Sawa A, Snyder SH: Schizophrenia: diverse approaches to a complex disease. Science. 2002, 296: 692-695. 10.1126/science.1070532.
CAS
PubMed
Google Scholar
Gottesman II: Schizophrenia Genesis: The Origins of Madness. New York: W.H. Freeman;. 1991
Google Scholar
Moises HW, Gottesman II: Genetics, risk and personality factors. In: Contemporary Psychiatry. Edited by: Henn F, Sartorius, H, Helmchen H, Lauter, N. 2000, Heidelberg, New York: Springer, 3: 47-59.
Google Scholar
Gottesman II: Psychopathology through a life span – genetic prism. Am Psychologist. 2001, 56: 867-878.
CAS
Google Scholar
Murray RM, Lewis SW: Is schizophrenia a neurodevelopmental disorder?. Br Med J. 1987, 295: 681-682.
CAS
Google Scholar
Marenco S, Weinberger DR: The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol. 2000, 12: 501-527. 10.1017/S0954579400003138.
CAS
PubMed
Google Scholar
Moises HWM: Human Genome data analyzed by an evolutionary method suggests a decrease in protein-synthesis rate as cause of schizophrenia and an increase as antipsychotic mechanism. ArXiv.org e-Print archive. 2001, [http://xxx.arxiv.cornell.edu/abs/cond-mat/0110189]
Google Scholar
Lewis DA, Levitt P: Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 2002, 25: 409-432. 10.1146/annurev.neuro.25.112701.142754.
CAS
PubMed
Google Scholar
Monk CS, Webb SJ, Nelson CA: Prenatal neurobiological development: molecular mechanisms and anatomical change. Dev Neuropsychol. 2001, 19: 211-236. 10.1207/S15326942DN1902_5.
CAS
PubMed
Google Scholar
Webb SJ, Monk CS, Nelson CA: Mechanisms of postnatal neurobiological development: implications for human development. Dev Neuropsychol. 2001, 19: 147-171. 10.1207/S15326942DN1902_2.
CAS
PubMed
Google Scholar
Lemke G: Glial control of neuronal development. Annu Rev Neurosci. 2001, 24: 87-105. 10.1146/annurev.neuro.24.1.87.
CAS
PubMed
Google Scholar
Cotter DR, Pariante CM, Everall IP: Glial abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull. 2001, 55: 585-595. 10.1016/S0361-9230(01)00527-5.
CAS
PubMed
Google Scholar
Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A. 2001, 98: 4746-4751. 10.1073/pnas.081071198.
CAS
PubMed
PubMed Central
Google Scholar
Rothermundt M, Missler U, Arolt V, Peters M, Leadbeater J, Wiesmann M, Rudolf S, Wandinger KP, Kirchner H: Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry. 2001, 6: 445-449. 10.1038/sj.mp.4000889.
CAS
PubMed
Google Scholar
Lara DR, Gama CS, Belmonte P-de-Abreu, Portela LV, Goncalves CA, Fonseca M, Hauck S, Souza DO: Increased serum S100B protein in schizophrenia: a study in medication-free patients. J Psychiatr Res. 2001, 35: 11-14. 10.1016/S0022-3956(01)00003-6.
CAS
PubMed
Google Scholar
Williams NM, O'Donovan MC, Owen MJ: Genome scans and microarrays: converging on genes for schizophrenia?. Genome Biology 2002. 2002, 3: 1-1011.
Google Scholar
Goodman AB: Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc Natl Acad Sci U S A. 1998, 95: 7240-7244. 10.1073/pnas.95.13.7240.
CAS
PubMed
PubMed Central
Google Scholar
Niculescu ABr, Kelsoe JR: Convergent functional genomics: application to bipolar disorder. Ann Med. 2001, 33: 263-271.
CAS
PubMed
Google Scholar
Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P: Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001, 6: 293-301. 10.1038/sj/mp/4000866.
CAS
PubMed
Google Scholar
Burden S, Yarden Y: Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron. 1997, 18: 847-855. 10.1016/S0896-6273(00)80324-4.
CAS
PubMed
Google Scholar
Buonanno A, Fischbach GD: Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol. 2001, 11: 287-296. 10.1016/S0959-4388(00)00210-5.
CAS
PubMed
Google Scholar
Song H, Stevens CF, Gage FH: Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002, 417: 39-44. 10.1016/S1383-5718(98)00096-5.
CAS
PubMed
Google Scholar
Haydon PG: GLIA: listening and talking to the synapse. Nat Rev Neurosci. 2001, 2: 185-193. 10.1038/35058528.
CAS
PubMed
Google Scholar
Araque A, Parpura V, Sanzgiri RP, Haydon PG: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999, 22: 208-215. 10.1016/S0166-2236(98)01349-6.
CAS
PubMed
Google Scholar
Morley SJ: Signal transduction mechanisms in the regulation of protein synthesis. Mol Biol Rep. 1994, 19: 221-231.
CAS
PubMed
Google Scholar
Steward O, Schuman EM: Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci. 2001, 24: 299-325. 10.1146/annurev.neuro.24.1.299.
CAS
PubMed
Google Scholar
Schuman EM: Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol. 1999, 9: 105-109. 10.1016/S0959-4388(99)80013-0.
CAS
PubMed
Google Scholar
Fromm L, Burden SJ: Neuregulin-1-stimulated phosphorylation of GABP in skeletal muscle cells. Biochemistry. 2001, 40: 5306-5312.
CAS
PubMed
Google Scholar
Bezzi P, Volterra A: A neuron-glia signalling network in the active brain. Curr Opin Neurobiol. 2001, 11: 387-394. 10.1016/S0959-4388(00)00223-3.
CAS
PubMed
Google Scholar
Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS, Pelkey KA, Yang DJ, Xiong WC, Salter MW, Mei L: Regulation of neuregulin signaling by PSD-95 interacting with erbB4 and CNS synapses. Neuron. 2000, 26: 443-455.
CAS
PubMed
Google Scholar
Anton ES, Marchionni MA, Lee KF, Rakic P: Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development. 1997, 124: 3501-3510.
CAS
PubMed
Google Scholar
Calaora V, Rogister B, Bismuth K, Murray K, Brandt H, Leprince P, Marchionni M, Dubois-Dalcq M: Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J Neurosci. 2001, 21: 4740-4751.
CAS
PubMed
Google Scholar
Wolpowitz D, Mason TB, Dietrich P, Mendelsohn M, Talmage DA, Role LW: Cysteine-rich domaine isoforms of the neuregulin-1 gene are required for maintenance of periphereal synapses. Neuron. 2000, 25: 79-91. 10.1016/S0896-6273(00)80873-9.
