Merikangas AK, Shelly M, Knighton A, Kotler N, Tanenbaum N, Almasy L. What genes are differentially expressed in individuals with schizophrenia? A systematic review. Molecular Psychiatry. 2022;27:1373–1383.
Merikangas AK, Almasy L. Using the tools of genetic epidemiology to understand sex differences in neuropsychiatric disorders. Genes Brain Behav. 2020;19(6): e12660.
Article
Google Scholar
Bozorgmehr A, Sadeghi B, Zavari EST, Bahrami E, Zamani F, Shahbazi A. An integrative gene network-based approach to uncover the cellular and molecular infrastructures of schizophrenia. Life Sci. 2020;260: 118345.
Article
CAS
Google Scholar
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. Pharmacy and Therapeutics. 2014;39(9):638.
Google Scholar
Owen M, Sawa A, Mortensen P. Schizophrenia Lancet Lond Engl. 2016;388:86–97.
Article
Google Scholar
O’Connell KS, McGregor NW, Lochner C, Emsley R, Warnich L. The genetic architecture of schizophrenia, bipolar disorder, obsessive-compulsive disorder and autism spectrum disorder. Mol Cell Neurosci. 2018;88:300–7.
Article
CAS
Google Scholar
Hamidian S, Pourshahbaz A, Bozorgmehr A, Ananloo ES, Dolatshahi B, Ohadi M. How obsessive–compulsive and bipolar disorders meet each other? An integrative gene-based enrichment approach. Ann Gen Psychiatry. 2020;19(1):1–10.
Article
Google Scholar
Singh A, Beniwal RP, Bhatia T, Deshpande SN. Schizophrenia with and without obsessive-compulsive symptoms: a comparative analysis of performance on trail making test and disability on WHODAS. General psychiatry. 2020;33(6):e100237.
Strom NI, Grove J, Meier SM, Bækvad-Hansen M, Nissen JB, Als TD, et al. Polygenic heterogeneity across obsessive-compulsive disorder subgroups defined by a comorbid diagnosis. Frontiers in Genetics. 2021;12:711624.
Miguel EC, Ferrão YA, Rosário MCd, Mathis MAd, Torres AR, Fontenelle LF, et al. The Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders: recruitment, assessment instruments, methods for the development of multicenter collaborative studies and preliminary results. Braz J Psychiatry. 2008;30(3):185–96.
Article
Google Scholar
Pinto A, Mancebo MC, Eisen JL, Pagano ME, Rasmussen SA. The Brown Longitudinal Obsessive Compulsive Study: clinical features and symptoms of the sample at intake. J Clin Psychiatry. 2006;67(5):2146.
Article
Google Scholar
van Oudheusden LJ, van de Schoot R, Hoogendoorn A, van Oppen P, Kaarsemaker M, Meynen G, et al. Classification of comorbidity in obsessive–compulsive disorder: A latent class analysis. Brain and behavior. 2020;10(7): e01641.
Article
Google Scholar
Tezenas du Montcel C, Pelissolo A, Schürhoff F, Pignon B. Obsessive-compulsive symptoms in schizophrenia: an up-to-date review of literature. Curr Psychiatry Rep. 2019;21(8):64.
Article
Google Scholar
Attademo L, Bernardini F, Paolini E, Quartesan R. History and conceptual problems of the relationship between obsessions and hallucinations. Harv Rev Psychiatry. 2015;23(1):19–27.
Article
Google Scholar
Achim AM, Maziade M, Raymond É, Olivier D, Mérette C, Roy M-A. How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull. 2011;37(4):811–21.
Article
Google Scholar
Swets M, Dekker J, van Emmerik-van OK, Smid GE, Smit F, de Haan L, et al. The obsessive compulsive spectrum in schizophrenia, a meta-analysis and meta-regression exploring prevalence rates. Schizophr Res. 2014;152(2–3):458–68.
Article
Google Scholar
Attademo L, De Giorgio G, Quartesan R, Moretti P. Schizophrenia and obsessive-compulsive disorder: from comorbidity to schizo-obsessive disorder. Riv Psichiatr. 2012;47(2):106–15.
