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Abstract 

Background:  Post-stroke depression (PSD) is one of the most common neuropsychiatric complications after stroke. 
Studies on the underlying mechanisms and biological markers of sex differences in PSD are of great significance, but 
there are still few such studies. Therefore, the main objective of this study was to investigate the association of bio-
markers with PSD at 3 months after minor stroke in men and women.

Methods:  This was a prospective multicenter cohort study that enrolled 530 patients with minor stroke (males, 415; 
females, 115). Demographic information and blood samples of patients were collected within 24 h of admission, and 
followed up at 3 months after stroke onset. PSD was defined as a depressive disorder due to another medical condi-
tion with depressive features, major depressive-like episode, or mixed-mood features according to the Diagnostic and 
Statistical Manual of Mental Disorders, 5th edition (DSM-V). Univariate analysis was performed using the chi-square 
test, Mann–Whitney U test, or t-test. Partial least-squares discriminant analysis (PLS-DA) was used to distinguish 
between patients with and without PSD. Factors with variable importance for projection (VIP) > 1.0 were classified as 
the most important factors in the model segregation.

Results:  The PLS-DA model mainly included component 1 and component 2 for males and females. For males, 
the model could explain 13% and 16.9% of the variables, respectively, and 29.9% of the variables in total; the most 
meaningful predictors were exercise habit and fibrinogen level. For females, the model could explain 15.7% and 
10.5% of the variables, respectively, and 26.2% of the variables in total; the most meaningful predictors in the model 
were brain-derived neurotrophic factor (BDNF), magnesium and free T3. Fibrinogen was positively correlated with the 
Hamilton Depression Scale-17 items (HAMD-17) score. BDNF, magnesium, and free T3 levels were negatively corre-
lated with the HAMD-17 score.

Conclusions:  This was a prospective cohort study. The most important markers found to be affecting PSD at 
3 months were fibrinogen in males, and free T3, magnesium, and BDNF in females.

Trial registration:  ChiCTR-​ROC-​17013​993.
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Background
Post-stroke depression (PSD) is one of the most com-
mon neuropsychiatric complications after stroke [1]. The 
overall prevalence of PSD is approximately 29%, with lit-
tle change over time after stroke: 28% at 1 month, 31% at 
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1 to 6 months, 33% at 6 months to 1 year, and 25% after 
1 year [2]. PSD is associated with a reduced quality of life 
and poor functional recovery after stroke [3]. In addition, 
12.2% of stroke patients had suicidal thoughts, and 11.3% 
had suicidal plans due to mood disorders [4–6].

The development of PSD appears to be mediated by 
multiple overlapping social, psychological, functional, 
and biological factors [7]. Therefore, it is necessary to 
study the occurrence and development mechanisms of 
PSD from various perspectives. Identification of blood 
biomarkers can improve the accuracy of PSD diagnosis 
and facilitate early intervention. Previous studies have 
reported that bilirubin [8], blood lipids [9], electrolyte 
levels [10], homocysteine [11], hypersensitive C-reactive 
protein (CRP) [12], fibrinogen [10], cytokines [13, 14] 
and various hormones [15, 16] have an impact on the 
occurrence and development of PSD.

Previous studies have reported that the prevalence 
of PSD in males may be greater than [17], equal to [18], 
or less than [19] that in females. Different factors might 
have different effects on the onset of depression in men 
and women. Studies on the underlying mechanisms and 
biological markers of sex differences in PSD are of great 
significance for the diagnosis and treatment of PSD, 
but there are still few such studies. In recent years, the 
mechanism of PSD in minor strokes has attracted much 
attention [20]. Previous studies have found that higher 
National Institutes of Health Stroke Scale (NIHSS) scores 
are associated with the development of PSD [21]. How-
ever, some patients with minor strokes are still prone 
to develop PSD symptoms even with less neurological 
deficits or full recovery [22]. Therefore, there may be dif-
ferent biological factors involved in the development of 
PSD in patients with minor strokes as compared to an 
adaptation disorder due to a more severe stroke. The 
main objective of this study was to investigate the asso-
ciation of the above-mentioned biomarkers with PSD at 
3 months after minor stroke in men and women.

