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Abstract
Background Patients with major depressive disorder (MDD) have an increased risk of breast cancer (BC), implying 
that these two diseases share similar pathological mechanisms. This study aimed to identify the key pathogenic genes 
that lead to the occurrence of both triple-negative breast cancer (TNBC) and MDD.

Methods Public datasets GSE65194 and GSE98793 were analyzed to identify differentially expressed genes (DEGs) 
shared by both datasets. A protein-protein interaction (PPI) network was constructed using STRING and Cytoscape 
to identify key PPI genes using cytoHubba. Hub DEGs were obtained from the intersection of hub genes from a 
PPI network with genes in the disease associated modules of the Weighed Gene Co-expression Network Analysis 
(WGCNA). Independent datasets (TCGA and GSE76826) and RT-qPCR validated hub gene expression.

Results A total of 113 overlapping DEGs were identified between TNBC and MDD. The PPI network was constructed, 
and 35 hub DEGs were identified. Through WGCNA, the blue, brown, and turquoise modules were recognized as 
highly correlated with TNBC, while the brown, turquoise, and yellow modules were similarly correlated with MDD. 
Notably, G3BP1, MAF, NCEH1, and TMEM45A emerged as hub DEGs as they appeared both in modules and PPI hub 
DEGs. Within the GSE65194 and GSE98793 datasets, G3BP1 and MAF exhibited a significant downregulation in TNBC 
and MDD groups compared to the control, whereas NCEH1 and TMEM45A demonstrated a significant upregulation. 
These findings were further substantiated by TCGA and GSE76826, as well as through RT-qPCR validation.

Conclusions This study identified G3BP1, MAF, NCEH1 and TMEM45A as key pathological genes in both TNBC and 
MDD.
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Introduction
Breast cancer (BC) is one of the most common and fatal 
malignancies worldwide [1]. Considering the long latency 
and young age of onset, it is important to identify individ-
uals susceptible to BC. Various genetic and environmen-
tal factors have been identified to lead to elevated risk of 
BC. Emerging evidence suggests that patients with major 
depressive disorder (MDD) have an increased risk of BC 
[2], and that genetic predisposition of MDD was caus-
ally associated with BC risk [3]. This implies that certain 
genetic and molecular pathogenic factors of MDD may 
also contribute to the development of BC. In 2011, the St. 
Gallen Expert Consensus divided BC into four subtypes 
[e.g., luminal A (expressing the oestrogen receptor (ER+), 
luminal B (ER+), HER2+ (without ER expression (ER-), 
and triple-negative breast cancer (TNBC, ER-)] [1, 4], of 
which TNBC was the most aggressive subtype and had 
the worst prognosis [5]. Recent research has shown that 
MDD is a risk factor for ER-negative breast cancer [3]. 
Thus, we hypothesized that MDD and TNBC share com-
mon pathological mechanisms.

MDD is caused by both genetic and environmental 
factors, and its etiology involves multiple organs, includ-
ing the endocrine, nervous, and immune systems [6–8]. 
Although emerging genetic and epidemiological evidence 
suggests that MDD and BC may have similar etiological 
mechanisms, the specific pathogenic pathways and mole-
cules that they share have not yet been clearly elucidated. 
In this study, we identified differentially expressed genes 
(DEGs) that are commonly associated with both MDD 
and TNBC by analyzing high-throughput sequencing 
data from public databases, selected hub DEGs, and fur-
ther validated their biological importance in functional 
assays.

Materials and methods
Sample and dataset collection
Expression data for TNBC and MDD were obtained from 
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). The GSE65194 dataset [9–
11] was analyzed using the GPL570 [HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 array con-
sisting of 55 TNBC samples and 11 control samples. The 
GSE98793 dataset [12] contains samples with sex infor-
mation labeled “Female” and was analyzed in 96 MDD 
samples and 48 controls using the GPL570 [HG-U133 
_ Plus _ 2] Affymetrix Human Genome U133 Plus 2.0 
array.

Blood samples from five patients with MDD, five 
matched healthy individuals, tumor tissue samples, and 
normal adjacent tissue samples from five patients with 
BC were collected during the time period between Janu-
ary 2022 and March 2023.