Google Scholar
Bottas A, Cooke RG, Richter MA. Comorbidity and pathophysiology of obsessive–compulsive disorder in schizophrenia: is there evidence for a schizo-obsessive subtype of schizophrenia? J Psychiatry Neurosci. 2005;30(3):187–95.
Google Scholar
Poyurovsky M, Weizman A, Weizman R. Obsessive-compulsive disorder in schizophrenia. CNS Drugs. 2004;18(14):989–1010.
Article
CAS
Google Scholar
Schirmbeck F, Zink M. Comorbid obsessive-compulsive symptoms in schizophrenia: contributions of pharmacological and genetic factors. Front Pharmacol. 2013;4:99.
Article
Google Scholar
Costas J, Carrera N, Alonso P, Gurriarán X, Segalàs C, Real E, et al. Exon-focused genome-wide association study of obsessive-compulsive disorder and shared polygenic risk with schizophrenia. Translational psychiatry. 2016;6(3):e768.
Article
CAS
Google Scholar
Zink M. Comorbid obsessive-compulsive symptoms in schizophrenia: insight into pathomechanisms facilitates treatment. Advances in Medicine. 2014;2014:317980.
Kropiwnicki E, Binder JL, Yang JJ, Holmes J, Lachmann A, Clarke DJ, et al. Getting Started with the IDG KMC Datasets and Tools. Current Protocols. 2022;2(1): e355.
Article
CAS
Google Scholar
Sepehrinezhad A, Rezaeitalab F, Shahbazi A, Sahab-Negah S. A computational-based drug repurposing method targeting SARS-CoV-2 and its neurological manifestations genes and signaling pathways. Bioinform Biol Insights. 2021;15:11779322211026728.
Article
Google Scholar
Baker EJ, Jay JJ, Bubier JA, Langston MA, Chesler EJ. GeneWeaver: a web-based system for integrative functional genomics. Nucleic Acids Res. 2012;40(D1):D1067–76.
Article
CAS
Google Scholar
Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database: the journal of biological databases and curation. 2016;2016:baw100: 1-16.
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.
Article
CAS
Google Scholar
Ragueneau E, Shrivastava A, Morris JH, Del-Toro N, Hermjakob H, Porras P. IntAct App: a Cytoscape application for molecular interaction network visualization and analysis. Bioinformatics. 2021;37(20):3684–5.
Article
CAS
Google Scholar
Weng S, Wang B, Li M, Chao S, Lin R, Zheng R, et al. Genome-wide association study of antipsychotic-induced sinus bradycardia in Chinese schizophrenia patients. PLoS ONE. 2021;16(4): e0249997.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
Google Scholar
Xie Z, Bailey A, Kuleshov MV, Clarke DJ, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with enrichr. Current protocols. 2021;1(3): e90.
Article
CAS
Google Scholar
Wan J, Liu B. Construction of lncRNA-related ceRNA regulatory network in diabetic subdermal endothelial cells. Bioengineered. 2021;12(1):2592–602.
Article
CAS
Google Scholar
Dincheva I, Lynch NB, Lee FS. The role of BDNF in the development of fear learning. Depress Anxiety. 2016;33(10):907–16.
Article
Google Scholar
Cattaneo A, Cattane N, Begni V, Pariante CM, Riva M. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Translational psychiatry. 2016;6(11):e958.
Article
CAS
Google Scholar
Lu B, Martinowich K, editors. Cell biology of BDNF and its relevance to schizophrenia. Novartis Foundation Symposium; 2008:289:119-29; discussion 129-35, 193-5; NIH Public Access.
Nieto R, Kukuljan M, Silva H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psych. 2013;4:45.
CAS
Google Scholar
Di Carlo P, Punzi G, Ursini G. BDNF and Schizophrenia. Psychiatr Genet. 2019;29(5):200.
Google Scholar
Krebs M, Guillin O, Bourdel M, Schwartz J, Olie J, Poirier M, et al. Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry. 2000;5(5):558–62.