Methods
All procedures described in this manuscript were 
approved by the Ethics Committee of Tongji Medical 
College, Huazhong University of Science and Technology 
(Approval No: TJ-IRB20171108), and the study is a reg-
istered clinical trial (registration number: ChiCTR-ROC 
17,013,993). A total of 530 patients with minor stroke 
hospitalized in the Department of Neurology of Tongji 
Hospital, Wuhan First Hospital, and Wuhan Central Hos-
pital in Wuhan, Hubei Province, China, were enrolled 
from May 2018 to August 2019. The study was conducted 
according to the Helsinki Declaration, and all partici-
pants gave written informed consent.

Subjects
The inclusion criteria for this study were as follows: (1) 
age ≥ 18  years; (2) hospitalization within 7  days after 
stroke onset (including hemorrhagic and ischemic 
stroke); (3) stroke confirmed by computed tomogra-
phy (CT) or magnetic resonance imaging (MRI) scan; 
(4) minor stroke: a NIHSS score ≤ 3 points; (5) blood 
samples were collected within 24  h after admission; 
and (6) informed consent signed by patients or family 
members. Exclusion criteria were: (1) brain dysfunc-
tion caused by non-vascular diseases such as brain 
trauma, brain tumor, and metastatic brain tumor; (2) 
a history of anxiety, depression, or other mental dis-
eases or taking related drugs; (3) aphasia, blindness, 
deafness, and cognitive dysfunction; (4) subarachnoid 
hemorrhage; and (5) poor compliance or cannot com-
plete the experiment [23].

Depression assessment
Demographic and medical history information of 
patients was collected within 24 h of admission, includ-
ing age, height, weight, stroke type, education level, 
smoking history, drinking history, sleeping time, dia-
betes mellitus, hypertension, hyperlipidemia, coro-
nary heart disease (CHD), stroke history, and exercise 
habits. The NIHSS Mini-Mental State Examination 
(MMSE) and Hamilton Depression Scale-17 items 
(HAMD-17) were assessed by two qualified and for-
mally trained doctors (C.P. and W.S) at admission and 
at 3  months after stroke onset. PSD was diagnosed by 
a psychiatrist according to the diagnostic criteria for 
PSD in the Diagnostic and Statistical Manual of Mental 
Disorders, 5th edition (DSM-V) (i.e., depressive disor-
der due to another medical condition with depressive 
features, major depressive-like episode, or mixed-mood 
features [24]), and the HAMD-17 score was greater 
than 7 after stroke onset.

Blood collection
Venous blood samples were collected in the early 
morning of the second day (within 24  h of admission) 
and sent to the laboratory for testing. The serological 
indicators tested in the laboratory included total biliru-
bin, direct bilirubin, indirect bilirubin, total cholesterol, 
triglyceride, high-density lipoprotein (HDL), low-den-
sity lipoprotein (LDL), potassium, sodium, chlorine, 
calcium, phosphorus, magnesium, homocysteine, CRP, 
thyroid stimulating hormone (TSH), free triiodothy-
ronine (T3), free tetraiodothyronine (T4), fibrinogen, 
D-dimer, glycosylated hemoglobin (HbA1C), prolactin 
(only females), estradiol (only females), testosterone 
(only males), interleukin 1β, interleukin 6, interleukin 
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10, interleukin 18, tumor necrosis factor-α (TNF-α), 
brain-derived neurotrophic factor (BDNF), interferon-γ 
(INF- γ), fasting C peptide, cortisol, and adrenocortico-
trophic hormone (ACTH).

Statistical analysis
The Statistical Program for Social Sciences (SPSS) sta-
tistical software (version 25, Chicago, IL, USA) was used 
for the data analysis. Continuous variables were rep-
resented by medium and inter-quartile range (IQR) or 
mean ± standard deviation and were compared using 
the Mann–Whitney U test or T test (when the data were 
normally distributed). Categorical variables were repre-
sented by the number of cases and percentages, and ana-
lyzed using the chi-square test. To identify all potentially 
significant variables, variables with p < 0.5 were selected 
for multivariate logistic regression analysis. Differences 
were considered statistically significant at a p < 0.05. 
Consistency between observers, as measured by the 
HAMD-17 score, was determined using the intra-group 
correlation coefficient (ICC).

We used partial least-squares discriminant analysis 
(PLS-DA) to explore the relationship between serologi-
cal indicators and PSD [25]. PLS is an exploratory mul-
tivariate analysis technique that models the relationship 
between a set of predictive and response variables based 
on a set of mutually orthogonal potential factors or 
PLS components [26]. It does not require a distribution 
hypothesis; therefore, it is also suitable for the analysis of 
skewness in the data distribution.

