Jorge RE. Posttraumatic stress disorder. Continuum (Minneapolis, Minn). 2015;21(3 Behavioral Neurology and Neuropsychiatry):789–805.
Google Scholar
Charlton N, Singleton C, Greetham DV. In the mood: the dynamics of collective sentiments on twitter. R Soc Open Sci. 2016;3(6):160162. https://doi.org/10.1098/rsos.160162.
Article
PubMed
PubMed Central
Google Scholar
Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):593–602. https://doi.org/10.1001/archpsyc.62.6.593.
Article
PubMed
Google Scholar
Gunnar MR, Frenn K, Wewerka SS, Van Ryzin MJ. Moderate versus severe early life stress: associations with stress reactivity and regulation in 10-12-year-old children. Psychoneuroendocrinology. 2009;34(1):62–75. https://doi.org/10.1016/j.psyneuen.2008.08.013.
Article
PubMed
Google Scholar
Liberzon I, Abelson JL. Context processing and the neurobiology of post-traumatic stress disorder. Neuron. 2016;92(1):14–30. https://doi.org/10.1016/j.neuron.2016.09.039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zandvakili A, Swearingen HR, Philip NS. Changes in functional connectivity after theta-burst transcranial magnetic stimulation for post-traumatic stress disorder: a machine-learning study. Eur Arch Psychiatry Clin Neurosci. 2020;271(1):29–37. https://doi.org/10.1007/s00406-020-01172-5.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Zhu H, Ren Z, Lui S, Yuan M, Gong Q, et al. Exploring memory function in earthquake trauma survivors with resting-state fMRI and machine learning. BMC Psychiatry. 2020;20(1):43. https://doi.org/10.1186/s12888-020-2452-5.
Article
PubMed
PubMed Central
Google Scholar
Shim M, Jin MJ, Im CH, Lee SH. Machine-learning-based classification between post-traumatic stress disorder and major depressive disorder using P300 features. NeuroImage Clin. 2019;24:102001. https://doi.org/10.1016/j.nicl.2019.102001.
Article
PubMed
PubMed Central
Google Scholar
Zilcha-Mano S, Zhu X, Suarez-Jimenez B, Pickover A, Tal S, Such S, et al. Diagnostic and predictive neuroimaging biomarkers for posttraumatic stress disorder. Biol Psychiatry Cogn Neurosc Neuroimaging. 2020;5(7):688–96. https://doi.org/10.1016/j.bpsc.2020.03.010.
Article
Google Scholar
Lei D, Pinaya WHL, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, et al. Detecting schizophrenia at the level of the individual: relative diagnostic value of whole-brain images, connectome-wide functional connectivity and graph-based metrics. Psychol Med. 2020;50(11):1852–61. https://doi.org/10.1017/S0033291719001934.
Article
PubMed
Google Scholar
Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex. 2015;63:55–67. https://doi.org/10.1016/j.cortex.2014.08.011.
Article
PubMed
Google Scholar
Li F, Sun H, Biswal BB, Sweeney JA, Gong Q. Artificial intelligence applications in psychoradiology. Psychoradiology. 2021;1(2):94–107. https://doi.org/10.1093/psyrad/kkab009.
Gong Q. Psychoradiology. Neuroimaging Clin N Am. New York: Elsevier Inc; 2020;30:1–123.
Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, Huang X, Hu J, Bi F, Li T, Sweeney JA, Gong Q. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry. 2015;72(7):678–86.
Lui S, Zhou X, Sweeney JA, Gong Q. Psychoradiology: the frontier of neuroimaging in psychiatry. Radiology. 2016;281(2):357–72.
Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol. 2011;7(1):113–40. https://doi.org/10.1146/annurev-clinpsy-040510-143934.
Article
PubMed
Google Scholar
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98. https://doi.org/10.1038/nrn2575.
Article
CAS
PubMed
Google Scholar
Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral cortex (New York, NY : 1991). 2005;15(9):1332–42.
Google Scholar
He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex (New York, NY : 1991). 2007;17(10):2407–19.
Google Scholar
Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A. Dysconnectivity in schizophrenia: where are we now? Neurosci Biobehav Rev. 2011;35(5):1110–24. https://doi.org/10.1016/j.neubiorev.2010.11.004.
Article
PubMed
Google Scholar
Suo X, Lei D, Li K, Chen F, Li F, Li L, et al. Disrupted brain network topology in pediatric posttraumatic stress disorder: a resting-state fMRI study. Hum Brain Mapp. 2015;36(9):3677–86. https://doi.org/10.1002/hbm.22871.
Article
PubMed
PubMed Central
Google Scholar
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.
Article
CAS
PubMed
Google Scholar
Payan A, Montana G. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. In: ICPRAM 2015 - 4th International Conference on Pattern Recognition Applications and Methods, Proceedings, vol. 2; 2015.
Google Scholar
Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H, et al. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine. 2018;30:74–85. https://doi.org/10.1016/j.ebiom.2018.03.017.
Article
PubMed
PubMed Central
Google Scholar
Sarraf S, DeSouza D, Anderson J, Tofighi G. DeepAD: Alzheimer's Disease Classification via Deep Convolutional Neural Networks using MRI and fMRI. bioRxiv. 2016. https://doi.org/10.1101/070441.