Article
CAS
Google Scholar
Martinowich K, Lu B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. 2008;33(1):73–83.
Article
CAS
Google Scholar
BruÈnig I, Penschuck S, Berninger B, Benson J, Fritschy JM. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression. Eur J Neurosci. 2001;13(7):1320–8.
Article
Google Scholar
Buckley PF, Mahadik S, Pillai A, Terry A Jr. Neurotrophins and schizophrenia. Schizophr Res. 2007;94(1–3):1–11.
Google Scholar
Hall D, Dhilla A, Charalambous A, Gogos JA, Karayiorgou M. Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder. The American Journal of Human Genetics. 2003;73(2):370–6.
Article
CAS
Google Scholar
Hemmings SM, Kinnear CJ, Van Der Merwe L, Lochner C, Corfield VA, Moolman-Smook JC, et al. Investigating the role of the brain-derived neurotrophic factor (BDNF) val66met variant in obsessive-compulsive disorder (OCD). The World Journal of Biological Psychiatry. 2008;9(2):126–34.
Article
Google Scholar
Katerberg H, Lochner C, Cath DC, de Jonge P, Bochdanovits Z, Moolman-Smook JC, et al. The role of the brain-derived neurotrophic factor (BDNF) val66met variant in the phenotypic expression of obsessive-compulsive disorder (OCD). Am J Med Genet B Neuropsychiatr Genet. 2009;150(8):1050–62.
Article
Google Scholar
Wang S, Xu X, Yan P, Song M, Li J, Wang S. Is Brain-Derived Neurotrophic Factor (BDNF) Val66met polymorphism associated with obsessive-compulsive disorder? A meta-analysis Psychiatria Danubina. 2019;31(2):141–7.
Article
CAS
Google Scholar
Ghamari R, Yazarlou F, Khosravizadeh Z, Moradkhani A, Abdollahi E, Alizadeh F. Serotonin transporter functional polymorphisms potentially increase risk of schizophrenia separately and as a haplotype. Sci Rep. 2022;12(1):1–9.
Article
Google Scholar
Xu F-l, Wang B-j, Yao J. Association between the SLC6A4 gene and schizophrenia: an updated meta-analysis. Neuropsychiatric Disease and Treatment. 2018;15:143-155.
Kim J-H, Kim J-H, Son Y-D, Joo Y-H, Lee S-Y, Kim H-K, et al. Altered interregional correlations between serotonin transporter availability and cerebral glucose metabolism in schizophrenia: a high-resolution PET study using [11C] DASB and [18F] FDG. Schizophr Res. 2017;182:55–65.
Article
Google Scholar
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018;265:25–38.
Article
CAS
Google Scholar
Gomes CKF, Vieira-Fonseca T, Melo-Felippe FB, de Salles Andrade JB, Fontenelle LF, Kohlrausch FB. Association analysis of SLC6A4 and HTR2A genes with obsessive-compulsive disorder: Influence of the STin2 polymorphism. Compr Psychiatry. 2018;82:1–6.
Article
Google Scholar
Zitterl W, Aigner M, Stompe T, Zitterl-Eglseer K, Gutierrez-Lobos K, Wenzel T, et al. Changes in thalamus–hypothalamus serotonin transporter availability during clomipramine administration in patients with obsessive–compulsive disorder. Neuropsychopharmacology. 2008;33(13):3126–34.
Article
CAS
Google Scholar
Rashidi FS, Ahmadipour E, Shiravand S, Ahmadiani A, Asadi S, Shams J. Association of the functional serotonin transporter haplotype with familial form of obsessive compulsive disorder in Iranian patients. Int J Psychiatry Clin Pract. 2018;22(1):47–53.
Article
CAS
Google Scholar
Kim Y-K, Yoon H-K. Effect of serotonin-related gene polymorphisms on pathogenesis and treatment response in Korean schizophrenic patients. Behav Genet. 2011;41(5):709–15.