Identification of common differentially expressed genes 
(DEGs)
The “limma” package [13] (v3.34.7, https://bioconduc-
tor.org/packages/release/bioc/html/limma.html) in 
the R software (v4.3.1) was employed to identify DEGs 
in the TNBC dataset GSE65194 and the MDD dataset 
GSE98793. Genes with a false discovery rate (FDR) < 0.05, 
and |Log2FoldChange| > 0.5 were considered DEGs. 
TNBC and MDD DEGs intersected, and genes that were 
significantly upregulated or downregulated in both sets 
were selected as common DEGs. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses of these common DEGs were conducted in the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) database (v.6.8, https://david.ncif-
crf.gov/) [14, 15], and FDR < 0.05 was considered sig-
nificantly enriched. Functional annotations in the GO 
analyses included biological process (BP), cell component 
(CC), and molecular function (MF).

Protein-protein interaction (PPI) network construction and 
identification of hub genes
An interaction network of the common DEGs was con-
structed using STRING (v. 11.0, http://string-db.org/), 
with the minimum required interaction score set to 0.4, 
and the results were visualized using the online tool 
Cytoscape (v.3.9.0, http://www.cytoscape.org/) [16]. The 
CytoHubba plug-in of Cytoscape [17] was employed to 
identify hub genes, and four topological analysis methods 
were applied: Maximal Clique Centrality (MCC), Maxi-
mum Neighborhood Component (MNC), degree, and 
Edge Percolated Component (EPC). The top 50 genes 
resulting from each method were intersected, and the 
genes present in all four sets were chosen as hub genes.

Weighted gene co-expression network analysis (WGCNA) 
and selection of hub DEGs
The R package WGCNA (v.1.72-1, https://cran.r-proj-
ect.org/web/packages/WGCNA/index.html) [18] was 
applied to perform weighted gene co-expression net-
work analysis (WGCNA). We selected a height cut cor-
responding to a correlation of 0.99, and the minimum 
modulus was set to 100. WGCNA modules were signifi-
cantly positively correlated with both TNBC and MDD 
(|Pearson correlation coefficient (PCC)| > 0.3), and genes 
in these modules intersected with previously selected 
hub genes. Genes present in both sets were identified as 
hub DEGs for the two diseases. Based on the expression 
levels of the hub DEGs, principal component analysis 
(PCA) was conducted to assess whether their expression 
was disease-specific. The expression levels of hub DEGs 
were extracted from all four datasets, and their expres-
sion levels in disease samples were compared with those 
in control samples in each of the four datasets.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://string-db.org/
http://www.cytoscape.org/
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
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Identification of the disease-associated “miRNA-hub DEG” 
interactions and functional annotation of hub DEGs
TNBC-associated miRNAs and MDD-associated miR-
NAs were downloaded from the Human MicroRNA 
Disease Database (HMDD) v4.0 (http://www.cuilab.cn/
hmdd) [19] and intersected to obtain the miRNAs that 
were correlated with both diseases. MiRNAs potentially 
regulating hub DEGs were predicted using the miRWalk 
v3.0, database (http://129.206.7.150/) [20]. KOBAS v3.0 
database (http://kobas.cbi.pku.edu.cn/) and was used 
to annotate the KEGG pathways of the hub DEGs. The 
results were visualized in a Sankey diagram drawn using 
the R package ggplot2 (v3.4.4; https://cran.r-project.org/
web/packages/ggplot2/index.html).

Validation of hub DEGs in independent external datasets 
and using real-time quantitative reverse transcription-
polymerase chain reaction (RT-qPCR)
To enhance the robustness of our findings, we validated 
the expression levels of hub DEGs using the TCGA and 
GSE76826 datasets, complemented by RT-qPCR analy-
sis. Expression data for breast cancer were retrieved 
from the TCGA database, encompassing 158 TNBC 
samples and 113 normal control samples, using the Illu-
mina HiSeq 2000 RNA Sequencing platform employed 
for detection. The GSE76826 dataset was generated using 
the GPL17077 Agilent-039494 SurePrint G3 Human GE 
v2 8 × 60  K Microarray 039381 (probe name version), 
including samples annotated as “Female,” comprising 11 
MDD samples and 7 controls.