CAS
PubMed
Google Scholar
Loeb JA, Hmadcha A, Fischbach GD, Land SJ, Zakarian VL: Neuregulin expression at neuromuscular synapses is modulated by synaptic activity and neurotrophic factors. J Neurosci. 2002, 22: 2206-2214.
CAS
PubMed
Google Scholar
Adlkofer K, Lai C: Role of neuregulins in glial cell development. Glia. 2000, 29: 104-111. 10.1002/(SICI)1098-1136(20000115)29:2<104::AID-GLIA2>3.0.CO;2-2.
CAS
PubMed
Google Scholar
Wang JY, Frenzel KE, Wen D, Falls DL: Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. J Biol Chem. 1998, 273: 20525-20534. 10.1074/jbc.273.32.20525.
CAS
PubMed
Google Scholar
Olayioye MA, Neve RM, Lane HA, Hynes NE: The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000, 19: 3159-3167. 10.1093/emboj/19.13.3159.
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Ford B, Mann MA, Fischbach GD: Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neuroci. 2001, 21: 5660-5669.
CAS
Google Scholar
Sapru MK, Florance SK, Kirk C, Goldman D: Identification of a neuregulin and protein-tyrosine phosphatase response element in the nicotinic acetylcholine receptor E subunit gene: Regulatory role of an Ets transcription factor. Proc Natl Acad Sci U S A. 1998, 95: 1289-1294. 10.1073/pnas.95.3.1289.
CAS
PubMed
PubMed Central
Google Scholar
Syroid DE, Zorick TS, Arbet-Engels C, Kilpatrick TJ, Eckhart W, Lemke G: A role for insulin-like growth factor-I in the regulation of Schwann cell survival. J Neurosci. 1999, 19: 2059-2068.
CAS
PubMed
Google Scholar
Hertig CM, Kubalak SW, Wang Y, Chien KR: Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis. J Biol Chem. 1999, 274: 37362-37369. 10.1074/jbc.274.52.37362.
CAS
PubMed
Google Scholar
Sweeney C, Fambrough D, Huard C, Diamonti AJ, Lander ES, Cantley LC, Carraway KL: Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. J Biol Chem. 2001, 276: 22685-22698. 10.1074/jbc.M100602200.
CAS
PubMed
Google Scholar
Scheving LA, Russell WE: Insulin and heregulin-beta1 upregulate guanylyl cyclase C expression in rat hepatocytes: reversal by phosphodiesterase-3 inhibition. Cell Signal. 2001, 13: 665-672. 10.1016/S0898-6568(01)00179-6.
CAS
PubMed
Google Scholar
Li R, Chen J, Hammonds G, Phillips H, Armanini M, Wood P, Bunge R, Godowski PJ, Sliwkowski MX, Mather JP: Identification of Gas6 as a growth factor for human Schwann cells. J Neurosci. 1996, 16: 2012-2019.
CAS
PubMed
Google Scholar
Allen MP, Zeng C, Schneider K, Xiong X, Meintzer MK, Bellosta P, Basilico C, Varnum B, Heidenreich KA, Wierman ME: Growth arrest-specific gene 6 (Gas6)/adhesion related kinase (Ark) signaling promotes gonadotropin-releasing hormone neuronal survival via extracellular signal-regulated kinase (ERK) and Akt. Mol Endocrinol. 1999, 13: 191-201. 10.1210/me.13.2.191.
CAS
PubMed
Google Scholar
Goruppi S, Ruaro E, Varnum B, Schneider C: Requirement of phosphatidylinositol 3-kinase-dependent pathway and Src for Gas6-Axl mitogenic and survival activities in NIH 3T3 fibroblasts. Mol Cell Biol. 1997, 17: 4442-4453.
CAS
PubMed
PubMed Central
Google Scholar
Eilam R, Pinkas-Kramarski R, Ratzkin BJ, Segal M, Yarden Y.: Activity-dependent regulation of Neu differentiation factor/neuregulin expression in rat brain. Proc Natl Acad Sci U S A. 1998, 95: 1888-1893. 10.1073/pnas.95.4.1888.
CAS
PubMed
PubMed Central
Google Scholar
Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y, Theill LE: Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc Natl Acad Sci U S A. 1997, 94: 2648-2653. 10.1073/pnas.94.6.2648.
CAS
PubMed
PubMed Central
Google Scholar
Subramony P, Dryer SE: Neuregulins stimulate the functional expression of Ca2+-activated K+ channels in developing chicken parasympathetic neurons. Proc Natl Acad Sci U S A. 1997, 94: 5934-5938. 10.1073/pnas.94.11.5934.
CAS
PubMed
PubMed Central
Google Scholar
Cameron JS, Dryer L, Dryer SE: beta-Neuregulin-1 is required for the in vivo development of functional Ca2+-activated K+ channels in parasympathetic neurons. Proc Natl Acad Sci U S A. 2001, 98: 2832-2836. 10.1073/pnas.041394098.
CAS
PubMed
PubMed Central
Google Scholar
Thoenen H: Neurotrophins and neuronal plasticity. Science. 1995, 270: 593-598.
CAS
PubMed
Google Scholar
Canossa M, Griesbeck O, Berninger B, Campana G, Kolbeck R, Thoenen H: Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity. Proc Natl Acad Sci U S A. 1997, 94: 13279-13286. 10.1073/pnas.94.24.13279.
CAS
PubMed
PubMed Central
Google Scholar
Otten U, Marz P, Heese K, Hock C, Kunz D, Rose-John S: Cytokines and neurotrophins interact in normal and diseased states. Ann N Y Acad Sci. 2000, 917: 322-330.
CAS
PubMed
Google Scholar
Canossa M, Gartner A, Campana G, Inagaki N, Thoenen H: Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. Embo J. 2001, 20: 1640-1650. 10.1093/emboj/20.7.1640.
CAS
PubMed
PubMed Central
Google Scholar
Alleva E, Santucci D: Psychosocial vs. "physical" stress situations in rodents and humans: role of neurotrophins. Physiol Behav. 2001, 73: 313-320. 10.1016/S0031-9384(01)00498-X.
CAS
PubMed
Google Scholar
Baliga RR, Pimental DR, Zhao YY, Simmons WW, Marchionni MA, Sawyer DB, Kelly RA: NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am J Physiol. 1999, 277: H2026-2037.
CAS
PubMed
Google Scholar
Kleijn M, Welsh GI, Scheper GC, Voorma HO, Proud CG, Thomas AA: Nerve and epidermal growth factor induce protein synthesis and eIF2B activation in PC12 cells. J Biol Chem. 1998, 273: 5536-5541. 10.1074/jbc.273.10.5536.