Article
Google Scholar
Kantrowitz JT. Targeting serotonin 5-HT2A receptors to better treat schizophrenia: rationale and current approaches. CNS Drugs. 2020;34(9):947–59.
Article
CAS
Google Scholar
Sinopoli VM, Burton CL, Kronenberg S, Arnold PD. A review of the role of serotonin system genes in obsessive-compulsive disorder. Neurosci Biobehav Rev. 2017;80:372–81.
Article
CAS
Google Scholar
Mattina GF, Samaan Z, Hall GB, Steiner M. The association of HTR2A polymorphisms with obsessive-compulsive disorder and its subtypes: a meta-analysis. J Affect Disord. 2020;275:278–89.
Article
CAS
Google Scholar
Taylor S. Molecular genetics of obsessive–compulsive disorder: a comprehensive meta-analysis of genetic association studies. Mol Psychiatry. 2013;18(7):799–805.
Article
CAS
Google Scholar
Yee JY, Nurjono M, Teo SR, Lee T-S, Lee J. GAD1 gene expression in blood of patients with first-episode psychosis. PLoS ONE. 2017;12(1): e0170805.
Article
Google Scholar
Curley AA, Eggan SM, Lazarus MS, Huang ZJ, Volk DW, Lewis DA. Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia. Neurobiol Dis. 2013;50:179–86.
Article
CAS
Google Scholar
Li Y, Zhang CC, Weidacker K, Zhang Y, He N, Jin H, et al. Investigation of anterior cingulate cortex gamma-aminobutyric acid and glutamate-glutamine levels in obsessive-compulsive disorder using magnetic resonance spectroscopy. BMC Psychiatry. 2019;19(1):1–9.
Article
Google Scholar
Zhang Z, Fan Q, Bai Y, Wang Z, Zhang H, Xiao Z. Brain Gamma-Aminobutyric Acid (GABA) concentration of the prefrontal lobe in unmedicated patients with obsessive-compulsive disorder: a research of magnetic resonance spectroscopy. Shanghai Arch Psychiatry. 2016;28(5):263.
Google Scholar
Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF. Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci. 2016;132(2):115–21.
Article
CAS
Google Scholar
Guo Z, Niu W, Bi Y, Zhang R, Ren D, Hu J, et al. A study of single nucleotide polymorphisms of GRIN2B in schizophrenia from Chinese Han population. Neurosci Lett. 2016;630:132–5.
Article
CAS
Google Scholar
Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019;73(5):204–15.
Article
Google Scholar
Poltavskaya EG, Fedorenko OY, Kornetova EG, Loonen AJ, Kornetov AN, Bokhan NA, et al. Study of early onset schizophrenia: Associations of GRIN2A and GRIN2B polymorphisms. Life. 2021;11(10):997.
Article
CAS
Google Scholar
Ting JT, Feng G. Glutamatergic synaptic dysfunction and obsessive-compulsive disorder. Current chemical genomics. 2008;2:62.
Article
CAS
Google Scholar
Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am. 2000;23(3):563–86.
Article
CAS
Google Scholar
Stewart S, Mayerfeld C, Arnold P, Crane J, O’dushlaine C, Fagerness J, et al. Meta-analysis of association between obsessive-compulsive disorder and the 3′ region of neuronal glutamate transporter gene SLC1A1. Am J Med Genet B Neuropsychiatr Genet. 2013;162(4):367–79.
Article
CAS
Google Scholar
Alonso P, Gratacós M, Segalàs C, Escaramís G, Real E, Bayés M, et al. Association between the NMDA glutamate receptor GRIN2B gene and obsessive–compulsive disorder. J Psychiatry Neurosci. 2012;37(4):273–81.
Article
Google Scholar
Hussain MS, Siddiqui SA, Mondal S, Millat MS, Marzan S, Uddin MG, et al. Association of DRD2 gene polymorphisms with schizophrenia in the young Bangladeshi population: A pilot study. Heliyon. 2020;6(10): e05125.
