Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12 https://doi.org/10.1038/nrn3346.
Article
CAS
PubMed
Google Scholar
Martin R, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One. 2016;11(6):e0158498 https://doi.org/10.1371/journal.pone.0158498.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cussotto S, Clarke G, Dinan TG, Cryan JF. Psychotropics and the microbiome: a chamber of secrets …. Psychopharmacology. 2019;236(5):1411–32 https://doi.org/10.1007/s00213-019-5185-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foster JA, McVey Neufeld K-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12 https://doi.org/10.1016/j.tins.2013.01.005.
Article
CAS
PubMed
Google Scholar
O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–93 https://doi.org/10.1038/sj.embor.7400731.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell. 2010;1(8):718–25 https://doi.org/10.1007/s13238-010-0093-z.
Article
PubMed
PubMed Central
Google Scholar
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour – epigenetic regulation of the gut–brain axis. Genes Brain Behav. 2014;13(1):69–86 https://doi.org/10.1111/gbb.12109.
Article
CAS
PubMed
Google Scholar
Dash S, Clarke G, Berk M, Jacka FN. The gut microbiome and diet in psychiatry: focus on depression. Curr Opin Psychiatry. 2015;28(1):1 https://doi.org/10.1097/YCO.0000000000000117.
Article
PubMed
Google Scholar
Liu Y, et al. Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression. Clin Gastroenterol Hepatol. 2016;14(11):1602–1611.e5 https://doi.org/10.1016/j.cgh.2016.05.033.
Article
PubMed
Google Scholar
Sudo N, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75 https://doi.org/10.1113/jphysiol.2004.063388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heijtz RD, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52 https://doi.org/10.1073/pnas.1010529108.
Article
CAS
PubMed Central
Google Scholar
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–e119 https://doi.org/10.1111/j.1365-2982.2010.01620.x.
Article
CAS
PubMed
Google Scholar
Zhang F, Luo W, Shi Y, Fan Z, Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012;107(11):1755 author reply p.1755–1756. https://doi.org/10.1038/ajg.2012.251.
Article
PubMed
Google Scholar
de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes. 2017;8(3):253–67 https://doi.org/10.1080/19490976.2017.1293224.
Article
PubMed
PubMed Central
Google Scholar
Huang H, et al. Fecal microbiota transplantation to treat Parkinson’s disease with constipation: a case report. Medicine. 2019a;98(26):e16163 https://doi.org/10.1097/MD.0000000000016163.
Article
PubMed
PubMed Central
Google Scholar
Kang D-W, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5(1):10 https://doi.org/10.1186/s40168-016-0225-7.
Article
PubMed
PubMed Central
Google Scholar
Makkawi S, Camara-Lemarroy C, Metz L. Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol Neuroimmunol Neuroinflamm. 2018;5(4):e459 https://doi.org/10.1212/NXI.0000000000000459.
Article
PubMed
PubMed Central
Google Scholar
Meyyappan AC, Milev R. The safety, efficacy, and tolerability of microbial ecosystem therapeutic-2 in people with major depression and/or generalized anxiety disorder: phase 1, open label study protocol. JMIR Res Protoc (forthcoming). https://doi.org/10.2196/17223.
American Psychiatric Association. Depressive disorders and anxiety disorders. In: Diagnostic and statistical manual of mental disorders. 5th ed. Philadelphia: American Psychiatric Association; 2013. p. 93–128.
Chapter
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097 https://doi.org/10.1371/journal.pmed.1000097.
Article
PubMed
PubMed Central
Google Scholar
Li N, et al. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress. 2019;22(5):592–602 https://doi.org/10.1080/10253890.2019.1617267.
Article
CAS
PubMed
Google Scholar
Lv W, et al. The gut microbiome modulates the changes in liver metabolism and in inflammatory processes in the brain of chronic unpredictable mild stress rats. Oxidative Med Cell Longev. 2019;2019:1–14 https://doi.org/10.1155/2019/7902874.
Google Scholar
Siopi E, et al. Changes in gut microbiota by chronic stress impair the efficacy of fluoxetine. Cell Rep. 2020;30(11):3682–3690.e6 https://doi.org/10.1016/j.celrep.2020.02.099.
Article
CAS
PubMed
Google Scholar
Pearson-Leary J, et al. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry. 2019;25:1–12 https://doi.org/10.1038/s41380-019-0380-x.