CAS
PubMed
Google Scholar
Wells DG, Richter JD, Fallon JR: Molecular mechanisms for activity-regulated protein synthesis in the synapto-dendritic compartment. Curr Opin Neurobiol. 2000, 10: 132-137. 10.1016/S0959-4388(99)00050-1.
CAS
PubMed
Google Scholar
Kandel ER, Schwartz JH, Jessell TM: Essentials of Neural Science and Behavior. London: Prentice Hall;. 1995
Google Scholar
Shelly M, Pinkas-Kramarski R, Guarino BC, Waterman H, Wang LM, Lyass L, Alimandi M, Kuo A, Bacus SS, Pierce JH, Andrews GC, Yarden Y: Epiregulin is a potent pan-ErbB ligand that preferentially activates heterodimeric receptor complexes. J Biol Chem. 1998, 273: 10496-10505. 10.1074/jbc.273.17.10496.
CAS
PubMed
Google Scholar
Gerlai R, Shinsky N, Shih A, Williams P, Winer J, Armanini M, Cairns B, Winslow J, Gao W, Phillips HS: Regulation of learning by EphA receptors: a protein targeting study. J Neurosci. 1999, 19: 9538-9549.
CAS
PubMed
Google Scholar
Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A: Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci. 2000, 3: 1091-1097. 10.1038/80606.
CAS
PubMed
Google Scholar
Wagner JP, Black IB, DiCicco-Bloom E: Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci. 1999, 19: 6006-6016.
CAS
PubMed
Google Scholar
Boxer AL, Moreno H, Rudy B, Ziff EB: FGF-2 potentiates Ca(2+)-dependent inactivation of NMDA receptor currents in hippocampal neurons. J Neurophysiol. 1999, 82: 3367-3377.
CAS
PubMed
Google Scholar
Araujo DM, Cotman CW: Trophic effects of interleukin-4, -7 and -8 on hippocampal neuronal cultures: potential involvement of glial-derived factors. Brain Res. 1993, 600: 49-55. 10.1016/0006-8993(93)90400-H.
CAS
PubMed
Google Scholar
Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC: Control of synaptic strength by glial TNFalpha. Science. 2002, 295: 2282-2285. 10.1126/science.1067859.
CAS
PubMed
Google Scholar
Hemi R, Paz K, Wertheim N, Karasik A, Zick Y, Kanety H: Transactivation of ErbB2 and ErbB3 by tumor necrosis factor-alpha and anisomycin leads to impaired insulin signaling through serine/threonine phosphorylation of IRS proteins. J Biol Chem. 2002, 277: 8961-8969. 10.1074/jbc.M109391200.
CAS
PubMed
Google Scholar
Carrie A, Jun L, Bienvenu T, Vinet MC, McDonell N, Couvert P, Zemni R, Cardona A, Van Buggenhout G, Frints S, et al: A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat Genet. 1999, 23: 25-31. 10.1038/12623.
CAS
PubMed
Google Scholar
Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, Westphal H, Huang KP: Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci U S A. 2000, 97: 11232-11237. 10.1073/pnas.210184697.
CAS
PubMed
PubMed Central
Google Scholar
Häfner H: Onset and early course as determinants of the further course of schizophrenia. Acta Psychiatr Scand Suppl. 2000, 102: 44-48. 10.1034/j.1600-0447.2000.102001044.x.
Google Scholar
Klosterkötter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F: Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry. 2001, 58: 158-164. 10.1001/archpsyc.58.2.158.
PubMed
Google Scholar
Beveridge WIB: The art of scientific investigation. London: Mercury;. 1965
Google Scholar
Leonard S, Gault J, Moore T, Hopkins J, Robinson M, Olincy A, Adler LE, Cloninger CR, Kaufmann CA, et al: Further investigation of a chromosome 15 locus in schizophrenia: analysis of affected sibpairs from the NIMH Genetics Initiative. Am J Med Genet. 1998, 81: 308-312. 10.1002/(SICI)1096-8628(19980710)81:4<308::AID-AJMG6>3.3.CO;2-W.
CAS
PubMed
Google Scholar
Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, et al: Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci U S A. 1997, 94: 587-592. 10.1073/pnas.94.2.587.
CAS
PubMed
PubMed Central
Google Scholar
Williams J, McGuffin P, Nöthen M, Owen MJ: Meta-analysis of association between the 5-HT2a receptor T102C polymorphism and schizophrenia. EMASS Collaborative Group. European Multicentre Association Study of Schizophrenia. Lancet. 1997, 349: 1221-
CAS
PubMed
Google Scholar
Iwata N, Ozaki N, Goldman D: Association of a 5-HT(5A) receptor polymorphism, Pro15Ser, to schizophrenia. Mol Psychiatry. 2001, 6: 217-219. 10.1038/sj/mp/4000829.
CAS
PubMed
Google Scholar
Jonsson E, Brene S, Zhang XR, Nimgaonkar VL, Tylec A, Schalling M, Sedvall G: Schizophrenia and neurotrophin-alleles. Acta Psychiatr Scand. 1997, 95: 414-419.
CAS
PubMed
Google Scholar
Devon RS, Anderson S, Teague PW, Muir WJ, Murray V, Pelosi A, Blackwood DH, Porteous DJ: The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Mol Psychiatry. 2001, 6: 311-314. 10.1038/sj/mp/4000848.
CAS
PubMed
Google Scholar
Wei J, Hemmings GP: The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet. 2000, 25: 376-377. 10.1038/78044.
CAS
PubMed
Google Scholar
Moises HW, Matthiasson P, Zoega T, Jhala G, Yang L, Gottesman II, Helgason T.: Neuregulin 1 strongly implicated as susceptibility gene for schizophrenia by allelic association study. ArXiv.org e-Print archive. 2002, http://xxx.arXiv.cornell.edu/abs/cond-mat/0203527v1, http://xxx.arXiv.cornell.edu/abs/cond-mat/0203527
Google Scholar
Dror V, Shamir E, Ghanshani S, Kimhi R, Swartz M, Barak Y, Weizman R, Avivi L, Litmanovitch T, Fantino E, et al: hKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol Psychiatry. 1999, 4: 254-260. 10.1038/sj/mp/4000508.
CAS
PubMed
Google Scholar
Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML, Lenane M, Robertson B, Wijsman EM, Rapoport JL, et al: Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci U S A. 2002, 99: 3717-3722. 10.1073/pnas.042700699.
CAS
PubMed
PubMed Central
Google Scholar
Chakravarti A: A compelling genetic hypothesis for a complex disease: PRODH2/DGCR6 variation leads to schizophrenia susceptibility. Proc Natl Acad Sci U S A. 2002, 99: 4755-4756. 10.1073/pnas.092158299.