Article
CAS
Google Scholar
Prananjaya A, Saleh I, Parisa N. DRD2 Gene Polymorphisms in Schizophrenia Patients. 2021.
Google Scholar
Koo M-S, Kim E-J, Roh D, Kim C-H. Role of dopamine in the pathophysiology and treatment of obsessive–compulsive disorder. Expert Rev Neurother. 2010;10(2):275–90.
Article
CAS
Google Scholar
Denys D, Van Nieuwerburgh F, Deforce D, Westenberg H. Association between the dopamine D2 receptor TaqI A2 allele and low activity COMT allele with obsessive–compulsive disorder in males. Eur Neuropsychopharmacol. 2006;16(6):446–50.
Article
CAS
Google Scholar
Xu FI, Ding M, Wu X, Liu Yp, Xia X, Yao J, et al. A meta-analysis of the association between SLC6A3 gene polymorphisms and schizophrenia. J Mol Neurosci. 2020;70(2):155–66.
Article
CAS
Google Scholar
Warshaneyan SS, Srivastava P. Analysis and subsequent molecular docking of selected phytochemicals with SLC6A3 and SLC6A4 as potential therapeutic agents for Obsessive-Compulsive Disorder (OCD). bioRxiv. 2019:776922. https://doi.org/10.1101/776922.
Escamilla R, Camarena B, Saracco-Alvarez R, Fresán A, Hernández S, Aguilar-García A. Association study between COMT, DRD2, and DRD3 gene variants and antipsychotic treatment response in Mexican patients with schizophrenia. Neuropsychiatr Dis Treat. 2018;14:2981.
Article
CAS
Google Scholar
Kumar P, Rai V. Catechol-O-methyltransferase gene Val158Met polymorphism and obsessive compulsive disorder susceptibility: a meta-analysis. Metab Brain Dis. 2020;35(2):241–51.
Article
CAS
Google Scholar
Horiguchi M, Ohi K, Hashimoto R, Hao Q, Yasuda Y, Yamamori H, et al. Functional polymorphism (C-824T) of the tyrosine hydroxylase gene affects IQ in schizophrenia. Psychiatry Clin Neurosci. 2014;68(6):456–62.
Article
CAS
Google Scholar
Cheng M-C, Lu C-L, Luu S-U, Tsai H-M, Hsu S-H, Chen T-T, et al. Genetic and functional analysis of the DLG4 gene encoding the post-synaptic density protein 95 in schizophrenia. PLoS ONE. 2010;5(12): e15107.
Article
CAS
Google Scholar
Hibar DP, Cheung JW, Medland SE, Mufford MS, Jahanshad N, Dalvie S, et al. Significant concordance of genetic variation that increases both the risk for obsessive–compulsive disorder and the volumes of the nucleus accumbens and putamen. Br J Psychiatry. 2018;213(1):430–6.
Article
Google Scholar
Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr. 2018;23(3):187–91.
Article
Google Scholar
Asl MA, Asgari P, Bakhti Z. Treatment approaches based on neuroscientific data in patients with obsessive-compulsive disorder. International Clinical Neuroscience Journal. 2021;8(3):107–17.
Article
Google Scholar
Perani D, Garibotto V, Gorini A, Moresco RM, Henin M, Panzacchi A, et al. In vivo PET study of 5HT2A serotonin and D2 dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage. 2008;42(1):306–14.
Article
Google Scholar
Vermeire S, Audenaert K, De Meester R, Vandermeulen E, Waelbers T, De Spiegeleer B, et al. Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behaviour as a promising model for human obsessive-compulsive disorder. Psychiatry Research: Neuroimaging. 2012;201(1):78–87.
Article
CAS
Google Scholar
Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, et al. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry. 2000;57(4):349–56.
Article
CAS
Google Scholar
Faludi G, Mirnics K. Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci. 2011;29(3):305–9.
Article
Google Scholar
https://www.genecards.org [Internet]. 2022.
Nowak JS, Michlewski G. miRNAs in development and pathogenesis of the nervous system. Biochemical Society transactions. 2013;41(4):815–820.