Suk H-I, Lee S-W, Shen D. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage. 2014;101:569–82. https://doi.org/10.1016/j.neuroimage.2014.06.077.
Article
PubMed
Google Scholar
Kim J, Calhoun VD, Shim E, Lee JH. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage. 2016;124(Pt A):127–46.
Article
PubMed
Google Scholar
Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31. https://doi.org/10.1016/j.media.2016.05.004.
Article
PubMed
Google Scholar
Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, et al. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep. 2016;6(1):38897. https://doi.org/10.1038/srep38897.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev. 2017;74(Pt A):58–75.
Article
PubMed
Google Scholar
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science (New York, NY). 2006;313(5786):504–7.
Article
CAS
Google Scholar
Shin HC, Orton MR, Collins DJ, Doran SJ, Leach MO. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1930–43. https://doi.org/10.1109/TPAMI.2012.277.
Article
PubMed
Google Scholar
Nishith P, Resick PA, Griffin MG. Pattern of change in prolonged exposure and cognitive-processing therapy for female rape victims with posttraumatic stress disorder. J Consult Clin Psychol. 2002;70(4):880–6. https://doi.org/10.1037/0022-006X.70.4.880.
Article
PubMed
PubMed Central
Google Scholar
Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542(7641):348–51. https://doi.org/10.1038/nature21369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooks JO 3rd, Vizueta N. Diagnostic and clinical implications of functional neuroimaging in bipolar disorder. J Psychiatr Res. 2014;57:12–25. https://doi.org/10.1016/j.jpsychires.2014.05.018.
Article
PubMed
Google Scholar
Cheng H, Newman S, Goñi J, Kent JS, Howell J, Bolbecker A, et al. Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res. 2015;168(1–2):345–52. https://doi.org/10.1016/j.schres.2015.08.011.
Article
PubMed
PubMed Central
Google Scholar
Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Brain Imaging Behav. 2016;10(3):799–817. https://doi.org/10.1007/s11682-015-9448-7.
Article
PubMed
Google Scholar
Niu R, Lei D, Chen F, Chen Y, Suo X, Li L, et al. Disrupted grey matter network morphology in pediatric posttraumatic stress disorder. NeuroImage Clin. 2018;18:943–51. https://doi.org/10.1016/j.nicl.2018.03.030.
Article
PubMed
PubMed Central
Google Scholar
Weathers FW, Litz BT, Herman D, Huska J, Keane T. The PTSD checklist-civilian version (PCL-C), vol. 10. Boston: National Center for PTSD; 1994.
Google Scholar
Blake DD, Weathers FW, Nagy LM, Kaloupek DG, Gusman FD, Charney DS, et al. The development of a clinician-administered PTSD scale. J Trauma Stress. 1995;8(1):75–90. https://doi.org/10.1002/jts.2490080106.
Article
CAS
PubMed
Google Scholar
Jin C, Qi R, Yin Y, Hu X, Duan L, Xu Q, et al. Abnormalities in whole-brain functional connectivity observed in treatment-naive post-traumatic stress disorder patients following an earthquake. Psychol Med. 2014;44(9):1927–36. https://doi.org/10.1017/S003329171300250X.
Article
CAS
PubMed
Google Scholar
First MB, Spitzer RL, Gibbon M, Williams JB. Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition: SCID-I/P New York, NY, USA; 2002.
Google Scholar
Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. 2009;101(6):3270–83. https://doi.org/10.1152/jn.90777.2008.
Article
PubMed
PubMed Central
Google Scholar
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54. https://doi.org/10.1016/j.neuroimage.2011.10.018.
Article
PubMed
Google Scholar
Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry. 2011;70(4):334–42. https://doi.org/10.1016/j.biopsych.2011.05.018.
Article
PubMed
Google Scholar
He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci. 2008;28(18):4756–66. https://doi.org/10.1523/JNEUROSCI.0141-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998;393(6684):440–2. https://doi.org/10.1038/30918.
Article
CAS
PubMed
Google Scholar
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89. https://doi.org/10.1006/nimg.2001.0978.
Article
CAS
PubMed
Google Scholar
Jin C, Gao C, Chen C, Ma S, Netra R, Wang Y, et al. A preliminary study of the dysregulation of the resting networks in first-episode medication-naive adolescent depression. Neurosci Lett. 2011;503(2):105–9. https://doi.org/10.1016/j.neulet.2011.08.017.
Article
CAS
PubMed
Google Scholar
Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701. https://doi.org/10.1103/PhysRevLett.87.198701.
Article
CAS
PubMed
Google Scholar
Newman MEJ. Mixing patterns in networks. physical review e statistical nonlinear soft matter physics; 2002.
Google Scholar
Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007;3(2):e17. https://doi.org/10.1371/journal.pcbi.0030017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97. https://doi.org/10.1007/BF00994018.
Article
Google Scholar
Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp. 2020;41(12):3468–535. https://doi.org/10.1002/hbm.25013.
Article
PubMed
PubMed Central
Google Scholar
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv. 2019;1912:01703.
