Participant Identification and Recruitment
Internet-delivered Cognitive Behavioural Therapy (iCBT). Participants receiving clinician-guided iCBT on the SilverCloud Health platform were digitally recruited from two sites: (i) a National Health Service (NHS) mental health service ‘Talking Therapies’ based near Reading, West London, United Kingdom (Berkshire Foundation Trust) and (ii) a mental health charity based in Dublin, Ireland (Aware Ireland) that provides free education programs, and information services for the public impacted by mood-related conditions. A key difference across sites was that at Talking Therapies, patients have an initial consultation with a clinician who assesses the patient’s needs before deciding whether to offer them an iCBT program via SilverCloud. In contrast, individuals recruited via the Aware charity are self-referring. At both sites, the iCBT intervention includes clinician support via the platform. At Berkshire, clinicians are made up of specially trained psychology graduates called Psychological Wellbeing Practitioners (PWPs). At Aware, graduate volunteers provide the clinical support. All supporters have been trained in using the platform. Potential participants at each site received an automated ‘Welcome’ email upon registering for SilverCloud, which contained an invitation to participate in this study via a web-link.
Antidepressant Medication. Individuals initiating antidepressant medication were recruited internationally using a combination of online (Google Ads, social media platforms, mental health charities) and in-print advertisement campaigns (pharmacies, general practitioners, counselling clinics, newsletters). Participants in the antidepressant arm were asked to provide details on the type and dosage of the antidepressant medication treatment they were prescribed, and to upload a photograph of their prescription for verification purposes. Participants were not required to be medication-free prior to starting the study. They were eligible to participate if they were about to experience a change in pharmacotherapy; initiating, switching, or adding medication.
Screening and Study Entry Requirements
Screening. In both treatment arms, participants read the information sheet online and provided electronic consent. Participants were notified that their participation was entirely voluntary and would not impact on their care in any way, and that their clinician would not be notified about their participation. They were also informed that they were free to terminate or alter their treatment at any time during the study, and that this would not affect their ability to continue to participate and receive payment. After providing informed consent, participants in both arms were directed to a screening survey used to determine their eligibility. Participants provided their age, English language fluency, email address, listed medications they were taking, confirmed computer access, and told us where they heard about the study. Participants indicated whether they had already started treatment, or if they were planning to start in the future and provided an approximate treatment start date. As stated above, participants in the antidepressant arm also provided a photo of their prescription, which was manually checked for drug name, dose, and date prior to their admission. All participants completed the Work and Social Adjustment Scale (WSAS) [23], which was used to determine eligibility.
Inclusion/Exclusion Criteria. Participants in both arms were excluded if they were not between 18–70 years of age, were not fluent in English, or reported that they did not have computer access. Participants were also required to score a 10 or above on the WSAS [23] which is a transdiagnostic measure capturing impairments in daily functioning arising from mental health problems. In the antidepressant arm, participants were required to have recently started (< 2 days ago) or be planning to start/change treatment soon (< 2 days from now). If they indicated that they were planning to start their treatment in > 2 days after the study sign-up date, they were contacted via email and advised to reapply for the study closer to their treatment start date. In the iCBT arm, participants were invited to our study via automated email directly following their registration on the SilverCloud platform. Given the self-paced nature of iCBT (i.e., users undertake the treatment at their own pace, and can freely choose the order of intervention modules and content they complete in), we also asked participants to indicate when they planned to start treatment. Participants who indicated that they had already started iCBT > 2 days prior to signing up were not included in the study, and those who indicated that they planned to start in > 2 days were contacted via email, and a treatment start date and study schedule agreed upon with the research team manually. In those cases, patients had technically registered on the platform, but were not planning to engage in the modules immediately for various personal reasons.