Wang J, Wang Y, Yang J, Huang Y. microRNAs as novel biomarkers of schizophrenia. Exp Ther Med. 2014;8(6):1671–6.
Article
CAS
Google Scholar
He K, Guo C, He L, Shi Y. MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas. 2018;155(1):1–5.
Article
Google Scholar
Pan B, Wang Y, Shi Y, Yang Q, Han B, Zhu X, et al. Altered expression levels of miR-144–3p and ATP1B2 are associated with schizophrenia. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry. 2022:23(9):666-676.
Xu M, Zhou J, Zhang Q, Le K, Xi Z, Yi P, et al. MiR-3121-3p promotes tumor invasion and metastasis by suppressing Rap1GAP in papillary thyroid cancer in vitro. Annals of translational medicine. 2020;8(19):1229.
Article
CAS
Google Scholar
Zhao XF, Kohen R, Parent R, Duan Y, Fisher GL, Korn MJ, et al. PlexinA2 Forward Signaling through Rap1 GTPases Regulates Dentate Gyrus Development and Schizophrenia-like Behaviors. Cell Rep. 2018;22(2):456–70.
Article
CAS
Google Scholar
Ma J, Shang S, Wang J, Zhang T, Nie F, Song X, et al. Identification of miR-22-3p, miR-92a-3p, and miR-137 in peripheral blood as biomarker for schizophrenia. Psychiatry Res. 2018;265:70–6.
Article
CAS
Google Scholar
Kandemir H, Erdal ME, Selek S, İzci Ay Ö, Karababa İF, Ay ME, et al. Microribonucleic acid dysregulations in children and adolescents with obsessive-compulsive disorder. Neuropsychiatr Dis Treat. 2015;11:1695–701.
Article
Google Scholar
Sabaie H, Gholipour M, Asadi MR, Abed S, Sharifi-Bonab M, Taheri M, et al. Identification of key long non-coding RNA-associated competing endogenous RNA axes in Brodmann Area 10 brain region of schizophrenia patients. Front Psychiatry. 2022;13:1010977.
Article
Google Scholar
Aydın EP, Alsaadoni H, Beğenen AG, Özer ÖA, Karamustafalıoğlu KO, Pençe S. Can miRNA Expression Levels Predict Treatment Resistance to Serotonin Reuptake Inhibitors in Patients with Obsessive-Compulsive Disorder? PSYCHIATRY AND CLINICAL PSYCHOPHARMACOLOGY. 2022;32(2):98–106.
Article
Google Scholar
Grubor M, Zivkovic M, Sagud M, Nikolac Perkovic M, Mihaljevic-Peles A, Pivac N, et al. HTR1A, HTR1B, HTR2A, HTR2C and HTR6 gene polymorphisms and extrapyramidal side effects in haloperidol-treated patients with schizophrenia. Int J Mol Sci. 2020;21(7):2345.
Article
CAS
Google Scholar
Essali A, Turkmani K, Aboudamaah S, AbouDamaah A, Aldeen MRD, Marwa ME, et al. Haloperidol discontinuation for people with schizophrenia. Cochrane Database of Systematic Reviews. 2019;4(4):CD011408.
Leucht S, Cipriani A, Spineli L, Mavridis D, Örey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. The Lancet. 2013;382(9896):951–62.
Article
CAS
Google Scholar
Thamby A, Jaisoorya T. Antipsychotic augmentation in the treatment of obsessive-compulsive disorder. Indian Journal of Psychiatry. 2019;61(Suppl 1):S51.
Google Scholar
Chatterjee SS, Mitra S, Mallik N. Emerging hyperprolactinemic galactorrhea in obsessive compulsive disorder with a stable dose of fluoxetine. Clinical Psychopharmacology and Neuroscience. 2015;13(3):316.
Article
Google Scholar
Chakraborty S, Dasgupta A, Das HN, Singh OP, Mandal AK, Mandal N. Study of oxidative stress in obsessive compulsive disorder in response to treatment with Fluoxetine. Indian J Clin Biochem. 2009;24(2):194–7.
