the individual (test data set) is automatic-
ally classified or predicted by the hyperplane. This
method is suitable for high-dimension imaging data set
analysis [39]. As a diagnostic tool, SVM has been applied
to MRI data to predict various pathologies, including
MDD, SCZ, bipolar depression, etc. [35, 36, 38, 51, 52].
We performed statistical analysis using the Library for
Support Vector Machines (LIBSVM) software package
and Matlab 2017b (www.mathworks.com) [53]. The cor-
tical gray matter thickness of 68 brain regions was se-
lected as the model features without a priori regions of
interest. To remove the influence of sex, age and intra-
cranial volumes (ICV) while retaining disease-associated
neuroanatomical variations, we regressed the original
data to correct for sex, age and ICV effects [54]. Subse-
quently, to avoid the effect of differences in the magni-
tude of cortical thickness across brain regions on the
weight values, we standardized the regressed data
through Z-transformation. To better explore the effect
of different brain regions on classification for future clin-
ical application, we build three models: (1) separating
MDD from HC; (2) separating SCZ from HC; (3) separ-
ating MDD from SCZ. Each model was generated by C-
SVC with a linear kernel due to the high dimensionality
of the data [52]. Participants in each model were classi-
fied using two nested leave-one-out cross-validations
(LOO-CV). Here, one participant is excluded as the test-
ing set while the remaining participants are used as the
training set within each iteration. To identify the best
classifier parameter, we performed a search over param-
eter C, a cost parameter of SVM classifier, whose values
were in the set [C=272,272,27% ..., 23]. For each value of
C, the accuracy rate was measured using another leave-
one-out cross-validation within the training set. The C
parameter that produced the greatest classification effect
in the training set was computed by the model. After
identifying the best parameter, the left-out testing set
was classified to determine the classification rate of the
model. To further enrich the study, we also computed
balanced accuracy (BA) with the posterior probability
interval (PI) of our model because of the unbalanced
number between groups [55]. Finally, the accuracy of all
three models was confirmed through permutation tests
separately [56]. We randomized the labels (i.e., group
membership as MDD or SCZ) with a held constant ratio
of 3000 times and calculated the classification accuracy
within each iteration. P-values, the number of times that
the accuracy was higher than our original classification
accuracy divided by the iteration times, reflected the sig-
nificance of our classification models.
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Results

Sample characteristics

No evidence of a group difference was found in the vari-
ables of gender (MDD: 42% male; SCZ: 49% male; and
HC: 44% male) and age (MDD: mean age = 16.22 + 2.02
years; SCZ: 16.02 £ 1.80 years; HC: 16.32 +2.99 years).
moreover, there was no significant among-group differ-
ence in the intracranial volume. There was no significant
difference in the current episode duration, age at onset
between the MDD and SCZ groups. Compared to the
number of patients with MDD, More patients with SCZ
undergo medication and physical therapy, including
electric shock and transcranial magnetic stimulation,
which is consistent with their pathology [57]. Table 1
presents the clinical and demographic characteristics, as
well as their between-group comparisons.

SVM classification

In case-classification, distinguishing patients with MDD
(positive class) and SCZ (positive class) from HC using
cortical gray matter thickness resulted in an accuracy of
79.21% (p =.002, 95% Cls of permutation test(per_CIs):
39.60-71.29%, sensitivity: 83.58%, specificity: 70.59%,
BA: 76.20% (95% PI: 66.72—-83.88%)) and 69.88% (p =
.008, 95% per_Cls: 38.55-66.27%, sensitivity: 73.47%,
specificity: 64.71%, BA: 68.45% (95% PIL: 58.02—77.52%)),
respectively. The model of MDD-SCZ (MDD as the
positive class) resulted in an accuracy of 62.93% (p =
.045, 95% per_Cls: 37.07-64.66%, sensitivity: 64.18%,
specificity: 61.22%, BA: 62.25% (95% PI: 53.38—70.48%)),
which was lower than the case-classification. Figure 1
present the top 10 averaged weights of the brain regions
in each classification model. Specifically, the right post-
central gyrus, the left temporal pole, and the right tem-
poral pole were the most important brain regions for
MDD-HC classification. On the other hand, the left

Table 1 Clinical and demographic characteristics
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bank superior temporal sulcus, left superior parietal
gyrus, and right caudal anterior cingulate cortex were
the most important brain regions for SCZ-HC classifica-
tion. Regarding MDD-SCZ classification, the heavy-
weighted regions were distributed across different brain
regions. The right pars triangularis, right postcentral
gyrus, and caudal middle frontal gyrus were the most
important for MDD-SCZ classification.

Further, we explored the effect of the cerebellar-
subcortical volume, gray matter volume, and gray matter
area on classification, respectively. An additional table
presents the key model information and classification re-
sults [see Additional file 1]. Compared to the results
using cortical thickness as the feature set, all the results
using other brain index as feature set were worse in all
classification models, except using cerebellar-subcortical
volume as the feature set alone to distinguish MDD and
SCZ, whose accuracy (62.93%) was the same with it
using cortical thickness.