CAS
PubMed
PubMed Central
Google Scholar
Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, Deshpande SN, B KT, Ferrell RE, Middleton FA, et al: Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet. 2002, 11: 1373-1380. 10.1093/hmg/11.12.1373.
CAS
PubMed
Google Scholar
Wang S, Barres BA: Up a notch: instructing gliogenesis. Neuron. 2000, 27: 197-200. 10.1016/S0896-6273(00)00028-3.
CAS
PubMed
Google Scholar
Meller R, Harrison PJ, Elliott JM, Sharp T: In vitro evidence that 5-hydroxytryptamine increases efflux of glial glutamate via 5-HT(2A) receptor activation. J Neurosci Res. 2002, 67: 399-405. 10.1002/jnr.10126.
CAS
PubMed
Google Scholar
Thompson SG, Wong PT, Leong SF, McGeer EG: Regional distribution in rat brain of 1-pyrroline-5-carboxylate dehydrogenase and its localization to specific glial cells. J Neurochem. 1985, 45: 1791-1796.
CAS
PubMed
Google Scholar
Druey KM, Blumer KJ, Kang VH, Kehrl JH: Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature. 1996, 379: 742-746. 10.1038/379742a0.
CAS
PubMed
Google Scholar
Rio C, Rieff HI, Qi P, Khurana TS, Corfas G: Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron. 1997, 19: 39-50. 10.1016/S0896-6273(00)80346-3.
CAS
PubMed
Google Scholar
Araque A, Carmignoto G, Haydon PG: Dynamic signaling between astrocytes and neurons. Annu Rev Physiol. 2001, 63: 795-813. 10.1146/annurev.physiol.63.1.795.
CAS
PubMed
Google Scholar
Freedman R, Adams CE, Leonard S: The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat. 2000, 20: 299-306. 10.1016/S0891-0618(00)00109-5.
CAS
PubMed
Google Scholar
O'Donnell K, Harkes IC, Dougherty L, Wicks IP: Expression of receptor tyrosine kinase Ax1 and its ligand Gas6 in rheumatoid arthritis: evidence for a novel endothelial cell survival pathway. Am J Pathol. 1999, 154: 1171-1180.
PubMed
PubMed Central
Google Scholar
Florini JR, Samuel DS, Ewton DZ, Kirk C, Sklar RM: Stimulation of myogenic differentiation by a neuregulin Glial Growth Factor 2. J Biol Chem. 1996, 271: 12699-12702. 10.1074/jbc.271.22.12699.
CAS
PubMed
Google Scholar
Han VK: The ontogeny of growth hormone, insulin-like growth factors and sex steroids: molecular aspects. Horm Res. 1996, 45: 61-6.
CAS
PubMed
Google Scholar
Nakamura YS, Hakeda Y, Takakura N, Kameda T, Hamaguchi I, Miyamoto T, Kakudo S, Nakano T, Kumegawa M, Suda T: Tyro 3 receptor tyrosine kinase and its ligan, Gas6, stimulate the function of osteoclasts. Stem Cells. 1998, 16: 229-238.
CAS
PubMed
Google Scholar
Dupont A, Moeller-Jensen O: Incidence of cancer in patients diagnosed as schizophrenic in Denmark. In: Psychiatric case registers in public health. Edited by: ten Horn GH, Giel R, Gulbinat W, Henderson JH. 1986, Amsterdam, Elsevier, 229-239.
Google Scholar
Saku M, Tokudome S, Ikeda M, Kono S, Makimoto K, Uchimura H, Mukai A, Yoshimura T: Mortality in psychiatric patients, with a specific focus on cancer mortality associated with schizophrenia. Int J Epidemiol. 1995, 24: 366-372.
CAS
PubMed
Google Scholar
Torrey EF, Miller J, Rawlings R, Yolken RH: Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophr Res. 1997, 28: 1-38. 10.1016/S0920-9964(97)00092-3.
CAS
PubMed
Google Scholar
Giannoukakis N, Deal J, Paquette J, Kukuvitis A, Polychronakos C: Polymorphic functional imprinting of the human IGF2 gene among individuals, in blood cells, is associated with H19 expression. Biochem Biophys Res Commun. 1996, 220: 1014-1019. 10.1006/bbrc.1996.0524.
CAS
PubMed
Google Scholar
Sasaki H, Ishihara K, Kato R: Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and long-distance gene regulation. J Biochem (Tokyo). 2000, 127: 711-715.
CAS
Google Scholar
Reik W, Surani A, eds: Genomic Imprinting: Frontiers in Molecular Biology. Oxford: Oxford University Press;. 1997
Google Scholar
Magnaghi-Jaulin L, Ait-Si-Ali S, Harel-Bellan A: Histone acetylation in signal transduction by growth regulatory signals. Semin Cell Dev Biol. 1999, 10: 197-203. 10.1006/scdb.1999.0301.
CAS
PubMed
Google Scholar
Lin W, Sanchez HB, Deerinck T, Morris JK, Ellisman M, Lee K-F: Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc Natl Acad Sci U S A. 2000, 97: 1299-1304. 10.1073/pnas.97.3.1299.
CAS
PubMed
PubMed Central
Google Scholar
Crayton JW, Meltzer HY: Motor endplate alterations in schizophrenic patients. Nature. 1976, 264: 658-659.
CAS
PubMed
Google Scholar
Ross J-Stanton, Meltzer HY: Motor neuron branching patterns in psychotic patients. Arch Gen Psychiatry. 1981, 38: 1097-1103.
Google Scholar
Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A: Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry. 2001, 58: 148-517. 10.1001/archpsyc.58.2.148.
CAS
PubMed
Google Scholar
Thoenen H: Neurotrophins and activity-dependent plasticity. Prog Brain Res. 2000, 128: 183-191. 10.1016/S0079-6123(00)28016-3.
CAS
PubMed
Google Scholar
Frith C, Dolan RJ: The Role of Memory in the Delusions Associated with Schizophrenia. In: Memory, Brain, and Belief. Edited by: Schacter DL, Scarry E. 2000, Cambridge, MA, Harvard University Press, 115-135.
Google Scholar
Nimgaonkar VL: Reduced fertility in schizophrenia: here to stay?. Acta Psychiatr Scand. 1998, 98: 348-353.
CAS
PubMed
Google Scholar
Avila M, Thaker G, Adami H: Genetic epidemiology and schizophrenia: a study of reproductive fitness. Schizophr Res. 2001, 47: 233-241. 10.1016/S0920-9964(00)00062-1.