Study Schedule
If participants were deemed eligible to take part in the study, they were sent an individualised study schedule and a web-link for completing the baseline assessment. While we endeavoured to have participants complete the baseline on the same day they initiated treatment, we took a pragmatic and flexible approach, allowing participants a window of 4 days from their treatment start date in which to complete the baseline assessment. Four participants in the antidepressant arm completed their baseline assessments 5 days after their treatment start date due in part to administrative issues, and we chose to retain their data for analysis. In the iCBT arm, there were no participants outside of this criterion. Weekly check-in assessments and the final assessment for each participant were approximately scheduled at a 7-day interval following their treatment start date and were provided to participants 1 day before they were due with the instruction to complete them on the following day. Figure 1 shows an overview of the study design and the assessments involved at each timepoint.
Outcome Measure
The primary outcome measure for this study is percent change in depression symptom severity on the Quick Inventory of Depressive Symptomatology – Self-Report (QIDS-SR) [24]. For certain types of planned machine learning analysis that require categorical outcomes, we binarize this as ‘early response’, defined as ≥ 30% pre-post improvement. We selected this because (i) participants are not expected to achieve ‘response’ (i.e., ≥ 50% pre-post improvement in QIDS-SR) or ‘remission’ (i.e., QIDS-SR score of ≤ 5) in a 4-week timeframe and (ii) prior work has shown that this threshold of early response is a strong indicator of 8-week clinical outcomes [25].
Baseline Assessment
The baseline assessment took approximately 1.5–2 hours to complete and required a mouse and a keyboard. Six categories of data were gathered, spanning (i) clinical data, (ii) treatment data, (iii) cognitive test data, (iv) socio-demographics, (v) psychosocial factors and (vi) lifestyle factors (see Additional File 2 – Variable Directory for a full outline of variables collected in the study).
Clinical Data. To assess whether treatment has a transdiagnostic effect on mental health, we considered the WSAS as a secondary outcome, measuring general impairment in psychosocial functioning due to mental health problems [23]. To assess specific clinical changes, we administered a range of clinical self-report scales assessing obsessive–compulsive disorder measured by the Obsessive–Compulsive Inventory – Revised (OCI-R) [26], depression measured by the Self-Rating Depression Scale (SDS) [27], trait anxiety measured by the trait portion of the State-Trait Anxiety Inventory (STAI) [28], alcohol addiction measured by the Alcohol Use Disorder Identification Test (AUDIT) [29], apathy measured by the Apathy Evaluation Scale (AES) [30], eating disorders measured by the Eating Attitude Test (EAT-26) [31], impulsivity measured by the Barratt Impulsivity Scale (BIS-10) [32], schizotypy measured by the Short Scales for Measuring Schizotypy (SSMS) [33], and social anxiety measured by the Liebowitz Social Anxiety Scale (LSAS) [34]. These instruments allow for the estimation of 3 transdiagnostic dimensions (anxious-depression, compulsivity, and social withdrawal) based on factor loadings identified in a prior study [35]. These transdiagnostic dimensions have been shown to map onto certain aspects of cognition better than standard questionnaires, such as model-based planning [35, 36] and metacognitive bias [37, 38]. In addition to self-report symptoms, we assessed our participants’ history and chronicity of mental health problems. More specifically, we assessed the number of mental health episodes they have experienced, what age they were when they experienced their first mental health episode, the duration of their current mental health episode, the number of psychiatric diagnoses they had, and the number of close family members with psychiatric diagnoses. As previously mentioned, Chekroud and colleagues’ study (2016) developed a predictive model that achieved ~ 60% accuracy in predicting antidepressant response in a re-analysis of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) dataset [18]. We further included 8 miscellaneous items from this study in order to recapitulate their model as a benchmark against which to compare our own (see Additional File 2 – Variable Directory).
Treatment Variables. Treatment variables included history of medication and/or psychological treatments for mental health, concurrent medication and/or psychological treatments for mental health, as well as participants’ expectations about the mental health treatment they were about to initiate. For participants in the iCBT treatment arm, we examined objective engagement data for each participant, which was provided by SilverCloud.