Discussion

To our knowledge, this is the first MRI study to distin-
guish between adolescent psychiatric disorders (MDD
and SCZ) using machine learning techniques. We
employed a linear kernel nested SVM to create data-
driven models for classifying patients with MDD,
patients with SCZ, and HC based on whole-brain neuro-
anatomical features in MRI scans. The models using cor-
tical thickness could distinguish adolescents with MDD
and SCZ from healthy adolescents with an accuracy of
79.21, and 69.88%, respectively. The classification be-
tween adolescents with MDD and those with SCZ had a
lower accuracy of 62.93%. Our findings indicate that ma-
chine learning using cortical thickness as the features
can allow effective classification of psychiatric disorders
among adolescents at an individual level.

Measures MDD (N=67) SCZ (N=49) HC (N=34) p-value
Age (year) 1622 +202 16.02+1.80 1632 £2.99 081°
Intracranial Volume 1459.73 +127.77 1448.33 +141.57 1484.68 + 108.24 0.44°
Length of Current Episode (months) 7.88+9.19 6.24+ 1229 - 041°

Age at Onset (year) 15.13+2.17 15.39+2.10 - 0.53°

Male (%) 28 (41.79) 24 (48.98) 15 (44.12) 0.56

Prior Exposure to Medicine (%) 34 (50.75) 42 (85.71) - < 0.0001¢
First Episode (%) 48 (71.64) 42 (85.71) - 0.11¢
Family History of Mental Disorders (%) 7 (1045) 8 (16.33) - 0419
Physical Intervention (%) 12 (17.91) 27 (55.10) - < 0.0001¢

Values indicate the mean + SD

Abbreviations: MDD Major Depressive Disorder, SCZ schizophrenia, HC healthy controls

Statistic computed using F-test
bStatistic computed using two-sample t-tests
SStatistic computed using x* test
dStatistic computed using Fisher's exact test
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MDD vs. HC

MDD vs. SCZ

-1.11 +062

b SCZ vs. HC

-0.7 +0.41 0.7

Fig. 1 The top 10 thickness brain regions contributing to classification accuracy in the SVM. a Brain regions with their thickness having the
highest weight to distinguish patients with major depression and healthy controls. b Brain regions with their thickness having the highest weight
to distinguish patients with schizophrenia and healthy controls. ¢ Brain regions with their thickness having the highest weight to distinguish

patients with major depression and schizophrenia

Our findings indicate that structural brain MRI im-
aging can be used to effectively identify MDD and SCZ
in adolescents. Previous studies widely used different
structural indexes, including subcortical volume, gray
matter density, gray matter volume, cortical thickness,
and cortical area, and all of them could distinguish be-
tween adults with psychiatric disorders and healthy
adults [38, 58—60]. In this study, we focused on adoles-
cent psychiatric patients and collected structural MRI
data from patients with MDD and SCZ. Different struc-
tural indexes were used as SVM model features respect-
ively for case- classification and MDD-SCZ
classification. Unlike previous findings on adults, only
cortical thickness could provide the best accuracy in
three adolescent classification models in our study. This
is consistent with the findings by Qiu et al., who used an
SVM based on various brain morphometric features to
distinguish between 32 adult patients with first-episode
MDD and 32 HC [61]. They reported that multiple cor-
tical features could discriminate them with cortical
thickness providing the highest accuracy. Our findings
indicate that the cortical thickness is already altered in
adolescent patients with MDD and SCZ. This is

consistent with previous findings that patients with
childhood-onset schizophrenia presented with bilateral
deficits in the temporal, prefrontal, and parietal cortices
[62]. Moreover, using the machine learning technique,
cortical thickness has been reported to predict future-
onset of depression in adolescents with an accuracy of
70% [63]. Besides, with volumes of both subcortical and
cerebellar regions as the feature set, the classification
model of MDD-SCZ resulted in a significant accuracy of
62.93% (p =.044). This is because some subcortical nu-
clei are also linked to MDD and SCZ, such as amygdala,
which is associated with emotion [64, 65]. In addition,
there is an interesting finding that we succeed to distin-
guish adolescents with SCZ and HC but Thormodsen
et al. not [26]. In their study., there are no significant
evidence of cortical thickness difference between adoles-
cent with SCZ and HC based on univariate analysis. In
our study, to further explore the brain morphology of
adolescents with SCZ, we succeed to distinguish them
using multivariate analysis. Although no significant evi-
dence is found in cortical thickness of each brain region
between the two groups, there may be a particular
spatial pattern of abnormal changes in cortical thickness
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across brain regions in adolescents with SCZ. That may
be why we are successful. In a word, cortical thickness is
a crucial structural brain index for identifying adolescent
patients with psychiatric disorders.