The models were conducted using “ropls” package of 
R software (v4.0.0; http://​www.r-​proje​ct.​org/). Here, we 
modeled the HAMD-17 score as the response variable 
Y. The predictor variables, X, comprised 13 demographic 
variables and 34 serological indicators. Data from all 
patients were included, and missing data were imputed 
by multiple imputation. Since many independent vari-
ables may be correlated, other statistical methods (such 
as linear regression) will be ineffective. In this case, PLS 
is an ideal statistical analysis technique.

A logarithmic transformation (Log10) was used for 
fold-change values for better symmetry between the dis-
tribution curves and the autoscaling technique for data 
standardization. The model was constructed in two steps. 
First, the partial least squares method was used to deter-
mine the optimal number of factors to be included in the 
PLS-DA model. Second, PLS-DA was used to distinguish 
between PSD and non-PSD patients. Factors with vari-
able importance for projection (VIP) > 1.0, were classified 
as the most important factors in the model segregation. 
Reduced PLS-DA models were tested with these factors 
until a model with greater predictive capacity using the 
fewest possible variables was obtained [25].

Results
The initial study included 1061 stroke patients, and 530 
patients (415 men and 115 women) were included after 
screening for inclusion and exclusion criteria to exclude 
531 patients (Fig. 1). The proportion of PSD at 3 months 
was 30.1% in men and 38.3% in women. The HAMD-17 
score (ICC = 0.92, 95% CI: 0.79–0.97) had high inter-
observer consistency.

A univariate analysis of the demographics of both 
males and females found that males were more obese 
than females (p < 0.001), and had a higher proportion of 
medium to high education level (p < 0.001), smoking his-
tory (p < 0.001), drinking history (p < 0.001), and sleep 
time below than 5  h (p = 0.038). There were no signifi-
cant differences in other demographic variables between 
males and females (Table 1).

According to the PLS method, the optimal num-
ber of factors included in the male PLS-DA model was 
nine (Additional file  1). The PLS-DA model for males 
mainly included component 1 and component 2, which 
explained 13% and 16.9% of variables, respectively, and 
29.9% of variables in total. The most meaningful pre-
dictors in the model were exercise habit and fibrino-
gen level (VIP value > 1) (Fig.  2). The optimal number 
of factors included in the female PLS-DA model was 10 
(Additional file  1). The PLS-DA model for females also 
mainly included component 1 and component 2, which 
explained 15.7% and 10.5% of the variables, respectively, 
and 26.2% of the variables in total. The most meaningful 
predictors in the model were BDNF, magnesium, and free 
T3 (VIP value > 1) (Fig. 2).

Fibrinogen (SE [Standard errors] = 0.230, β = 1.030) 
was important in predicting PSD at 3  months in males, 
fitting the relationship between fibrinogen and the 
HAMD-17 score and showing standard error (Fig.  3). 
Fibrinogen was positively correlated with HAMD-
17 score. BDNF (SE = 0.067, β = -0.208), magnesium 
(SE = 5.120, β = -10.571), and free T3 (SE = 0.499, 
β = -1.409) were important in predicting PSD at 3 months 
in females, fitting the relationship between BDNF, mag-
nesium, or free T3 and HAMD-17 scores and showing 
standard error (Fig.  3). BDNF, magnesium, and free T3 
levels were negatively correlated with HAMD-17 score.

In addition, we determined whether the results of tradi-
tional univariate and multivariate logistic regression analy-
ses were consistent with the PLS-DA analysis. The results 
of the univariate analysis are presented in Additional file 1: 
Table  S1. In the multivariate logistic regression analysis, 
it remained that BDNF (p = 0.029, OR = 0.916, 95%CI: 
0.846–0.991), FT3 (p = 0.004, OR = 0.463, 95%CI: 0.273–
0.784) and magnesium (p = 0.003, OR = 0.001, 95%CI: 
0.001–0.071) were significantly different between the 
women in the PSD and non-PSD groups, whereas exercise 
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habit (p = 0.001, OR = 0.462, 95%CI: 0.292–0.731), fibrino-
gen (p = 0.004, OR = 1.342, 95%CI: 1.096–1.643) and FT4 
(p = 0.049, OR = 1.039, 95%CI: 1.004–1.643) were signifi-
cantly different between men in the PSD and non-PSD 
groups (Table 2). After multiple comparisons, BDNF, FT3, 
magnesium and fibrinogen remained significantly differ-
ent, consistent with the results of the PLS-DA analysis 
(Tables 3 and 4).