The “TransZol Up” reagent was used to isolate total 
RNA from blood or tissue samples (TransGen Biotech 
Inc., Beijing, China, ET111-01). The SYBR Green RT-
PCR assays were performed following the manufacturer’s 
instructions for “First-Strand cDNA Synthesis SuperMix 
for qPCR” (TransGen Biotech Inc, AU341-02) and “Per-
fectStart® Green qPCR SuperMix” (TransGen Biotech 
Inc, AQ601-02). Reactions were run on a LongGene 
Q2000B system (LongGene Inc., Hangzhou, Zhejiang, 
China). Three independent experiments were conducted 
for statistical significance, and all assays were performed 
in triplicate. The 2−ΔΔCt method was applied for the rela-
tive quantification of gene expression levels. The primer 
sequences are listed in Table 1.

Statistical analyses
All bioinformatics analyses were performed using the 
R software (v.4.3.1). RT-qPCR data were analyzed using 
the Student’s t-test in GraphPad Prism software (v.9.5.1). 
p < 0.05 was considered statistically significant.

Results
Identification of common DEGs and functional enrichment 
analyses
Figure  1 shows the flow diagram of this study. A total 
of 2,202 and 108 genes were significantly upregulated 
in TNBC and MDD samples, respectively. Additionally, 
4,020 and 281 genes were significantly downregulated 
in TNBC and MDD samples, respectively, as shown in 
the volcano plots (Fig.  2A). Twenty genes were signifi-
cantly upregulated in both TNBC and MDD samples, 
and 93 genes were significantly downregulated in both 
TNBC and MDD samples (Fig.  2B). Further GO analy-
ses of the 113 common DEGs identified 8 enriched 
BP terms, including “apoptotic process” (p = 0.0013), 
“negative regulation of blood vessel endothelial cell 
migration” (p = 0.0188), and “xenobiotic metabolic pro-
cess” (p = 0.0209); 8 CC terms, including “cytoplasm” 
(p = 0.0011), “cytosol” (p = 0.0090), and “cytosolic small 
ribosomal subunit” (p = 0.0235); and 8 MF terms, includ-
ing “zinc ion binding” (p = 0.0095), “gluconokinase 
activity” (p = 0.0112), and “metalloendopeptidase activ-
ity” (p = 0.0326) (Fig.  2C). KEGG analysis identified 28 
enriched pathways, including “transcriptional misregu-
lation in cancer” (p = 0.0002), “metabolic pathways” 
(p = 0.0003), “endometrial cancer” (p = 0.0007), “prolactin 
signaling pathway” (p = 0.0012), and “MAPK signaling 
pathway” (p = 0.0110) (Fig. 2C).

PPI network construction and identification of hub genes
A total of 266 pairs of interactions were potentially 
related to the 113 DEGs, according to the STRING data-
base (Fig. 3A). The intersection of results from the four 
different topological methods generated 35 hub genes for 
this network (Fig. 3B).

WGCNA and selection of hub DEGs
For both TNBC and MDD training sets, 6 was chosen as 
the optimal soft threshold power to build the scale-free 
weighted co-expression network, with a mean connec-
tivity of 1 (Fig. 4A and C), qualifying it as a small-world 

Table 1 Primers of the real-time reverse transcription-polymerase chain reaction
Gene Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’)
GAPDH  T G A C A A C T T T G G T A T C G T G G A A G G  A G G C A G G G A T G A T G T T C T G G A G A G
G3BP1  A G A G G A G C C T G T T G C T G A A C  C T G C A G G T G C T G G A G A A G A A
MAF cctggccatggaatatgttaat agccggtcatccagtagtagtc
NCEH1 ggccacaaagtatttcctgaag gggtgttcacattttgctgata
TMEM45A accaatgactcagaagggaaaa ttttggaaccaagatagcaggt