Google Scholar
Chang CCCC. LIBSVM. In: Lin CCC. A library for support vector machines: LIBSVM; 2011.
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2013;12(10):2825–30.
Louis ED, Huang CC, Dyke JP, Long Z, Dydak U. Neuroimaging studies of essential tremor: how well do these studies support/refute the neurodegenerative hypothesis? Tremor Other Hyperkinet Mov (New York, NY). 2014;4:235.
Article
Google Scholar
Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, et al. Deep learning for neuroimaging: a validation study. Front Neurosci. 2014;8:229. https://doi.org/10.3389/fnins.2014.00229.
Article
PubMed
PubMed Central
Google Scholar
Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506. https://doi.org/10.1016/j.tics.2011.08.003.
Article
PubMed
Google Scholar
Weber DL, Clark CR, McFarlane AC, Moores KA, Morris P, Egan GF. Abnormal frontal and parietal activity during working memory updating in post-traumatic stress disorder. Psychiatry Res. 2005;140(1):27–44. https://doi.org/10.1016/j.pscychresns.2005.07.003.
Article
PubMed
Google Scholar
Polak AR, Witteveen AB, Reitsma JB, Olff M. The role of executive function in posttraumatic stress disorder: a systematic review. J Affect Disord. 2012;141(1):11–21. https://doi.org/10.1016/j.jad.2012.01.001.
Article
PubMed
Google Scholar
Barredo J, Aiken E. Van 't Wout-frank M, Greenberg BD, carpenter LL, Philip NS. Network functional architecture and aberrant functional connectivity in post-traumatic stress disorder: a clinical application of network convergence. Brain Connectivity. 2018;8(9):549–57. https://doi.org/10.1089/brain.2018.0634.
Article
PubMed
Google Scholar
Stevens JS, Kim YJ, Galatzer-Levy IR, Reddy R, Ely TD, Nemeroff CB, et al. Amygdala reactivity and anterior cingulate habituation predict posttraumatic stress disorder symptom maintenance after acute civilian trauma. Biol Psychiatry. 2017;81(12):1023–9. https://doi.org/10.1016/j.biopsych.2016.11.015.
Article
PubMed
Google Scholar
Mahan AL, Ressler KJ. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 2012;35(1):24–35. https://doi.org/10.1016/j.tins.2011.06.007.
Article
CAS
PubMed
Google Scholar
Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48(2):175–87. https://doi.org/10.1016/j.neuron.2005.09.025.
Article
CAS
PubMed
Google Scholar
Resnik J, Paz R. Fear generalization in the primate amygdala. Nat Neurosci. 2015;18(2):188–90. https://doi.org/10.1038/nn.3900.
Article
CAS
PubMed
Google Scholar
Brooks SJ, Savov V, Allzén E, Benedict C, Fredriksson R, Schiöth HB. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: a systematic meta-analysis of fMRI studies. NeuroImage. 2012;59(3):2962–73. https://doi.org/10.1016/j.neuroimage.2011.09.077.
Article
CAS
PubMed
Google Scholar
Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci. 2002;3(7):563–73. https://doi.org/10.1038/nrn875.
Article
CAS
PubMed
Google Scholar
Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci. 2008;28(37):9239–48. https://doi.org/10.1523/JNEUROSCI.1929-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13(11):769–87. https://doi.org/10.1038/nrn3339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh MK, Kesler SR, Hadi Hosseini SM, Kelley RG, Amatya D, Hamilton JP, et al. Anomalous gray matter structural networks in major depressive disorder. Biol Psychiatry. 2013;74(10):777–85. https://doi.org/10.1016/j.biopsych.2013.03.005.
Article
PubMed
PubMed Central
Google Scholar
I T, PW M. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–91. https://doi.org/10.1016/j.neuron.2007.07.012.
Article
CAS
Google Scholar
Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science (New York, NY). 2004;306(5695):443–7.
Article
CAS
Google Scholar
Cole MW, Yeung N, Freiwald WA, Botvinick M. Cingulate cortex: diverging data from humans and monkeys. Trends Neurosci. 2009;32(11):566–74. https://doi.org/10.1016/j.tins.2009.07.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee MS, Anumagalla P, Pavuluri MN. Individuals with the post-traumatic stress disorder process emotions in subcortical regions irrespective of cognitive engagement: a meta-analysis of cognitive and emotional interface. Brain Imaging Behav. 2021;15(2):941–57.
Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev. 2015;57:328–49. https://doi.org/10.1016/j.neubiorev.2015.08.001.
Article
PubMed
Google Scholar
Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage. 2017;145(Pt B):137–65.
Article
PubMed
Google Scholar
Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–77. https://doi.org/10.1038/nn.4478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang D, Wang J, Liu X, Chen J, Liu B. Aberrant Brain Network Efficiency in Parkinson's Disease Patients with Tremor: A Multi-Modality Study. Front Aging Neurosci. 2015;7:169.
Dosenbach NU, Nardos B, Cohen AL, Cohen Al, Fair DA, Fair DA, et al. Prediction of individual brain maturity using fMRI. Science. 2010;329(5997):1358–61.