Article
CAS
Google Scholar
Pigott TA, Seay SM. A review of the efficacy of selective serotonin reuptake inhibitors in obsessive-compulsive disorder. J Clin Psychiatry. 1999;60(2):18284.
Article
Google Scholar
Mao Y-M, Zhang M-D. Augmentation with antidepressants in schizophrenia treatment: benefit or risk. Neuropsychiatr Dis Treat. 2015;11:701.
Google Scholar
De Berardis D, Rapini G, Olivieri L, Di Nicola D, Tomasetti C, Valchera A, et al. Safety of antipsychotics for the treatment of schizophrenia: a focus on the adverse effects of clozapine. Therapeutic advances in drug safety. 2018;9(5):237–56.
Article
Google Scholar
Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine v. first-and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br J Psychiatry. 2016;209(5):385–92.
Article
Google Scholar
Kim DD, Barr AM, Lu C, Stewart SE, White RF, Honer WG, et al. Clozapine-associated obsessive-compulsive symptoms and their management: a systematic review and analysis of 107 reported cases. Psychother Psychosom. 2020;89(3):151–60.
Article
Google Scholar
Kang S, Noh HJ, Bae SH, Kim Y-S, Lew H, Lim J, et al. Clozapine generates obsessive compulsive disorder-like behavior in mice. Mol Brain. 2020;13(1):84.
Article
CAS
Google Scholar
Stryjer R, Dambinsky Y, Timinsky I, Green T, Kotler M, Weizman A, et al. Escitalopram in the treatment of patients with schizophrenia and obsessive-compulsive disorder: an open-label, prospective study. Int Clin Psychopharmacol. 2013;28(2):96–8.
Article
Google Scholar
Starr KE, Burns K, Demler TL. Pharmacological and philosophical considerations for the around-the-clock use of scheduled melatonin to promote sedation and reduce aggression in individuals with serious mental illness: a case report. Int Clin Psychopharmacol. 2021;36(6):296–304.
Article
Google Scholar
Monti JM, BaHammam AS, Pandi-Perumal SR, Bromundt V, Spence DW, Cardinali DP, et al. Sleep and circadian rhythm dysregulation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:209–16.
Article
Google Scholar
Maiti R, Mishra BR, Jena M, Mishra A, Nath S. Effect of haloperidol and risperidone on serum melatonin and GAP-43 in patients with schizophrenia: A prospective cohort study. Clinical Psychopharmacology and Neuroscience. 2021;19(1):125.
Article
CAS
Google Scholar
Fanget F, Claustrat B, Dalery J, Brun J, Terra J-L, Marie-Cardine M, et al. Nocturnal plasma melatonin levels in schizophrenic patients. Biological Psychiatry. 1989;25(4):499-501.
Monteleone P, Natale M, La Rocca A, Maj M. Decreased nocturnal secretion of melatonin in drug-free schizophrenics: no change after subchronic treatment with antipsychotics. Neuropsychobiology. 1997;36(4):159–63.
Article
CAS
Google Scholar
Robinson S, Rosca P, Durst R, Shai U, Ghinea C, Schmidt U, et al. Serum melatonin levels in schizophrenic and schizoaffective hospitalized patients. Acta Psychiatr Scand. 1991;84(3):221–4.
Article
CAS
Google Scholar
Duan C, Jenkins ZM, Castle D. Therapeutic use of melatonin in schizophrenia: A systematic review. World Journal of Psychiatry. 2021;11(8):463.
Article
Google Scholar
Paterson JL, Reynolds AC, Ferguson SA, Dawson D. Sleep and obsessive-compulsive disorder (OCD). Sleep Med Rev. 2013;17(6):465–74.
Article
Google Scholar
Monteleone P, Catapano F, Del Buono G, Maj M. Circadian rhythms of melatonin, cortisol and prolactin in patients with obsessive-compulsive disorder. Acta Psychiatr Scand. 1994;89(6):411–5.
Article
CAS
Google Scholar