http://www.cuilab.cn/hmdd
http://www.cuilab.cn/hmdd
http://129.206.7.150/
http://kobas.cbi.pku.edu.cn/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
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network. After merging the modules with highly identi-
cal gene expression, ten and five modules were obtained 
in the co-expression networks for the TNBC and MDD 
training sets, respectively (Fig.  4B and D). The module-
trait relationships between diseases and modules were 
further analyzed (Fig.  4B and D). Next, we extracted 
genes from the modules that were significantly positively 
correlated with TNBC (e.g., TNBC-blue, TNBC-brown, 
and TNBC-turquoise) and MDD (e.g., MDD-brown, 
MDD-turquoise, and MDD-yellow) and identified 673 
genes that were correlated with both diseases (Fig.  4E). 
These 673 genes intersected with the previously identi-
fied 35 hub genes, and four genes that were present in 
both sets, namely G3BP1, MAF, NCEH1 and TMEM45A, 
were chosen as hub DEGs. The principal component 
analysis (PCA) diagram separated the samples into dis-
tinct groups according to the expression levels of the hub 
DEGs (Fig. 4F).

Validation of the expression levels of the hub DEGs
In all datasets, the expression of G3BP1 and MAF was 
significantly downregulated in the TNBC and MDD 
groups compared to that in the control group, and the 
expression of NCEH1 and TMEM45A was significantly 
upregulated in the TNBC and MDD groups compared 
to that in the control group (Fig.  5A). In addition, the 
same trend was observed in the blood of patients with 
MDD and in tissue samples from patients with BC 
using RT-qPCR (Fig.  5B and C). The detailed baseline 

characteristics of the patients and healthy subjects from 
whom blood and tissue samples were collected are listed 
in Tables 2 and 3.

Identification of the disease-associated “miRNA-hub DEG” 
interactions and functional annotation of the hub DEGs
We identified 67 TNBC-associated miRNAs and 14 
MDD-associated miRNAs from the HMDD database, of 
which hsa-miR-34c and hsa-miR-16 were correlated with 
both diseases. miRNAs predicted to regulate hub DEGs 
were downloaded from the miRWalk database, and 17 
miRNA-target pairs implicated hsa-miR-34c and hsa-
miR-16 (Fig.  6). The annotated KEGG pathways of the 
hub DEGs were “cholesterol metabolism,” “cortisol syn-
thesis and secretion,” “bile secretion,” “Th1 and Th2 cell 
differentiation,” and “transcriptional misregulation in 
cancer” (Fig. 6).

Discussion
In this study, we identified 20 genes that were upregu-
lated in both TNBC and MDD and 93 genes that were 
downregulated in both diseases. From these 113 genes, 
PPI network construction and WGCNA led to the identi-
fication of four hub DEGs that may play the most critical 
roles in the pathogenesis of both diseases, namely G3BP1, 
MAF, NCEH1 and TMEM45A. Subsequently, their 
expression levels in public datasets as well as in blood 
and breast tissue samples were validated. Hsa-miR-34c 

Fig. 1 Flow diagram of the study

 



Page 5 of 11Xie et al. BMC Psychiatry          (2024) 24:369 

and hsa-miR-16 were predicted to regulate the expres-
sion of hub DEGs using the HMDD database.

GO analyses uncovered that the common DEGs of both 
diseases were functionally related to biological pathways 
such as “apoptotic process,” “negative regulation of blood 
vessel endothelial cell migration,” and “xenobiotic meta-
bolic process.” Moreover, they were enriched in molecu-
lar activities including “zinc ion binding,” “gluconokinase 
activity,” and “metalloendopeptidase activity.” Genetic 

variants of xenobiotic metabolism genes have been asso-
ciated with the risk of breast cancer [21]. Studies on 
neurodegenerative disorders, including depression, have 
provided evidence that xenobiotic-metabolizing enzymes 
have important functions in brain physiology [22]. 
NCEH1, a common DEG in GO-BP, encodes a multifunc-
tional enzyme that hydrolyzes the amide and ester bonds 
of many xenobiotic chemicals [23]. In addition, gluco-
nokinases such as IDNK have been reported to promote 