Cognitive Test Data. Participants completed 4 browser-based gamified cognitive tasks in randomised order, interspersed with blocks of self-report assessments as outlined in the previous section. These were implemented in JavaScript and Python, hosted on a server at Trinity College Dublin and were accessible through any commonly used web-browser. Participants completed a two-step decision making task [39, 40] which estimates various reinforcement learning parameters, including separate estimates of model-based and model-free learning, choice perseveration, and learning rate. Prior studies have shown that model-based planning is linked to compulsivity in the general population [35] and compulsive disorders like obsessive–compulsive disorders (OCD) [41], which benefit from antidepressant medication (albeit at higher doses) [42] and are commonly co-morbid with anxiety and depression [43]. The second task in our battery is an aversive learning task that manipulates environmental volatility [44] to assess the extent to which participants adjust their learning rate appropriately as volatility increases. A reduced sensitivity to volatility has been previously linked to trait anxiety and the functioning of the noradrenergic system [45]. The third task we included measures metacognitive bias and sensitivity in the context of perceptual decision making. Individuals who score high on a transdiagnostic dimension of anxious-depression symptoms have lower confidence in their decision-making, while those high in compulsivity have over-confidence [36, 37]. Our final cognitive assessment was abstract reasoning using a computerised adaptive task based on Raven’s Standard Progressive Matrices [46]. Reasoning deficits are associated with risk for various mental health conditions [47].
Socio-Demographics. In addition to age, which they reported at study intake, participants self-reported their sex, country of residence, marital status, education level, subjective social status, and employment status.
Psychosocial Variables. Perceived social support was assessed using the Multidimensional Scale of Perceived Social Support (MSPSS) [48], perceived stress was assessed using the Perceived Stress Scale (PSS) [49], experience of stressful life events in the past 12 months was assessed using the Social Readjustment Rating Scale (SRRS) [50], and childhood traumatic experiences were measured by the Childhood Trauma Questionnaire (CTQ) [51].
Physical Health and Lifestyle. This included exercising habits, smoking habits, dietary quality, current and prior recreational drug use, height, and weight. Physical health comorbidities were measured by the Cumulative Illness Rating Scale (CIRS) [52], and somatic symptoms were measured by 5 items pertaining to stomach, back, limbs, head, and chest pain in the Patient Health Questionnaire-15 (PHQ-15) [53].
Weekly Check-Ins
Weekly check-in assessments were sent to participants in each week of the study. They could be completed using a computer, tablet, or smartphone and took approximately 10-15 minutes to complete. Participants had 4 days to complete these assessments or were otherwise excluded from further participation. They completed 3 standardised questionnaires each week, including the QIDS-SR for depression symptoms, the WSAS for impairment symptoms, and the OCI-R for OCD symptoms. In addition, participants also answered questions about treatment adherence, side effects and dosage changes (for those in the antidepressant arm), whether they initiated any other mental health treatments, and other extra relevant information they wished to inform the study co-ordinators after they have begun participation in the study.
Final Assessment
Participants were asked to complete a detailed final assessment after 4 weeks of treatment. This was almost identical to the baseline assessment, comprising 4 gamified cognitive tasks and self-report questionnaires administrated in a randomised order. Self-report variables gathered during the baseline assessment that were not expected to change (e.g., childhood trauma, age, education etc.) were not re-collected (see Table S1 in Additional File 1 – Supplementary Materials for schedule of assessments). Contingent on completion of the final assessment, a proportion of participants were invited to complete a short feedback survey on their experience of the study and to provide suggestions for future studies with similar scope and design.
Quality Control
Participants completed their assessments in an at-home environment where traditional experimental control is absent. To understand how this might affect data quality, we included questions to help us identify bad quality data. At the end of both the baseline and final assessments, participants were asked if they were distracted during the session and if so, by what. They were also asked if they had consumed any substances (e.g., alcohol/drugs) 5 hours prior to participation. Participants were assured their continued participation would not be affected by their response. In addition, we included a ‘catch question’ that was embedded in both the OCI-R and WSAS questionnaires at baseline and in the WSAS questionnaire at all subsequent timepoints. These 6 catch questions asked participants to select a specific answer option if they were paying attention.