Google Scholar
Langgartner D, et al. The role of the intestinal microbiome in chronic psychosocial stress-induced pathologies in male mice. Front Behav Neurosci. 2018;12:252 https://doi.org/10.3389/fnbeh.2018.00252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alcocer-Gómez E, et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun. 2014;36:111–7 https://doi.org/10.1016/j.bbi.2013.10.017.
Article
PubMed
CAS
Google Scholar
Zhang Y, et al. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci Ther. 2014;20(2):119–24 https://doi.org/10.1111/cns.12170.
Article
CAS
PubMed
Google Scholar
Zhang Y, et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome. 2019;7(1):116 https://doi.org/10.1186/s40168-019-0733-3.
Article
PubMed
PubMed Central
Google Scholar
Xiao H, et al. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol Lett. 2018;287:23–30 https://doi.org/10.1016/j.toxlet.2018.01.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Y, Liu Y, Gao M, Xue M, Wang Z, Liang H. Nicotinamide riboside alleviates alcohol-induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression. Food Funct. 2020;11(1):378–91 https://doi.org/10.1039/C9FO01780A.
Article
CAS
PubMed
Google Scholar
Overstreet DH, Wegener G. The flinders sensitive line rat model of depression--25 years and still producing. Pharmacol Rev. 2013;65(1):143–55 https://doi.org/10.1124/pr.111.005397.
Article
CAS
PubMed
Google Scholar
Tillmann S, Abildgaard A, Winther G, Wegener G. Altered fecal microbiota composition in the Flinders sensitive line rat model of depression. Psychopharmacology. 2019;236(5):1445–57 https://doi.org/10.1007/s00213-018-5094-2.
Article
CAS
PubMed
Google Scholar
Schmidt EKA, Torres-Espin A, Raposo PJF, et al. Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS One. 2020;15(1):e0226128 https://doi.org/10.1371/journal.pone.0226128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly JR, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18 https://doi.org/10.1016/j.jpsychires.2016.07.019.
Article
PubMed
Google Scholar
Zheng P, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786–96 https://doi.org/10.1038/mp.2016.44.
Article
CAS
PubMed
Google Scholar
Huang C, et al. Proteomic analysis of olfactory bulb suggests CACNA1E as a promoter of CREB signaling in microbiota-induced depression. J Proteome. 2019b;194:132–47 https://doi.org/10.1016/j.jprot.2018.11.023.
Article
CAS
Google Scholar
Liu S, Guo R, Liu F, Yuan Q, Yu Y, Ren F. Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway. Neuropsychiatr Dis Treat. 2020;16:859–69 https://doi.org/10.2147/NDT.S243551.
Article
PubMed
PubMed Central
Google Scholar
Petrakis IL, Gonzalez G, Rosenheck R, Krystal JH. Comorbidity of alcoholism and psychiatric disorders. Alcohol Res Health. 2002;26(2):81–9.
PubMed Central
Google Scholar
Zhao W, et al. Transplantation of fecal microbiota from patients with alcoholism induces anxiety/depression behaviors and decreases brain mGluR1/PKC ε levels in mouse; 2019. p. 17.
Google Scholar
Xu Z, et al. Fecal microbiota transplantation from healthy donors reduced alcohol-induced anxiety and depression in an animal model of chronic alcohol exposure. Chin J Phys. 2018;61(6):360–71.
CAS
Google Scholar
Hudson JI, Hiripi E, Pope HG, Kessler RC. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry. 2007;61(3):348–58 https://doi.org/10.1016/j.biopsych.2006.03.040.
Article
PubMed
Google Scholar
Hata T, et al. The gut microbiome derived from anorexia nervosa patients impairs weight gain and behavioral performance in female mice. Endocrinology. 2019;160(10):2441–52 https://doi.org/10.1210/en.2019-00408.
Article
PubMed
Google Scholar
De Palma G, et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9(379):eaaf6397 https://doi.org/10.1126/scitranslmed.aaf6397.
Article
PubMed
CAS
Google Scholar
Mizuno S, et al. Bifidobacterium-rich fecal donor may be a positive predictor for successful fecal microbiota transplantation in patients with irritable bowel syndrome. Digestion. 2017;96(1):29–38 https://doi.org/10.1159/000471919.
Article
PubMed
Google Scholar
Huang HL, et al. Relief of irritable bowel syndrome by fecal microbiota transplantation is associated with changes in diversity and composition of the gut microbiota. J Dig Dis. 2019c;20(8):401–8 https://doi.org/10.1111/1751-2980.12756.