Fig. 2 Identification of common differentially expressed genes (DEGs) and hub genes.(A) Volcano plots showing DEGs. Red and blue dots indicate sig-
nificantly up-regulated and down-regulated genes in the disease group compared to the control. (B) Venn diagrams displaying the common DEGs that 
were down-regulated in both diseases (left) and up-regulated in both diseases (right). (C) Enrichment analyses of the common DEGs. All the identified 
Gene Ontology terms and the top 15 enriched Kyoto Encyclopedia of Genes and Genomes pathways were shown
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cancer cell proliferation and inhibit apoptosis [24]. Fur-
thermore, a number of studies on MDD have implicated 
glucose metabolic dysfunction in the pathophysiology of 
MDD, although the underlying molecular mechanisms 
remain elusive [25]. Common DEGs in this GO-MF term 
included IDNK. Moreover, certain matrix metallopro-
teinases belonging to the metalloendopeptidase family, 
such as MMP-9, have been found to contribute signifi-
cantly to the pathophysiology of depression [26] and have 
also been identified as therapeutic targets for metastatic 
breast cancer [27]. In the present study, MMP-9 was 
found to exhibit “metalloendopeptidase activity.” In addi-
tion, KEGG analysis revealed that the common DEGs 
were enriched in 28 pathways including “transcriptional 
misregulation in cancer,” “metabolic pathways,” “endome-
trial cancer,” “prolactin signaling pathway,” and “MAPK 
signaling pathway.” Prolactin was observed to promote 
bone metastasis in breast cancer patients, possibly by 
stimulating lytic osteoclast formation [28], and data from 
an animal model of MDD also supported the pathologi-
cal role of prolactin in MDD [29]. MAPK signaling is one 
of the aberrantly activated oncogenic pathways in breast 
cancer [30]. This pathway was also implicated in the acti-
vation of the pro-inflammatory transcription factor NF-
kappaB, potentially contributing to the pathogenesis of 

MDD in which inflammation is a key pathological ele-
ment [31]. In summary, the results from the functional 
enrichment analyses of our study are in line with previ-
ous findings and suggest that the above-mentioned path-
ways and biological activities may play important roles in 
the pathology of both TNBC and MDD.

From further PPI network construction and WGCNA 
we obtained four hub DEGs (e.g., G3BP1, MAF, NCEH1 
and TMEM45A), and using the HMDD database we 
identified that hsa-miR-34c and hsa-miR-16 possibly 
regulate the hub DEGs. Of the four hub DEGs, NCEH1 
(which encodes a versatile enzyme involved in diverse 
metabolic processes) attracted our attention. In addi-
tion to its role in xenobiotic metabolism, this enzyme is 
critical for providing cholesterol for the synthesis of bile 
acids (BAs) because of its ability to hydrolyze cholesterol 
esters [32]. Abnormal serum levels or altered composi-
tion of BAs have been implicated in the pathogenesis 
of both BC and MDD [33, 34]. Our results showed that 
NCEH1 expression was significantly elevated in both 
TNBC and MDD, indicating that it might play a patho-
genic role in these two diseases. It is important to know 
how its expression levels affect BA synthesis and secre-
tion and whether altered BA levels result in the devel-
opment of TNBC and MDD. It is also possible that the 

Fig. 3 Protein-protein interaction (PPI) network construction and selection of hub genes.(A) PPI network of the common DEGs. (B) A Venn diagram show-
ing the hub genes derived from four different methods
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major pathogenic effects of NCEH1 overexpression are 
mediated by other molecules and pathways, which war-
rants further exploration. Furthermore, hsa-miR-34c and 
hsa-miR-16 were predicted to regulate the expression 
NCEH1 in the HMDD database, and ample evidence has 
demonstrated the important roles of these two miRNAs 
in TNBC and MDD. Low plasma levels of hsa-miR-34c 

have been reported to be associated with poor progno-
sis in TNBC [35], and hsa-miR-34c has also been found 
to suppress TNBC invasiveness and epithelial-mesen-
chymal transition [36]. Hsa-miR-16 has been shown 
to inhibit the proliferation, invasion, and migration of 
TNBC cells [37, 38] and has diagnostic value for TNBC 
[39]. Additionally, significant negative correlations have 