CAS
PubMed
Google Scholar
Jones S: Natural selection in humans. In: The Cambridge Encyclopedia of Human Evolution. Edited by: Jones S, Martin, R, Pilbeam, D. 1992, Cambridge, Cambridge University Press, 284-287.
Google Scholar
Kastrukoff LF, Kim SU: Oligodendrocytes from human donors differ in resistance to herpes simplex virus 1 (HSV-1). Glia. 2002, 38: 87-92. 10.1002/glia.10043.
PubMed
Google Scholar
Dubois-Dalcq M: Viral infections of neuroglial cells. In: Neuroglia. Edited by: Kettenmann H, Ransom BR. New York, Oxford, Oxford University Press, 1010-1026.
Schweighardt B, Atwood WJ: Glial cells as targets of viral infection in the human central nervous system. Prog Brain Res. 2001, 132: 721-735. 10.1016/S0079-6123(01)32113-1.
CAS
PubMed
Google Scholar
Albright AV, Lavi E, Black JB, Goldberg S, O'Connor MJ, Gonzalez-Scarano F: The effect of human herpesvirus-6 (HHV-6) on cultured human neural cells: oligodendrocytes and microglia. J Neurovirol. 1998, 4: 486-494.
CAS
PubMed
Google Scholar
Friedman JE, Lyons MJ, Cu G, Ablashl DV, Whitman JE, Edgar M, Koskiniemi M, Vaheri A, Zabriskie JB: The association of the human herpesvirus-6 and MS. Mult Scler. 1999, 5: 355-362. 10.1191/135245899678846311.
CAS
PubMed
Google Scholar
Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL, Garber RL, Chang M, et al: Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A. 1995, 92: 7440-7444.
CAS
PubMed
PubMed Central
Google Scholar
Clark DA: Human herpesvirus 6. Rev Med Virol. 2000, 10: 155-173. 10.1002/(SICI)1099-1654(200005/06)10:3<155::AID-RMV277>3.3.CO;2-Y.
CAS
PubMed
Google Scholar
Bofill-Mas S, Formiga-Cruz M, Clemente-Casares P, Calafell F, Girones R: Potential transmission of human polyomaviruses through the gastrointestinal tract after exposure to virions or viral DNA. J Virol. 2001, 75: 10290-10299. 10.1128/JVI.75.21.10290-10299.2001.
CAS
PubMed
PubMed Central
Google Scholar
Major EO, Vacante DA: Human fetal astrocytes in culture support the growth of the neurotropic human polyomavirus, JCV. J Neuropathol Exp Neurol. 1989, 48: 425-436.
CAS
PubMed
Google Scholar
Gordon J, Khalili K: The human polyomavirus, JCV, and neurological diseases (review). Int J Mol Med. 1998, 1: 647-655.
CAS
PubMed
Google Scholar
Tretiakova A, Krynska B, Gordon J, Khalili K: Human neurotropic JC virus early protein deregulates glial cell cycle pathway and impairs cell differentiation. J Neurosci Res. 1999, 55: 588-599. 10.1002/(SICI)1097-4547(19990301)55:5<588::AID-JNR6>3.0.CO;2-A.
CAS
PubMed
Google Scholar
Bofill-Mas S, Pina S, Girones R: Documenting the epidemiologic patterns of polyomaviruses in human populations by studying their presence in urban sewage. Appl Environ Microbiol. 2000, 66: 238-245.
CAS
PubMed
PubMed Central
Google Scholar
Weiss KM, Terwilliger JD: How many diseases does it take to map a gene with SNPs?. Nat Genet. 2000, 26: 151-157. 10.1038/79866.
CAS
PubMed
Google Scholar
Kidd JR, Pakstis AJ, Zhao H, Lu RB, Okonofua FE, Odunsi A, Grigorenko E, Tamir BB, Friedlaender J, Schulz LO, Parnas J, Kidd KK: Haplotypes and linkage disequilibrium at the phenylalanine hydroxylase locus, PAH, in a global representation of populations. Am J Hum Genet. 2000, 66: 1882-1899. 10.1086/302952.
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Sun F: Sample sizes for the transmission disequilibrium tests: TDT, S-TDT and 1-TDT. Commun Stat-Theory M. 2000, 29: 1129-1142.
Google Scholar
Long AD, Langley CH: The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 1999, 9: 720-731.
CAS
PubMed
PubMed Central
Google Scholar
Jorde LB: Linkage disequilibrium and the search for complex disease genes. Genome Res. 2000, 10: 1435-1444. 10.1101/gr.144500.
CAS
PubMed
Google Scholar
Levinson DF, Holmans PA, Laurent C, Riley B, Pulver AE, Gejman PV, Schwab SG, Williams NM, Owen MJ, Wildenauer DB, et al: No major schizophrenia locus detected on chromosome 1q in a large multicenter sample. Science. 2002, 296: 739-741. 10.1126/science.1069914.
CAS
PubMed
Google Scholar
Badner JA, Gershon ES: Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002, 7: 405-411. 10.1038/sj/mp/4001012.
CAS
PubMed
Google Scholar
Altmüller J, Palmer LJ, Fischer G, Scherb H, Wjst M: Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet. 2001, 69: 936-950. 10.1086/324069.
PubMed
PubMed Central
Google Scholar
Risch NJ: Searching for genetic determinants in the new millennium. Nature. 2000, 405: 847-856. 10.1038/35015718.
CAS
PubMed
Google Scholar
Wudarsky M, Nicolson R, Hamburger SD, Spechler L, Gochman P, Bedwell J, Lenane MC, Rapoport JL: Elevated prolactin in pediatric patients on typical and atypical antipsychotics. J Child Adolesc Psychopharmacol. 1999, 9: 239-245.
CAS
PubMed
Google Scholar
Petty RG: Prolactin and antipsychotic medications: mechanism of action. Schizophr Res. 1999, 35 Suppl: S67-73. 10.1016/S0920-9964(98)00158-3.
CAS
PubMed
Google Scholar
Wetzel H, Wiesner J, Hiemke C, Benkert O: Acute antagonism of dopamine D2-like receptors by amisulpride: effects on hormone secretion in healthy volunteers. J Psychiatr Res. 1994, 28: 461-473. 10.1016/0022-3956(94)90004-3.
CAS
PubMed
Google Scholar
Grunder G, Wetzel H, Schlosser R, Anghelescu I, Hillert A, Lange K, Hiemke C, Benkert O: Neuroendocrine response to antipsychotics: effects of drug type and gender. Biol Psychiatry. 1999, 45: 89-97. 10.1016/S0006-3223(98)00125-5.