Discussion
In this study, we found that fibrinogen may be a predic-
tive blood biomarker for PSD at 3 months in males, and 
free T3, magnesium, and BDNF may be predictive blood 

biomarkers for PSD at 3  months in females. This sug-
gests that clinicians should consider the different effects 
of the above blood biomarkers on men and women in the 
screening, diagnosis, and treatment of PSD, in order to 
adopt different preventive or therapeutic measures.

In this study, the proportion of PSD at 3  months in 
females was higher than that in males (38.3% vs 30.1%). 
Possible reasons for this difference are as follows: (1) Tes-
tosterone is a neuroactive steroid hormone that regulates 
many neurotransmitters and/or their associated recep-
tors, such as γ-aminobutyric acid (GABA), dopamine 
and serotonin (5-HT), which may underlie its protec-
tive effect against depressive symptoms [27]. (2) Studies 

Fig. 1  A flow diagram drawn according to inclusion and exclusion criteria
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of functional connections between the dorso-medial 
prefrontal cortex and the right amygdala suggest that 
males process negative emotions more through rational 
assessment than purely emotional responses [28–30]. 
Therefore, males may be able to better deal with nega-
tive emotions when a stroke occurs. (3) Expression of 
some genes associated with depressive symptoms is sex-
specific [31]. For example, downregulation of Dusp6, a 
female-specific hub gene in the major depressive disorder 
network, in the mouse prefrontal cortex mimics stress 
susceptibility in females, but not males, by increasing 
ERK signaling and pyramidal neuron excitability [32].

Previous studies have found a link between elevated 
fibrinogen levels and depressive symptoms [33]. Our 
study found that higher fibrinogen levels at admission 
increased the risk of PSD at 3 months in men. Fibrinogen 
has been shown to stimulate the synthesis of pro-inflam-
matory cytokines such as TNF-α and interleukin-6 by 
peripheral blood mononuclear cells, thereby increasing 
the levels of pro-inflammatory cytokines [34]. These pro-
inflammatory cytokines activate indolamine-2,3-dioxyge-
nase, which degrades tryptophan to kynurenine [35, 36]. 
Since tryptophan is a precursor of serotonin, a decrease 
in tryptophan concentration leads to a decrease in 

Table 1  Univariate regression analysis of male and female 
demographic data

BMI body mass index, CHD coronary heart disease

Variable Female(n = 115) Male(n = 415) p value

Age, mean ± SD 58.8 ± 12.3 58.0 ± 11.5 0.341

BMI, mean ± SD 23.4 ± 3.2 24.6 ± 3.1  < 0.001

Stroke type 0.066

  Infarction, n(%) 98(85.2) 378(91.1)

  Hemorrhage, n(%) 17(14.8) 37(8.9)

Education level  < 0.001

  Low, n(%) 52(45.2) 80(19.3)

  Medium, n(%) 49(42.6) 243(58.6)

  High, n(%) 14(14) 92(22.2)

Smoking history, n(%) 12(10.4) 312(75.2)  < 0.001

Drinking history, n(%) 8(7.0) 140(33.7)  < 0.001

Sleeping time < 5 h, n(%) 18(15.7) 103(24.8) 0.038

Diabetes Mellitus, n(%) 24(20.9) 107(25.8) 0.280

Hypertension, n(%) 66(57.4) 238(57.3) 0.994

Hyperlipidemia, n(%) 21(18.3) 87(21.0) 0.524

CHD, n(%) 9(7.8) 38(9.2) 0.657

Stroke history, n(%) 19(16.5) 87(21.0) 0.292

Exercise habit, n(%) 45(39.1) 171(41.2) 0.689

Fig. 2  A Partial least-squares discriminant analysis(PLS-DA) model of male of PSD at 3 months; (B) PLS-DA model of female of PSD at 3 months; (C) 
Variable importance for projection(VIP) values of factors included in male PLS-DA model; (D) VIP values of factors included in female PLS-DA model; 
HbA1C: glycosylated hemoglobin A1c; INF-γ: interferon-γ; BDNF: brain derived neurotrophic factor
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serotonin synthesis, which may contribute to the devel-
opment of depression [37].