For distinguishing adolescent patients with MDD from
HC, the most important brain region was the temporal
pole. The temporal pole, which is a node of the paralim-
bic system, plays an important role in socioemotional
and cognitive processing [66]. Defects in these processes
are associated with depression [67, 68]. Gray matter
abnormities in the temporal pole have been reported in
medication-naive patients with first-episode MDD [69,
70]. Compared to healthy controls, individuals with de-
pression present with greater activation of the right an-
terior temporal pole [71]. Previous studies also reported
abnormal functional connections between the right tem-
poral pole and other brain regions in patients with MDD
[72-74]. Given the emotional instability in adolescents
and the abnormal emotional response to external stim-
uli, abnormal changes are more likely to occur in the
temporal pole [75]. Therefore, the structure of this re-
gion could be used as a crucial biomarker for adolescent
depression.

The left banks of the superior temporal sulcus, which
is a crucial association area for biological motion percep-
tion, was the most significant brain region for distin-
guishing between adolescents with SCZ and HC [76].
The superior temporal sulcus is part of a neural circuit
involved in perceiving intention from action and reac-
tions to social and emotional events [77, 78]. Many stud-
ies have reported a reduced ability to extract social
information from bodily cues in patients with SCZ [79-
82]. Neuroimaging studies have reported that patients
with SCZ present with an aberrant pattern of superior
temporal sulcus activity during basic biological motion
tasks [83, 84]. Matsumoto et al. reported a negative cor-
relation of the behavioral performance on basic bio-
logical motion perception tasks and the gray matter
volume of the superior temporal sulcus in patients with
SCZ [85]. Similarly, we observed adolescents with SCZ
had thinning cortical thickness of the left banks of the
superior temporal sulcus than HC (p = 0.005, FDR cor-
rected). Our findings indicate that the superior temporal
sulcus could be associated with impaired extraction of
social information in adolescents with SCZ.

In our study, the most important brain region that dis-
tinguishing between MDD and SCZ was the right pars
triangularis. The pars triangular is located in the inferior
frontal gyrus, which is a crucial brain region for emo-
tional and cognitive control circuits [86]. Deng et al. re-
ported that the right inferior frontal gyrus is highly
activated in a stop-signal task involving motor inhibitory
responses [87]. Damage to this area impairs the perform-
ance of the stop-signal task [88]. Moreover, individuals
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with higher depression levels were found to have poorer
response inhibition and to perform worse on the stop-
signal task [89]. Neuroimaging studies have reported
that patients with MDD have increased functional con-
nectivity in the right pars triangularis of the inferior
frontal gyrus [90, 91]. This indicates a strong correlation
of the right pars triangularis with depression in adoles-
cents. Patients with SCZ also present with reduced gray
matter volume in the right inferior frontal gyrus [92].
However, this is attributed to the generalized neuro-
psychological impairment associated with SCZ rather
than impaired inhibitory behavioral control, which is a
specific cognitive impairment [93]. Taken together, these
findings indicated that the right pars triangularis is asso-
ciated with response inhibition in adolescents with
MDD and could be used to distinguish between adoles-
cent patients with MDD and SCZ.

This study has several limitations. First, the accuracies
of our models were all <80%. To improve accuracy, we
combined other indexes (cortical volume, cortical area,
and cerebellar-subcortical volume) with cortical thick-
ness as the feature set. An additional table presents these
results [see Additional file 2]. After adding additional in-
dexes into the feature set, no improved prediction accur-
acy was found. To prevent model overfitting and to
improve accuracy, we applied the least absolute shrink-
age and selection operator for feature selection and di-
mensionality reduction [94]. However, this did not
reduce dimensions, which could be attributed to the
complexity of brain structures and small sample size. In
addition, it is a limitation that we exclude those patients
with psychiatric comorbidities to maximize the group
difference to train the classifier. The patients with co-
morbidities are valuable cases to investigate for diagnos-
tic purposes. In the future, we will apply the models
here to these groups. Moreover, we obtained our sample
from a single center. It is not clear whether our results
are reproducible and generalizable. In future studies, we
will obtain multi-center samples to validate these find-

ings and continue to focus on early psychiatric
disorders.
Conclusions

In summary, using a machine learning technique, we
found that cortical thickness contributed toward distin-
guishing adolescent patients with MDD and SCZ. This
indicates that there are early-life structural brain abnor-
malities in patients with MDD and SCZ. These findings
contribute toward biomarker-based clinical diagnosis
and demonstrate the utility of pattern recognition in ex-
ploring the neurological basis of psychiatric disorders.
Further, this study provides an evidence regarding the
correct identification of adolescent psychiatric disorders
based on neuroimaging. Future studies will focus on
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identifying other psychiatric disorders to improve the
identification accuracy of specific diseases to contribute
to early diagnosis and treatment of psychiatric diseases.
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