CAS
PubMed
Google Scholar
Bench CJ, Lammertsma AA, Grasby PM, Dolan RJ, Warrington SJ, Boyce M, Gunn KP, Brannick LY, Frackowiak RS: The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88,059-01) determined by positron emission tomography. Psychopharmacology (Berl). 1996, 124: 141-147.
CAS
Google Scholar
Otani K, Kondo T, Kaneko S, Ishida M, Fukushima Y: Correlation between prolactin response and therapeutic effects of zotepine in schizophrenic patients. Int Clin Psychopharmacol. 1994, 9: 287-289.
CAS
PubMed
Google Scholar
Yazici KM, Erbas T, Yazici AH: The effect of clozapine on glucose metabolism. Exp Clin Endocrinol Diabetes. 1998, 106: 475-477.
CAS
PubMed
Google Scholar
Melkersson KI, Hulting AL, Brismar KE: Different influences of classical antipsychotics and clozapine on glucose-insulin homeostasis in patients with schizophrenia or related psychoses. J Clin Psychiatry. 1999, 60: 783-791.
CAS
PubMed
Google Scholar
Melkersson KI, Hulting AL: Insulin and leptin levels in patients with schizophrenia or related psychoses – a comparison between different antipsychotic agents. Psychopharmacology (Berl). 2001, 154: 205-212. 10.1007/s002130000639.
CAS
Google Scholar
Petronis A, Gottesman II, Crow TJ, DeLisi LE, Klar AJ, Macciardi F, McInnis MG, McMahon FJ, Paterson AD, Skuse D, Sutherland GR: Psychiatric epigenetics: a new focus for the new century. Mol Psychiatry. 2000, 5: 342-346. 10.1038/sj/mp/4000750.
CAS
PubMed
Google Scholar
Torrey EF, Peterson MR: Slow and latent viruses in schizophrenia. Lancet. 1973, 2: 22-24.
CAS
PubMed
Google Scholar
Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B: Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett. 1980, 20: 379-382. 10.1016/0304-3940(80)90178-0.
CAS
PubMed
Google Scholar
Olney JW, Newcomer JW, Farber NB: NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res. 1999, 33: 523-533. 10.1016/S0022-3956(99)00029-1.
CAS
PubMed
Google Scholar
Antonarakis SE, Blouin JL, Pulver AE, Wolyniec P, Lasseter VK, Nestadt G, Kasch L, Babb R, Kazazian HH, Dombroski B, et al: Schizophrenia susceptibility and chromosome 6p24-22. Nat Genet. 1995, 11: 235-236.
CAS
PubMed
Google Scholar
Arolt V, Lencer R, Nolte A, Müller-Myhsok B, Purmann S, Schurmann M, Leutelt J, Pinnow M, Schwinger E: Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease. Am J Med Genet. 1996, 67: 564-579. 10.1002/(SICI)1096-8628(19961122)67:6<564::AID-AJMG10>3.0.CO;2-R.
CAS
PubMed
Google Scholar
Bailer U, Leisch F, Meszaros K, Lenzinger E, Willinger U, Strobl R, Gebhardt C, Gerhard E, Fuchs K, Sieghart W, et al: Genome scan for susceptibility loci for schizophrenia. Neuropsychobiology. 2000, 42: 175-182. 10.1159/000026690.
CAS
PubMed
Google Scholar
Barr CL, Kennedy JL, Pakstis AJ, Wetterberg L, Sjögren B, Bierut L, Wadelius C, Wahlstrom J, Martinsson T, et al: Progress in a genome scan for linkage in schizophrenia in a large Swedish kindred. Am J Med Genet. 1994, 54: 51-58.
CAS
PubMed
Google Scholar
Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G, Thornquist M, Ullrich G, McGrath J, Kasch L, et al: Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet. 1998, 20: 70-73. 10.1038/1734.
CAS
PubMed
Google Scholar
Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS: Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science. 2000, 288: 678-82. 10.1126/science.288.5466.678.
CAS
PubMed
PubMed Central
Google Scholar
Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A, Markey CJ, Beshah E, Guroff JJ, et al: Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics. 1997, 43: 1-8. 10.1006/geno.1997.4815.
CAS
PubMed
Google Scholar
Collinge J, Delisi LE, Boccio A, Johnstone EC, Lane A, Larkin C, Leach M, Lofthouse R, Owen F, et al: Evidence for a pseudo-autosomal locus for schizophrenia using the method of affected sibling pairs. Br J Psychiatry. 1991, 158: 624-629.
CAS
PubMed
Google Scholar
Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F, Wender P, Waldo M, Freedman R, Leppert M, et al: Genomic scan for genes predisposing to schizophrenia. Am J Med Genet. 1994, 54: 59-71.
CAS
PubMed
Google Scholar
Coon H, Myles-Worsley M, Tiobech J, Hoff M, Rosenthal J, Bennett P, Reimherr F, Wender P, Dale P, Polloi A, Byerley W: Evidence for a chromosome 2p13-14 schizophrenia susceptibility locus in families from Palau, Micronesia. Mol Psychiatry. 1998, 3: 521-527. 10.1038/sj/mp/4000453.
CAS
PubMed
Google Scholar
Crow TJ, Delisi LE, Lofthouse R, Poulter M, Lehner T, Bass N, Shah T, Walsh C, Boccio-Smith A, Shields G, et al: An examination of linkage of schizophrenia and schizoaffective disorder to the pseudoautosomal region (Xp22.3). Br J Psychiatry. 1994, 164: 159-164.
CAS
PubMed
Google Scholar
Dann J, DeLisi LE, Devoto M, Laval S, Nancarrow DJ, Shields G, Smith A, Loftus J, Peterson P, Vita A, et al: A linkage study of schizophrenia to markers within Xp11 near the MAOB gene. Psychiatry Res. 1997, 70: 131-143. 10.1016/S0165-1781(97)03138-7.
CAS
PubMed
Google Scholar
DeLisi LE, Devoto M, Lofthouse R, Poulter M, Smith A, Shields G, Bass N, Chen G, Vita A, Morganti C, et al: Search for linkage to schizophrenia on the X and Y chromosomes. Am J Med Genet. 1994, 54: 113-121.
CAS
PubMed
Google Scholar
DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW, Wellman N, Loftus J, Nanthakumar B, Razi K, et al: A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry. 2002, 159: 803-812. 10.1176/appi.ajp.159.5.803.
PubMed
Google Scholar
Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD, Juvonen H, Varilo T, Arajarvi R, Kokko-Sahin ML, Lonnqvist J, Peltonen L: Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet. 2000, 9: 1049-1057. 10.1093/hmg/9.7.1049.