Magnesium is an important micronutrient essential 
for the synthesis of many biochemical substances and 

normal physiological activities of the human body [38]. 
Magnesium deficiency has been shown to cause changes 
in central nervous system function, particularly gluta-
mate transmission in the limbic system and cerebral cor-
tex, which play an important role in the pathogenesis of 
depression [39, 40]. In addition, magnesium prevents 
overactivation of the hypothalamic–pituitary–adrenal 
axis by reducing ACTH release and regulating adrenal 
cortex sensitivity to ACTH [41]. Dysregulation of the 
hypothalamic axis in adults is closely associated with 
depression, and elevated cortisol levels and dysregulation 
of hypothalamic activity are common in depressed indi-
viduals [42, 43].

Free T3 plays an important role in the endocrine sys-
tem and the basic metabolism of the human body. Thy-
roid hormone affects the functions of serotonin and 
catecholamines in the brain, and plasma serotonin lev-
els are positively correlated with T3 concentration [44]. 
Free T3 may enhance the role of serotonin in the brain 
by regulating the transcription of serotonin receptors 

Fig. 3  A The curve and standard error about fibrinogen at admission and HAMD-17 score at 3 months of stroke; (B) The curve and standard 
error about BDNF at admission and HAMD-17 score at 3 months of stroke; (C) The curve and standard error about magnesium at admission and 
HAMD-17 score at 3 months of stroke; (D) The curve and standard error about free T3 at admission and HAMD-17 score at 3 months of stroke. BDNF: 
brain derived neurotrophic factor

Table 2  Multivariate analysis of clinical variables and blood 
biomarkers variables in PSD and non-PSD of male and female

FT4 free tetraiodothyronine, FT3 free triiodothyronine, BDNF brain-derived 
neurotrophic factor

Variables β p OR 95%CI

Female
  Magnesium -7.878 0.003 0.001 0.001–0.071

  FT3 -0.770 0.004 0.463 0.273–0.784

  BDNF -0.088 0.029 0.916 0.846–0.991

Male
  Exercise habit -0.772 0.001 0.462 0.292–0.731

  Fibrinogen 0.294 0.004 1.342 1.096–1.643

  FT4 0.038 0.049 1.039 1.004–1.643
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by altering the mRNA encoding of 5-HT1A (5-hydroxy-
tryptamine)- and 5-HT1B receptors [45]. In addition, free 
T3 as an active thyroid hormone in the brain decreases 
the risk of PSD, which may be due to its ability to pro-
mote neural protection [46] and nerve regeneration [47], 
or to an effect of free T3 itself on depression.

BDNF is an important neurotrophic factor that binds 
to the tropomyosin kinase B (TrkB) receptor and plays an 
important role in synaptic development and plasticity [48]. 
BDNF and its receptor TrkB are expressed in mesolimbic 
dopamine (DA) circuits that project midbrain DA neu-
rons in the ventral tegmental region (VTA) to the basal 
forebrain nucleus accumbens (NAc) [49, 50]. BDNF-TrkB 
and DA signals in the mesolimbic circuit play key roles in 
stress-related and reward-related behaviors [51, 52]. Mes-
olimbic BDNF-TrkB signal transduction is also implicated 
in the pathophysiology of depressive symptoms [53, 54], 
and dysregulation of the mesolimbic DA system is associ-
ated with depression-related behaviors [55].

Despite the previously described advantages of PLS-
DA, it did not discriminate well between PSD and non-
PSD patients in our study. In the reported literature, 
PLS-DA is primarily used for proteomics analyses, which 
generally requires models with an accuracy of 50% or 
more, or at least 40% [25, 56]. In clinical studies, model 

accuracy greater than 20% is acceptable due to large and 
uncontrollable individual differences [57–59]. As men-
tioned earlier, the development of PSD appears to be 
mediated by multiple overlapping social, psychological, 
functional, and biological factors [7]. Therefore, we used 
the PLS-DA method with the main purpose of screening 
for markers with diagnostic and therapeutic significance, 
with the expectation that they will be suggestive for sub-
sequent studies and clinicians.

This study had several advantages. First, demographic 
indicators were included in the analysis as covariates to 
ensure the stability of the results as far as possible. Sec-
ond, through the analysis of male and female groups, 
it was found that the blood markers affecting male and 
female PSD at 3 months were different. Third, the PLS-
DA method was used to screen blood markers, which 
does not require the normality of the data distribution.