Clinical Interventions
Internet-Delivered Cognitive Behavioural Therapy (iCBT). SilverCloud provides low-intensity, clinician-guided iCBT intervention programs for a range of common mental health problems (e.g., ‘Space from Depression’, ‘Space from Anxiety’, ‘Life Skills’, ‘Space from Stress’). The programs partially overlap in terms of content, but also have unique components. All follow evidence-based cognitive behavioural therapy (CBT) principles [54, 55]. Each module takes approximately 1 hour to complete, and while users can self-pace, they are generally recommended to complete at least 1 module per week. The intervention comprises cognitive, emotional, and behavioural components (e.g., behavioural activation, self-monitoring, activity scheduling, mood, and lifestyle monitoring). Each module incorporates introductory quizzes and videos, interactive activities, informational content, as well as homework assignments and summaries. Personal stories and accounts from other users are also included into the presentation of the content. The interventions additionally provide tailored content and modules dependent on the user’s clinical presentation (e.g., ‘Challenging Core Beliefs’ module for depressive symptoms; ‘Worry Tree’ activity for managing symptoms of anxiety). Although the programs are clinician-guided, users are welcome to engage with the modules and content at their own pace and in the order they opt. A clinician, typically an Assistant Psychologist or a Psychological Wellbeing Practitioner [56] trained in the delivery of SilverCloud iCBT programs, is assigned to a user once they have registered and guides their progress through the intervention. During treatment, the clinician reviews the user’s progress while leaving feedback and responding to queries. Typically, 6-8 weekly/fortnightly review sessions are offered across the supported period of the intervention (up to 12 weeks), however, this depends on the user’s specific needs.
Antidepressant Medication. Participants in the antidepressant group (N = 92) were initiating a range of antidepressant medications. Most (86%) were taking selective serotonin reuptake inhibitors (SSRIs), but 13% were taking serotonin-norepinephrine reuptake inhibitors (SNRIs), 7% taking atypical antidepressants, and 2% were taking tricyclic antidepressants (TCAs). Due to polypharmacy, these numbers do not add to 100%. 8% of participants were taking more than 1 antidepressant medication and 5% were taking another non-antidepressant medication. The most common antidepressant medications were Sertraline (40%), Escitalopram (19%), and Fluoxetine (15%) (see Table S2, S3, and S4 in Additional File 1 – Supplementary Materials). Most participants (90%) experienced side effects from their treatment, with the most common including sleep-related problems such as day-time sleepiness (59%) and night-time sleep disturbances (55%), gastrointestinal symptoms (52%), migraines and headaches (36%), and sexual problems (36%).
Compensation
Participants in both arms were paid €60 in an accelerating payment schedule through PayPal or digital gift cards. Participants received €10 for completing the baseline assessment, €20 euros after the third weekly check-in, and €30 upon completion of the final assessment. The feedback survey was optional and compensated with an additional €10.
Data Analysis
In this paper, data are reported on participants who have fully completed the study in the iCBT and antidepressant arms, recruited from 4th February 2019 to 20th July 2021 (N = 594). Where appropriate, participants’ recruitment trajectory, socio-demographic and clinical characteristics, treatment, and study compliance data (e.g., retention rates) were compared between study arms using chi-square, t-tests, and repeated measures analyses of variance (ANOVA) (for comprehensive results see section ‘Between-Group Comparisons’ in Additional File 1 – Supplementary Materials). The significance of results (p-value) is reported for context and comparison, however, this study is largely descriptive in nature rather than focusing on hypothesis testing. As such, no correction for multiple comparisons was conducted. To assess data quality, we reported on the numbers of participants who were inattentive, distracted or intoxicated; and to assess the impact of this on data quality, we compared response consistency (i.e., the correlation of similar self-reported items) across the groups who were and were not flagged by these criteria. Finally, a qualitative content analysis was conducted on 4 open-ended free-text questions from the online feedback survey. This method allows researchers to quantify concepts in the data by counting the number of times these concepts appeared, thus providing descriptive statistics fit for the quantitative reporting of this data [57].