CAS
PubMed
Google Scholar
Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B, Hampe C, Zambuto CT, Schmitt K, Meyer J, et al: Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet. 1998, 81: 290-295. 10.1002/(SICI)1096-8628(19980710)81:4<290::AID-AJMG3>3.3.CO;2-N.
CAS
PubMed
Google Scholar
Garver DL, Holcomb J, Mapua FM, Wilson R, Barnes B: Schizophrenia spectrum disorders: an autosomal-wide scan in multiplex pedigrees. Schizophr Res. 2001, 52: 145-160. 10.1016/S0920-9964(01)00157-8.
CAS
PubMed
Google Scholar
Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R, McGuffin P, Nanko S, Owen M, Antonarakis S, et al: A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22). Am J Med Genet. 1996, 67: 40-45. 10.1002/(SICI)1096-8628(19960216)67:1<40::AID-AJMG6>3.3.CO;2-2.
CAS
PubMed
Google Scholar
Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS, Read T, Murphy P, Blaveri E, McQuillin A, et al: Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet. 2001, 68: 661-673. 10.1086/318788.
CAS
PubMed
PubMed Central
Google Scholar
Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R, Juvonen H, Kokko-Sahin ML, Vaisanen L, Mannila H, Lonnqvist J, Peltonen L: A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet. 1999, 65: 1114-1124. 10.1086/302567.
CAS
PubMed
PubMed Central
Google Scholar
Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD, Meyer J, Zambuto CT, Schmitt K, Matise TC, et al: NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet. 1998, 81: 282-289. 10.1002/(SICI)1096-8628(19980710)81:4<282::AID-AJMG2>3.3.CO;2-R.
CAS
PubMed
Google Scholar
Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, Shinkwin R, Easter SM, Webb BT, Zhang J, et al: Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry. 1996, 153: 1534-1540.
CAS
PubMed
Google Scholar
Lasseter VK, Pulver AE, Wolyniec PS, Nestadt G, Meyers D, Karayiorgou M, Housman D, Antonarakis S, Kazazian H, et al: Follow-up report of potential linkage for schizophrenia on chromosome 22q: Part 3. Am J Med Genet. 1995, 60: 172-173.
CAS
PubMed
Google Scholar
Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A, Hayward NK, Crowe RR, Andreasen NC, Black DW, et al: Genome scan of schizophrenia. Am J Psychiatry. 1998, 155: 741-750.
CAS
PubMed
Google Scholar
Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV, Pulver AE, Laurent C, Kendler KS, Walsh D, et al: Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet. 2000, 67: 652-663. 10.1086/303041.
CAS
PubMed
PubMed Central
Google Scholar
Lin MW, Curtis D, Williams N, Arranz M, Nanko S, Collier D, McGuffin P, Murray R, Owen M, Gill M, et al: Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1-q32. Psychiatr Genet. 1995, 5: 117-126.
CAS
PubMed
Google Scholar
Lin MW, Sham P, Hwu HG, Collier D, Murray R, Powell JF: Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental populations. Hum Genet. 1997, 99: 417-420. 10.1007/s004390050382.
CAS
PubMed
Google Scholar
Lindholm E, Ekholm B, Balciuniene J, Johansson G, Castensson A, Koisti M, Nylander PO, Pettersson U, Adolfsson R, Jazin E: Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. Am J Med Genet. 1999, 88: 369-377. 10.1002/(SICI)1096-8628(19990820)88:4<369::AID-AJMG14>3.3.CO;2-0.
CAS
PubMed
Google Scholar
Maziade M, Raymond V, Cliche D, Fournier JP, Caron C, Garneau Y, Nicole L, Marcotte P, Couture C, Simard C, et al: Linkage results on 11q21-22 in Eastern Quebec pedigrees densely affected by schizophrenia. Am J Med Genet. 1995, 60: 522-528.
CAS
PubMed
Google Scholar
Maziade M, Bissonnette L, Rouillard E, Martinez M, Turgeon M, Charron L, Pouliot V, Boutin P, Cliche D, Dion C, et al: 6p24-22 region and major psychoses in the Eastern Quebec population. Le Groupe IREP. Am J Med Genet. 1997, 74: 311-318. 10.1002/(SICI)1096-8628(19970531)74:3<311::AID-AJMG13>3.3.CO;2-C.
CAS
PubMed
Google Scholar
Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F, Arolt V, Blackwood D, Liu X, Sjögren B, et al: An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet. 1995, 11: 321-324.
CAS
PubMed
Google Scholar
Nanko S, Gill M, Owen M, Takazawa N, Moridaira J, Kazamatsuri H: Linkage study of schizophrenia with markers on chromosome 11 in two Japanese pedigrees. Jpn J Psychiatry Neurol. 1992, 46: 155-159.
CAS
PubMed
Google Scholar
Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA, Rinard K, Foti A, Terwilliger JD, et al: Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet. 2001, 10: 3037-3048. 10.1093/hmg/10.26.3037.
CAS
PubMed
Google Scholar
Pulver AE, Karayiorgou M, Lasseter VK, Wolyniec P, Kasch L, Antonarakis S, Housman D, Kazazian HH, Meyers D, Nestadt G, et al: Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2. Am J Med Genet. 1994, 54: 44-50.
CAS
PubMed
Google Scholar
Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL, Kimberland M, Babb R, Vourlis S, Chen H, et al: Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet. 1995, 60: 252-260.
CAS
PubMed
Google Scholar
Pulver AE, Mulle J, Nestadt G, Swartz KL, Blouin JL, Dombroski B, Liang KY, Housman DE, Kazazian HH, Antonarakis SE, et al: Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. Mol Psychiatry. 2000, 5: 650-653. 10.1038/sj/mp/4000814.
CAS
PubMed
Google Scholar
Rees MI, Fenton I, Williams NM, Holmans P, Norton N, Cardno A, Asherson P, Spurlock G, Roberts E, Parfitt E, et al: Autosome search for schizophrenia susceptibility genes in multiply affected families. Mol Psychiatry. 1999, 4: 353-359. 10.1038/sj/mp/4000521.
CAS
PubMed
Google Scholar
Riley BP, Makoff A, Mogudi-Carter M, Jenkins T, Williamson R, Collier D, Murray R: Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. Am J Med Genet. 2000, 96: 196-201. 10.1002/(SICI)1096-8628(20000403)96:2<196::AID-AJMG15>3.3.CO;2-W.
CAS
PubMed
Google Scholar
SCLG 6 AND 8: Additional support for schizophrenia linkage on chromosomes 6 and 8: a multicenter study. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6 and 8. Am J Med Genet. 1996, 67: 580-594. 10.1002/(SICI)1096-8628(19961122)67:6<580::AID-AJMG11>3.3.CO;2-W.
Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D, Ebstein RP, Ackenheil M, Lerer B, Risch N, et al: Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat Genet. 1995, 11: 325-327.
CAS
PubMed
Google Scholar
Schwab SG, Lerer B, Albus M, Maier W, Hallmayer J, Fimmers R, Lichtermann D, Minges J, Bondy B, Ackenheil M, et al: Potential linkage for schizophrenia on chromosome 22q12-q13: a replication study. Am J Med Genet. 1995, 60: 436-443.
CAS
PubMed
Google Scholar
Schwab SG, Eckstein GN, Hallmayer J, Lerer B, Albus M, Borrmann M, Lichtermann D, Ertl MA, Maier W, Wildenauer DB: Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis. Mol Psychiatry. 1997, 2: 156-160. 10.1038/sj/mp/4000263.
CAS
PubMed
Google Scholar
Schwab SG, Hallmayer J, Albus M, Lerer B, Hanses C, Kanyas K, Segman R, Borrman M, Dreikorn B, Lichtermann D, et al: Further evidence for a susceptibility locus on chromosome 10p14-p11 in 72 families with schizophrenia by nonparametric linkage analysis. Am J Med Genet. 1998, 81: 302-307. 10.1002/(SICI)1096-8628(19980710)81:4<302::AID-AJMG5>3.3.CO;2-4.
CAS
PubMed
Google Scholar
Schwab SG, Hallmayer J, Lerer B, Albus M, Borrmann M, Honig S, Strauss M, Segman R, Lichtermann D, Knapp M, et al: Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis. Am J Hum Genet. 1998, 63: 1139-1152. 10.1086/302046.
CAS
PubMed
PubMed Central
Google Scholar
Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M, Segman RH, Hanses C, Freymann J, Yakir A, et al: A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiatry. 2000, 5: 638-649. 10.1038/sj/mp/4000791.
CAS
PubMed
Google Scholar
Shaw SH, Kelly M, Smith AB, Shields G, Hopkins PJ, Loftus J, Laval SH, Vita A, De Hert M, Cardon LR, et al: A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet. 1998, 81: 364-376. 10.1002/(SICI)1096-8628(19980907)81:5<364::AID-AJMG4>3.3.CO;2-Y.
CAS
PubMed
Google Scholar
Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, Wasmuth J, Dobbs M, Gurling H: Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature. 1988, 336: 164-167. 10.1038/336164a0.
CAS
PubMed
Google Scholar
Silverman JM, Greenberg DA, Altstiel LD, Siever LJ, Mohs RC, Smith CJ, Zhou G, Hollander TE, Yang XP, Kedache M, et al: Evidence of a locus for schizophrenia and related disorders on the short arm of chromosome 5 in a large pedigree. Am J Med Genet. 1996, 67: 162-171. 10.1002/(SICI)1096-8628(19960409)67:2<162::AID-AJMG6>3.3.CO;2-D.
CAS
PubMed
Google Scholar
St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, Gosden C, Evans HJ: Association within a family of a balanced autosomal translocation with major mental illness. Lancet. 1990, 336: 13-16. 10.1016/0140-6736(90)91520-K.
CAS
PubMed
Google Scholar
Stöber G, Saar K, Ruschendorf F, Meyer J, Nurnberg G, Jatzke S, Franzek E, Reis A, Lesch KP, Wienker TF, Beckmann H: Splitting schizophrenia: periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet. 2000, 67: 1201-1207.
PubMed
PubMed Central
Google Scholar
Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, Shinkwin R, Webb BT, Zhang J, Walsh D, et al: A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet. 1995, 11: 287-293.
CAS
PubMed
Google Scholar
Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS: Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families. Mol Psychiatry. 1997, 2: 148-155. 10.1038/sj/mp/4000258.
CAS
PubMed
Google Scholar
Straub RE, MacLean CJ, Martin RB, Ma Y, Myakishev MV, Harris-Kerr C, Webb BT, O'Neill FA, Walsh D, Kendler KS: A schizophrenia locus may be located in region 10p15-p11. Am J Med Genet. 1998, 81: 296-301. 10.1002/(SICI)1096-8628(19980710)81:4<296::AID-AJMG4>3.0.CO;2-S.
CAS
PubMed
Google Scholar
Turner WJ: Genetic markers for schizotaxia. Biol Psychiatry. 1979, 14: 177-206.
CAS
PubMed
Google Scholar
Vallada HP, Gill M, Sham P, Lim LC, Nanko S, Asherson P, Murray RM, McGuffin P, Owen M, Collier D: Linkage studies on chromosome 22 in familial schizophrenia. Am J Med Genet. 1995, 60: 139-146.
CAS
PubMed
Google Scholar
Wang S, Sun CE, Walczak CA, Ziegle JS, Kipps BR, Goldin LR, Diehl SR: Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nat Genet. 1995, 10: 41-46.
PubMed
Google Scholar
Wildenauer DB, Hallmayer J, Schwab SG, Albus M, Eckstein GN, Zill P, Honig S, Strauss M, Borrmann M, Lichtermann D, et al: Searching for susceptibility genes in schizophrenia by genetic linkage analysis. Cold Spring Harb Symp Quant Biol. 1996, 61: 845-850.
CAS
PubMed
Google Scholar
Williams NM, Rees MI, Holmans P, Norton N, Cardno AG, Jones LA, Murphy KC, Sanders RD, McCarthy G, Gray MY, et al: A two-stage genome scan for schizophrenia susceptibility genes in 196 affected sibling pairs. Hum Mol Genet. 1999, 8: 1729-1739. 10.1093/hmg/8.9.1729.
CAS
PubMed
Google Scholar
Lander E, Kruglyak L: Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995, 11: 241-247.
CAS
PubMed
Google Scholar
Chalifa-Caspi V, Prilusky J, Lancet D: The Unified Database. Rehovot, Israel: Weizmann Institute of Science, Bioinformatics Unit and Genome Center;. 1998
Google Scholar
Gottesman II, Shields J: A polygenic theory of schizophrenia. Proc Natl Acad Sci USA. 1967, 58: 199-205.
CAS
PubMed
PubMed Central
Google Scholar
Tanner JM: Human growth and development. In: The Cambridge Encyclopedia of Human Evolution. Edited by: Jones S, Martin, R, Pilbeam, D. 1992, Cambridge, Cambridge University Press, 98-105.
Google Scholar
Chugani HT, Phelps ME, Mazziotta JC: Positron emission tomography study of human brain functional development. Ann Neurol. 1987, 22: 487-497.
CAS
PubMed
Google Scholar
Cohen MR, Nagel E: An introduction to logic and scientific method. New York: Hartcourt;. 1934
Google Scholar