As for the study limitations, first, the study had a small 
sample size, with a total sample of 530 patients and 115 
females. Second, excluding people with aphasia, blind-
ness, deafness, and cognitive impairment may have 
skewed the results. Third, we did not include stroke vol-
ume in the analysis, which is an important factor influenc-
ing the occurrence of PSD [60]. In future studies, we will 
use artificial intelligence, the brain atlas, and voxel-based 

Table 3  The multiple comparisons of magnesium, FT3 and BDNF in female

BMI body mass index, HDL high-density lipoprotein, FT3 free triiodothyronine, BDNF brain-derived neurotrophic factor, ACTH brain-derived neurotrophic factor

Variables Model 1 Model 2 Model 3

β p OR 95%CI β p OR 95%CI β p OR 95%CI

Magnesium -7.696 0.011 0.001 0.001–0.166 - - - - - - - -

FT3 - - - - -0.886 0.004 0.412 0.227–0.747 - - - -

BDNF - - - - - - - - -0.135 0.012 0.874 0.787–0.971

Age 0.001 0.981 1.000 0.961–1.041 0.021 0.300 1.022 0.981–1.064 0.010 0.605 1.001 0.971–1.052

BMI -0.022 0.781 0.979 0.840–1.140 -0.049 0.527 0.952 0.817–1.109 -0.020 0.805 0.981 0.839–1.146

Smoking history -1.663 0.068 0.190 0.032–1.133 -1.128 0.227 0.324 0.052–2.018 -1.383 0.134 0.251 0.041–1.534

Hypertension 0.795 0.146 2.215 0.758–6.470 0.862 0.120 2.367 0.799–7.013 0.778 0.158 2.176 0.740–6.401

Hyperlipidemia -0.509 0.458 0.601 0.157–2.302 -0.962 0.192 0.382 0.090–1.621 -0.496 0.471 0.609 0.158–2.342

Exercise habit -1.124 0.038 0.325 0.112–0.941 -1.052 0.064 0.394 0.115–1.061 -1.012 0.072 0.363 0.121–1.095

Triglyceride 0.063 0.740 1.065 0.735–1.542 0.032 0.859 1.032 0.727–1.466 -0.075 0.683 0.928 0.648–1.329

HDL -1.237 0.180 0.290 0.048–1.771 -2.051 0.034 0.129 0.019–0.857 -1.894 0.033 0.150 0.026–0.858

Potassium -0.039 0.920 0.961 0.445–2.080 0.069 0.859 1.072 0.498–2.306 -0.065 0.864 0.937 0.446–1.967

Calcium -3.501 0.061 0.030 0.001–1.167 -4.531 0.038 0.011 0.001–0.771 -1.471 0.442 0.230 0.005–9.792

Phosphorus -0.139 0.909 0.870 0.081–9.343 0.575 0.667 1.778 0.129–24.474 -1.039 0.376 0.354 0.036–3.523

D-dimer -0.528 0.249 0.590 0.241–1.446 -0.909 0.049 0.403 0.163–0.997 -0.869 0.063 0.420 0.168–1.047

HbA1C -0.293 0.063 0.746 0.548–1.016 -0.141 0.306 0.868 0.663–1.138 -0.169 0.248 0.844 0.634–1.125

Estradiol 0.006 0.110 1.006 0.999–1.013 0.008 0.034 1.008 1.001–1.006 0.007 0.052 1.007 1.000–1.015

Interleukin 6 0.001 0.994 1.000 0.976–1.025 -0.006 0.586 0.994 0.972–1.016 0.001 0.989 1.000 0.977–1.023

Interleukin 10 0.004 0.165 1.004 0.998–1.011 0.003 0.391 1.003 0.996–1.010 0.002 0.431 1.002 0.996–1.009

Cortisol 0.003 0.911 1.003 0.956–1.052 -0.002 0.961 0.998 0.919–1.083 -0.001 0.986 0.999 0.935–1.068

ACTH 0.002 0.852 1.002 0.981–1.024 -0.003 0.785 0.997 0.975–1.019 -0.006 0.629 0.994 0.972–1.017
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analyses to analyze the relationship between stroke vol-
ume and PSD. Finally, the follow-up time of the study was 
short, and a longer follow-up time may be more helpful in 
observing the occurrence and development of depression 
in stroke patients.

Conclusion
This was a prospective cohort study. Through the anal-
ysis of males and females, it was found that the most 
important marker affecting PSD at 3  months in males 
was fibrinogen, and the most important markers affect-
ing PSD at 3 months in males were free T3, magnesium, 
and BDNF.
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