Fig. 4 Weighted gene co-expression network analysis (WGCNA) and selection of hub DEGs.(A) Selection of the optimal soft threshold power in GSE65194. 
(B) A clustering dendrogram (left) and a heat map (right) showing the correlations between WGCNA modules and the disease in GSE65194. (C) Selection 
of the optimal soft threshold power in GSE98793. (D) A clustering dendrogram (left) and a heat map (right) showing the correlations between WGCNA 
modules and the disease in GSE98793. (E) A Venn diagram showing the intersection of DEGs from disease-associated WGCNA modules. (F) A principal 
component analysis diagram illustrating the separation of samples into distinct groups based on the expression levels of hub DEGs.
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been identified between hsa-miR-34c levels and MDD 
symptoms [40], and both blood and cerebrospinal fluid 
levels of hsa-miR-16 been found to be significantly down-
regulated in patients [41–43]. Neither of these miRNAs 
has been experimentally validated to regulate NCEH1 so 
far. Thus, future assays are needed to verify their regula-
tory relationships in vivo.

Our study had some limitations. First, the clinical infor-
mation available in public databases is limited and not all 
datasets are of substantial size, which could introduce 
bias into our findings. Secondly, the sample size used in 
our experiments was relatively small, necessitating fur-
ther validation through larger-scale studies. Lastly, there 
is insufficient evidence to conclusively designate G3BP1, 
MAF, NCEH1, and TMEM45A as potential therapeutic 
targets for TNBC and MDD. This hypothesis requires 
future clinical trials for verification.

In conclusion, G3BP1, MAF, NCEH1 and TMEM45A 
may be regulated by hsa-miR-34c and hsa-miR-16 may 
play critical roles in the pathogenesis of TNBC and 
MDD. Xenobiotic metabolism, gluconokinase, matrix 
metalloproteinase, prolactin and MAPK signaling path-
ways, and bile secretion may underlie the development of 
these two diseases. These findings provide novel insights 
for future research on biomarkers and therapeutic targets 
of both diseases.

Fig. 5 Validation and annotation of hub DEGs and their potential interac-
tions with miRNAs.(A) Expression levels of hub DEGs in the training and 
validation sets. (B) The expression levels of hub DEGs in the tissue samples 
measured by qRT-PCR. (C) The expression levels of hub DEGs in the blood 
samples measured by quantitative real-time reverse transcription-poly-
merase chain reaction (qRT-PCR). * indicates p < 0.05, ** represents p < 0.01, 
and *** indicates p < 0.001
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Table 2 Baseline characteristics of the breast cancer patients
Patient 
ID

Gender Age 
(year)

BMI
(kg/m2)

Tumor 
location

Histological type TNM 
stage

Tumor size Metastatic status Not-
ting-
ham 
grade

RX1 Female 48 24.97 left-sided invasive carcinoma T1cN0 1.4*1.0 No metastasis 3
RX2 Female 55 23.11 right-sided invasive carcinoma T2N1a 3.5*3.0 Axillary lymph node 

(1/19) positive
3

RX3 Female 39 24.97 left-sided invasive carcinoma T2N0 3.9*3.9*3.6 No metastasis 3
RX4 Female 54 19.72 left-sided invasive carcinoma T2N0 3.5*3.5*2.0 No metastasis 3
RX5 Female 53 22.22 left-sided invasive carcinoma T2N1a 2.9*2.5 Axillary lymph node 

(1/17) positive
3

BMI: body weight index; TNM: tumor-node-metastasis

Table 3 Baseline characteristics of the major depressive disorder patients and the matched healthy individuals
Patient ID Group Gender Age (year) BMI

(kg/m2)
Age of disease onset (year) HAMD score

S11 patient Female 22 21.48 20 57
S22 patient Female 23 18.29 20 52
S33 patient Female 22 22.76 22 51
S44 patient Female 49 20.43 46 55
S55 patient Female 58 22.86 36 56
D11 healthy Female 22 22.37
D22 healthy Female 24 25.21
D33 healthy Female 20 22.07
D44 healthy Female 50 24.65
D55 healthy Female 58 22.54
BMI: body weight index; HAMD: Hamilton Depression Rating Scale

Fig. 6 “microRNA-hub DEG” interactions and functional annotation of hub DEGs. A Sankey diagram showing the regulatory relationships between 
disease-associated miRNAs and hub DEGs, and the annotated Kyoto Encyclopedia of Genes and Genomes pathways of the hub DEGs.
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