Article
CAS
PubMed
Google Scholar
Mazzawi T, et al. The kinetics of gut microbial community composition in patients with irritable bowel syndrome following fecal microbiota transplantation. PLoS ONE. 2018;13(11):e0194904 https://doi.org/10.1371/journal.pone.0194904.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie W-R, Yang X-Y, Xia HH-X, Wu L-H, He X-X. Hair regrowth following fecal microbiota transplantation in an elderly patient with alopecia areata: a case report and review of the literature. World J Clin Cases. 2019;7(19):3074–81 https://doi.org/10.12998/wjcc.v7.i19.3074.
Article
PubMed
PubMed Central
Google Scholar
Kurokawa S, et al. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: an open-label observational study. J Affect Disord. 2018;235:506–12 https://doi.org/10.1016/j.jad.2018.04.038.
Article
PubMed
Google Scholar
Johnsen PH, Hilpüsch F, Valle PC, Goll R. The effect of fecal microbiota transplantation on IBS related quality of life and fatigue in moderate to severe non-constipated irritable bowel: secondary endpoints of a double blind, randomized, placebo-controlled trial. EBioMedicine. 2020;51:102562 https://doi.org/10.1016/j.ebiom.2019.11.023.
Article
PubMed
Google Scholar
Treviño LA, Ruble MW, Treviño K, Weinstein LM, Gresky DP. Antidepressant medication prescribing practices for treatment of major depressive disorder. Psychiatr Serv. 2017;68(2):199–202 https://doi.org/10.1176/appi.ps.201600087.
Article
PubMed
Google Scholar
Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diab Obes. 2013;20(1):14–21 https://doi.org/10.1097/MED.0b013e32835bc703.
Article
CAS
Google Scholar
Reigstad CS, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395–403 https://doi.org/10.1096/fj.14-259598.
Article
CAS
PubMed
Google Scholar
Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25 https://doi.org/10.3389/fendo.2020.00025.
Article
Google Scholar
van de Wouw M, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. J Physiol. 2018;596(20):4923–44 https://doi.org/10.1113/JP276431.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh N, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128–39 https://doi.org/10.1016/j.immuni.2013.12.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erny D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77 https://doi.org/10.1038/nn.4030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci. 2019;1437(1):57–67 https://doi.org/10.1111/nyas.13712.
Article
CAS
PubMed
Google Scholar
Inserra A, Rogers GB, Licinio J, Wong M-L. The microbiota-inflammasome hypothesis of major depression. Bioessays. 2018;40(9):e1800027 https://doi.org/10.1002/bies.201800027.
Article
PubMed
Google Scholar
Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12:49 https://doi.org/10.3389/fnins.2018.00049.
Article
PubMed
PubMed Central
Google Scholar
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front Psychiatry. 2018;9:44 https://doi.org/10.3389/fpsyt.2018.00044.
Article
PubMed
PubMed Central
Google Scholar
Garcia-Toro M, Medina E, Galan JL, Gonzalez MA, Maurino J. Treatment patterns in major depressive disorder after an inadequate response to first-line antidepressant treatment. BMC Psychiatry. 2012;12:143 https://doi.org/10.1186/1471-244X-12-143.
Article
PubMed
PubMed Central
Google Scholar
Stahl SM. Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord. 1998;51(3):215–35 https://doi.org/10.1016/s0165-0327(98)00221-3.
Article
CAS
PubMed
Google Scholar
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1) https://doi.org/10.1186/s13073-016-0307-y.
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10 https://doi.org/10.1038/nature06244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huttenhower C, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14 https://doi.org/10.1038/nature11234.
Article
CAS
Google Scholar
Cai T, Shi X, Yuan L, Tang D, Wang F. Fecal microbiota transplantation in an elderly patient with mental depression. Int Psychogeriatr. 2019;31(10):1525–6 https://doi.org/10.1017/S1041610219000115.
Article
PubMed
Google Scholar
de Clercq NC, Frissen MN, Davids M, Groen AK, Nieuwdorp M. Weight Gain after Fecal Microbiota Transplantation in a Patient with Recurrent Underweight following Clinical Recovery from Anorexia Nervosa. Psychother Psychosom. 2019;88(1):58–60 https://doi.org/10.1159/000495044.
Article
PubMed
Google Scholar
Yang C, et al. Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Transl Psychiatry. 2019;9(1):1–11 https://doi.org/10.1038/s41398-019-0379-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen K, Fu Y, Wang Y, et al. Therapeutic Effects of the In Vitro Cultured Human Gut Microbiota as Transplants on Altering Gut Microbiota and Improving Symptoms Associated with Autism Spectrum Disorder. Microb Ecol. 2020; https://doi.org/10.1007/s00248-020-01494-w.